MUNDELL & ASSOCIATES, INC.

110 S Downey Avenue Indianapolis, Indiana 46219

Phone: 317-630-9060, Fax: 317-630-9065, email: info@MundellAssociates.com

October 31, 2009

Ms. Erin Brittain Project Manager Voluntary Remediation Program Office of Land Quality 100 North Senate Avenue Indianapolis, Indiana 46204

Re: Quarterly Monitoring Progress Report – 1st Quarter 2009

Michigan Plaza

3801-3823 West Michigan Street Indianapolis, Indiana 46222 IDEM Incident # 0000198 IDEM VRP # 6061202 MUNDELL Project No. M01046

Dear Ms. Brittain:

This Quarterly Monitoring Progress Report is being submitted to the Indiana Department of Environmental Management (IDEM) by MUNDELL & ASSOCIATES, INC. (MUNDELL), on behalf of AIMCO, to summarize further site characterization, remediation activities and quarterly monitoring performed from January 1 through March 31, 2009. The following sections provide detailed discussions of the results of this work. All activities were completed on schedule as discussed at the IDEM meeting on October 29th, 2008, and outlined in the RWP Addendum I dated November 6, 2008.

SOIL SAMPLING BENEATH MICHIGAN PLAZA - SOURCE AREA A

MUNDELL proceeded with additional site characterization beneath the Michigan Plaza building (3819 Michigan Street, Zacatecas Mexican grocery store) where the dry cleaning equipment had been formerly located. MUNDELL oversaw the advancement of ten (10) soil borings beneath the plaza building to define the extent of soil and groundwater impacts (Figure 1). The drilling inside the plaza building to collect soil samples beneath the area of the former Accent Cleaners was performed from February 3rd to February 5th, 2009 and in the Laundromat (3823 Michigan Street) space on Thursday, Feb 5th as they are closed on Thursdays.

During the completion of the soil borings, soil samples for characterization were collected continuously during each boring and classified by a MUNDELL geologist. A photo-ionization

detector was used to screen each soil sample at 1 ft intervals for total photoionizable vapors (TPVs).

Discreet soil samples for laboratory analysis were collected as per the protocol for sampling of soils for volatile organic compounds (VOCs), with the convention of analyzing at least one soil sample from each boring from the depth above the water table that exhibits the most likelihood of having soil contamination.

A mobile laboratory (Sierra Mobile Lab) was used for real time results which aided in delineating the extent of the soil impacts instantaneously. The laboratory produced Level IV QA/QC documentation. MUNDELL also oversaw drilling in the vicinity of the possible former dry cleaning machine location and proceeded radially out to define the extent of impacts. This enabled instantaneous turnarounds on soil/groundwater samples to be able to decide accordingly the subsequent CAP-18^{ME} injection locations.

The soil analytical results are demonstrated in Table 3 and Figure 3. Pertinent soil boring logs are attached in Appendix B.

FURTHER DELINEATION OF SOIL IMPACTS - SOURCE AREA B

Soil borings were also advanced in Source Area B (Figure 1) for addressing the soil medium further and for additional characterization of contaminants emanating from the sewer line. The drilling in source area B was performed the week of February 9th, 2009.

Pursuant to the soil impacts documented in the sewer line excavation in October, 2007, MUNDELL oversaw advancement of four (4) soil borings surrounding the release area of the sewer which generated Source Area B to further define the extent of soil impacts in this area (Figure 1). The soil analytical results are demonstrated in Table 3 and Figure 3.

FURTHER GROUNDWATER GEOPROBE SAMPLING

Shallow groundwater samples were collected at select boring locations for laboratory analytical testing using dedicated disposable plastic tubing placed inside the groundwater sampling probe.

The groundwater analytical results are demonstrated in Table 4.

ADDITIONAL CAP-18 INJECTION: SECOND ROUND

The overall results from 'Round 1' of CAP-18 injection performed in August 2007 were encouraging; this second booster round of injection was scheduled to aggressively treat with another round of injection some areas where the chemical concentrations are stable or just slowly decreasing. The second round of CAP-18 injection (February 2009) proceeded in the following steps:

- MUNDELL finalized the plan for drilling inside the Mexican store and the second round of CAP-18^{ME} injection while communicating with GenNx representatives (the current Michigan Plaza property owner), the Mexican store and laundromat leasees as appropriate.
- 2) The product was lined-up at the Site just-in-time for injection.
- 3) CAP-18^{ME} was delivered in 55-gallon drums to be able to store indoors (at 3817 West Michigan space for weather considerations) upon approval from GenNx.
- 4) Utilities' clearance was obtained at all the drilling/injection locations prior to drilling.
- Concrete coring and carpenter services were utilized as needed prior to drilling inside the Mexican store.
- 6) CAP-18^{ME} injection took place inside the Mexican store and the Laundromat (Source Area A), followed by outside in the plaza parking lot (Source Area B), and west of Michigan Meadows Apartments Building No. 1 (Source Area C).
- 7) A total of 16,575 lbs of the product was successfully injected via 33 injection points.
- 8) The CAP-18 loadings proceeded as follows in each of the source areas:
 - a) Source Area A (inside the Mexican store): 3,000 lbs were injected via six injection points.
 - b) Source Area B (Plaza parking lot): 4,500 lbs were injected via nine injection points.
 - c) Source Area C(area north of Michigan Street, west of Apt Building 1): 9,000 lbs were injected via 18 injection points
- 9) The site was brought to pre-conditions after injection.

The injection logs indicating the distribution of product at each of the injection locations is attached in Appendix C.

Soil and shallow groundwater analysis was performed utilizing the mobile lab, results were evaluated, and injection was performed at the Site accordingly. The amount and distribution of CAP18^{ME} needed for each *Source Area* was designed taking several factors into account as well as the practical experience of the manufacturers of CAP18^{ME}, DBI Remediation Products, Inc, (DBI). The amount of CAP18^{ME} to inject into the chemical *Source Areas* was determined based upon prior injection experience (August 2007) at the Site as to the maximum product volume that the aquifer could take per injection location (500 lbs), and also based on the indicator compound chemical concentrations.

The injection spacing for the selected design was largely determined by the aquifer's ability to receive the product. An injection spacing of 10 ft on centers is considered very effective for the sands encountered at the Site, with normal curtain 'rows' stacked two deep for each curtain area. Curtain areas were generally aligned along impacts or perpendicular to either the plume or parallel with building walls that controlled injection accessibility. Injection points along each curtain row were spaced approximately 10 feet apart, with adjustments between rows to allow the most even distribution of vector lines downgradient from injection points. This configuration

was designed to provide the most thorough coverage per *Source Area*. This design accounted for injecting the CAP18^{ME} conservatively throughout a 20 feet thickness in the upper saturated zone at each injection point.

Some field design adjustments to the injection distribution were made as the injection applications began in February 2009. These adjustments included:

- 1) Introduction of the CAP18^{ME} into the aguifer at 3-foot depth intervals.
- Injection of the CAP18^{ME} throughout the sand and gravel aquifer down into the top of the underlying silty clay glacial till, which acts as a barrier to further vertical groundwater movement.
- 3) Injection of a greater dose of CAP18^{ME} into the upper 10 to 12 ft of the saturated zone as compared to greater depths. This placed the greatest mass of the product in the most impacted zone of the aquifer. This also allowed for a longer period of activity from the presence of CAP18TM and its fatty acids in those areas, increasing their effectiveness. Thus, larger masses of CAP18^{ME} injection loading were distributed in the more impacted zones of the aquifer in each Source Area plume to ensure the most longstanding availability of hydrogen for reductive dechlorination. Figure 1 shows the final injection design layout and loading. CAP-18 injection logs attached in Appendix C summarize the vertical distribution of product in each of the borings.

SEWER SAMPLING

Follow-up sewer line investigation was also performed on March 18, 2009 by collecting liquid samples from four different sewer locations running along Michigan Street, which are summarized in Table 6 and Figure 18.

INDOOR AIR MONITORING

On February 26th and 27th, indoor air samples (taken via summa canisters) were collected at four tenant units at Michigan Plaza (Village Pantry (3801), Vacant Handicapped space (3815), Mexican Grocery store (3819) and the Laundromat (3823)) with the air mitigation systems on, and at four apartments (Basement Apt. 101 (Building No. 1), Basement Apt. 602 (Building No. 6), Basement Apt. 1001 (Building No. 10), and Apt No. 109 (Second Floor, Building No. 1 (prior highest concentration)).

Indoor air samples (via summa canisters) were also collected at two more tenant units at Michigan Plaza (Alcoholics Anonymous (3817), and the vacant library space (3805) on March 17th, 2009, since the 3817 space is now periodically occupied and the 3805 space is potentially going to be leased out in the near future.

Tables 7a, 7b, 7c and 7d present the air sampling results for Michigan Plaza, Michigan Apartments, soil gas monitoring wells and the health based limits in air respectively. Figure 4 demonstrates the recent and historical air analytical results.

GROUNDWATER MONITORING NETWORK SAMPLING

On March 16th-18th, 2009, quarterly groundwater sampling of the existing twenty-four (24) monitoring wells established with IDEM, and the two (2) additional monitoring wells on the Floral Park Cemetery property was performed. The following constitute this quarterly groundwater monitoring network:

- Twenty-four MUNDELL monitoring wells: MMW-1S, MMW-8S, MMW-9S, MMW-10S, MMW-11S, MMW-11D, MMW-12S, MMW-13D, MMW-14D, MMW-P-01, MMW-P-02, MMW-P-03S, MMW-P-03D, MMW-P-04, MMW-P-05, MMW-P-06, MMW-P-07, MMW-P-08, MMW-P-09S, MMW-P-09D, MMW-P-10S, MMW-P-10D, and MMW-C-01 and MMW-C-02 (MUNDELL wells on Floral Park Property)
- 2) Two (2) Keramida monitoring wells: MW-168S and MW-168D.

In addition to collection of groundwater levels from each of the above mentioned monitoring wells, MUNDELL measured static groundwater elevations via an electric oil/water interface probe from four nests of Keramida monitoring wells surrounding the Plaza Property for the purpose of more accurately determining the groundwater flow direction and gradient over this wider area. The following additional wells had their groundwater levels measured this quarter:

1) Eight (8) Keramida monitoring wells: MW-167S, MW-167D, MW-169S, MW-169D, MW-170S, MW-170D, MW-171S and MW-171D.

During this investigation, monitoring well MMW-P-04 was found to contain approximately 10-inches of CAP-18 oil at the top of the water table. All monitoring well sampling, survey and construction data are provided in Tables 1, 2 and 2a, respectively, and the potentiometric map is illustrated in Figure 2.

The wells were sampled utilizing a 'Sample Pro Portable MicroPurge Pump' for uniform low-flow purging and sample collection. This microPurge pump uses a quick-change, one-piece bladder design, and can be connected to a Troll 9500 multi-parameter meter with an inline flow cell. This flow cell logs geochemical parameters (temperature, pH, dissolved oxygen, conductivity, and oxidation reduction potential), which help remove a minimal but sufficient amount of water (indicated by stabilization of geochemical parameters) to sample the well. The troll helps assess the geochemical parameters as evidence of conditions naturally conducive to natural attenuation existing in the aquifer. The pump is decontaminated between wells and the bladders are disposed of after sampling each well.

All excess purge water was transported to 55-gallon drums located at the Site for proper disposal.

As agreed in the October 29th, 2008 meeting with IDEM, and detailed in the RWP Addendum November 2008, groundwater samples were submitted to Pace Analytical Laboratories (Pace) in Indianapolis, Indiana for the shorter list of VOC analysis via U.S. EPA SW-846 Method 8260, along with appropriate duplicate (DUP), matrix spike (MS) and matrix spike duplicate (MSD). Groundwater samples were transferred into three 40-milliliter glass sample vials containing the preservative hydrochloric acid (HCl). Groundwater sample vials were sealed in plastic bags and placed in a cooler containing ice and delivered to Pace using appropriate chain-of-custody protocol for laboratory tests. Pace laboratory certificates of analysis for the groundwater samples analyzed are presented in Appendix A.

Baseline groundwater geochemical parameters (pH, dissolved oxygen, oxidation-reduction potential, conductivity, and temperature) were measured with a low-flow cell and multi-parameter water quality probe in the post-injection period to evaluate whether aquifer conditions continue to be favorable for natural attenuation of the indicator compounds at the Site.

Additional aquifer chemical parameter testing has been performed in the past and will be scheduled based on observed response and development in each plume area going forward. Additional aquifer parameters including methane, ethene, and ethane are periodically analyzed to evaluate indicator compound breakdown and redox-sensitivity. In addition, volatile fatty acids (VFA) will also be tested periodically to evaluate substrate distribution and lifetime duration of the product. These samples will be collected in select monitoring wells representative of each plume to monitor the presence of residual CAP 18TM in the aquifer and to provide additional monitoring of aquifer conditions. Future monitoring of these constituents will be performed as needed to evaluate the natural attenuation process.

It should be noted that the complete monitoring well network (a total of 40 monitoring wells including other wells on the Michigan Meadows Apartments property and other selected Keramida wells) will be sampled annually, as discussed with IDEM.

All excess purge water was transported to 55-gallon drums located at the Site for proper disposal.

All soil cuttings generated during the drilling of the permanent monitoring wells and groundwater pumped out of the wells during well development were placed in 55-gallon drums located at the Site for later disposal. In accordance with IDEM guidelines, the contents in each drum were then identified with a label describing them as non-hazardous materials.

MUNDELL Project No. M01046

INVESTIGATION AND REMEDIATION RESULTS

Further Soil Delineation

Seven (7) soil borings were advanced in February 2009 beneath the plaza building as discussed in the RWP Addendum I, November 6, 2008. Five (5) out of the seven (7) borings demonstrated indicator compound concentrations in soil both below the IDCLs and the RDCLs. Slight exceedances to the RDCLs for PCE were observed at boring locations SB-3, SB-4, SB-6, locations (Table 3), but all concentrations were below the IDCL. Soil boring SB-3 (Mexican store dining area) exhibited a PCE concentration that slightly exceeded the IDCL (6.09 and 3.6 mg/kg at the depths of 11 to 12 feet and 16 to 17 feet bgs, respectively). Soil boring SB-4 also exhibited a PCE concentration that slightly exceeded the IDCL (8.43 mg/kg at the depth of 16 to 17 feet bgs).

PCE impacts in the soil above IDCLs appear to be localized in the southern portion of the Mexican store space at depths in the vicinity of the groundwater table.

Three (3) soil borings (SB-8, SB-9 and SB-10) were advanced on the south side of the plaza building. Slight exceedances to the RDCLs for PCE were observed at boring locations SB-8 and SB-10 locations; all the indicator compound concentrations in soil were below IDCLs. This is consistent with previous soil sampling that had been completed south of the Plaza building.

Seven (7) soil borings were also advanced in Source Area B as discussed in the RWP Addendum I, November 6, 2008. Six (6) out of the seven (7) boring demonstrated indicator compound concentrations in soil above the IDCLs. Most of the impacts were noted just downgradient of the sewer joints (e.g., in borings SB-12 and SB-13 downgradient of the sewer joint south of Michigan Street and in SB-14 and SB-17 just downgradient of the sewer joint north of Michigan Street as shown on Figure 3).

Groundwater Analytical Results - Quarterly Monitoring

Groundwater analytical testing results are summarized in **Table 4** and presented on **Figure 5**. Only one (1) out of the twenty-six (26) monitoring wells sampled this quarter (MMW-IS) showed PCE concentrations exceeding the IDEM RISC Industrial Default Closure Level (IDEM RISC IDCL). Five (5) monitoring wells (MMW-P-01, MMW-P-02, MMW-P-03S, MMW-P-04, and MMW-P-10S) demonstrated PCE concentrations exceeding the IDEM RISC Residential Default Closure Level (IDEM RISC RDCL) but below the IDCL. The historical indicator compounds trends in groundwater are presented in **Figure 16**.

None of the monitoring wells showed TCE concentration exceeding the IDEM RISC IDCL, and four (4) monitoring wells (MMW-P-01, MMW-IS, MMW-P-04, and MMW-P-10S) had samples that exceeded the RDCL, but below the IDCL.

Five (5) monitoring wells (MMW-9S, MMW-P-01, MMW-P-08, MMW-P-10S, MMW-P-10D) showed cis-1,2-DCE concentrations exceeding the IDEM RISC IDCL. Ten (10) monitoring wells (MMW-8S, MMW-10S, MMW-11D, MMW-13D, MMW-14D, MMW-P-03S, MMW-P-04, MMW-P-06, MMW-P-07, and MMW-C-01) exhibited cis-1,2-DCE concentrations exceeding the RDCL, but below the IDCL.

Thirteen (13) monitoring wells (MMW-8S, MMW-9S, MMW-10S, MMW-13D, MMW14D, MMW-P-01, MMW-P-02, MMW-P-03S, MMW-P-03D, MMW-P-07, MMW-P-08, and MMW-P-10S) showed vinyl chloride concentrations exceeding the IDEM RISC IDCL. One (1) monitoring well (MMW-11D) exhibited vinyl chloride concentrations exceeding the RDCL, but below the IDCL.

The recently installed deep monitoring wells MMW-13D, MMW-14D exhibited significant cis-1,2-DCE and vinyl exceedances above the IDCLs during this quarter (Figure 5). Since these wells have been purposefully located upgradient of Source Areas B and C, the impacts observed in these areas demonstrate groundwater impacts that are attributable to other upgradient, off-site sources and not to Michigan Plaza. As seen on Figure 5, the indicator compound concentrations at these deep, upgradient wells can be considered as "background levels" defined as the concentration of contaminants from the Genuine source coming into the deeper aquifer in this area. These indicator compound levels aid in discerning between the Michigan Plaza source impacts and the Genuine Site impacts, and will ultimately be used to evaluate the target cleanup levels for the deeper aquifer at the Site.

In-Situ Bioremediation Progress

Based upon the 1) the extent and severity of the indicator compound concentrations and trends, 2) site-specific operational constraints and uses, 3) geochemical and physical characteristics of the aquifer, and 4) economic factors, in-situ bioremediation with CAP18TM (an enhanced, foodgrade vegetable oil product), followed by Monitored Natural Attenuation (MNA) is the selected remediation technology for the Site for treating groundwater, as detailed in the RWP. The initial CAP18TM injection was performed in all the three source areas in August 2007 using a direct push Geoprobe system. Locations and spacing of the injection points were designed to address the sewer line related *Chemical Source Areas* and provide injection locations in each *Chemical Source Area* that upon migration downgradient in the direction of groundwater flow, are expected to remediate the most significant groundwater impacts. A booster CAP-18ME injection was performed in February 2009 to aggressively treat some areas where the chemical concentrations have begun to stabilize or are decreasing at a slow rate.

Indicator Chemical Trends

A group of monitoring wells from the sampling network is utilized to monitor dissolved indicator compound concentration trends over time at various locations within the heart of the three chemical source areas. Graphs of historical PCE, TCE, cis-1,2-DCE and vinyl chloride concentrations are developed for the following monitoring wells:

Source Area A: MMW-P-03D

Source Area B: MMW-P-01, MMW-P-07, MMW-P-08, and MMW-8S

Source Area C: MMW-1S, MMW-9S, and MMW-10S

Figures 17 and 18 illustrate the changes in the chlorinated solvents concentrations demonstrating reductive dechlorination as a result of the CAP-18 remediation implementation. To illustrate the effect of the CAP-18 injection on hydrocarbon concentrations, injection dates are included on the graphs.

PCE impacts in the Source Area A (MMW-P-03D) appear to have a decreasing trend, and although the cis-1,2-DCE showed a slight decreasing trend, the vinyl chloride demonstrated an increasing trend after the second round of CAP-18 injection in February 2009. This is indicative of continued reductive dechlorination in this area (indicating further breakdown of parent compounds) in Source Area A.

PCE impacts in the Source Area B (MMW-P-01, MMW-P-07, MMW-P-08, MMW-8S) have significantly decreased with corresponding increases then decreases in the cis-1,2-DCE and vinyl chloride concentrations in MMW-P-08 and MMW-8S after the CAP-18 injection. A slight increase in the PCE, cis-1,2-DCE, and vinyl chloride concentrations was noted in MMW-P-01 for this quarter. Decreasing concentrations of PCE and cis-1,2-DCE in MMW-P-07 were observed with an increase in vinyl chloride this quarter indicating a continued breakdown sequence is occurring. There was a slight increase in the PCE concentration in monitoring well MMW-8S immediately after injection during the fourth quarter of 2007, followed by a decreasing trend during 2008 and 2009. A spike in cis-1,2-DCE and vinyl chloride concentrations occurred after the first injection, following by decreasing cis-1,2-DCE trends and stable vinyl chloride trends up to the 2nd injection event.

PCE impacts in the Source Area C (MMW-1S, MMW-9S, and MMW-10S) appear to have a decreasing trend. Vinyl chloride and cis-1,2-DCE concentrations in MMW-1S decreased for this quarter. In wells MMW-9S and MMW-10S, vinyl chloride and cis-1,2-DCE concentrations showed an upward trend. This is indicative of continued reductive dechlorination in Source Area C.

Thus, an overall decreasing trend in PCE and TCE concentrations (in some areas achieving nondetectable concentrations), and an increase in the daughter product concentrations (indicating breakdown of parent compounds via reductive dechlorination) has occurred significantly since the 1st CAP-18 injection in the *Source Areas A*, *B* and *C* in August 2007.

This second round of CAP-18^{ME} injection (February 2009) would allow for PCE concentrations to be reduced more effectively in areas that still contain higher levels of chlorinated hydrocarbons. This booster injection was conducted in *Source Area C* (west - southwest of Apartment Building No. 1, *Source Area B* (plaza parking lot), and *Source Area A* (beneath the

MUNDELL Project No. M01046

plaza building during soil sampling activities) as illustrated in Figure 1 to further remediate the plumes. Changes in concentrations resulting from this next round of injections will be able to be evaluated better over the next several quarters.

Sewer Liquid Sampling Results - March 2009

Investigation activities performed by MUNDELL in the past have concluded that historical releases of PCE into the subsurface in the vicinity of the former Accent Cleaners unit, and periodic discharges of facility wastewaters to the sanitary sewer system have dispersed the solvents into the subsurface along points in this sewer system, including areas in the southeast portion of the Apartments. Follow up sewer line investigation performed by collecting liquid samples from four different sewer locations running along Michigan Street (summarized in Table 6 and Figure 18) indicate that the indicator compounds concentrations have reduced compared to previous levels. However, the most recent sampling yielded a higher detection level by the laboratory, so determination of levels is somewhat masked. A followup sampling will occur in the next two quarters to confirm concentrations in the sewer.

For further soil impact characterization in *Source Area B*, shallow soil borings were advanced in close proximity of the sewer line in the area as previously described.

Indoor Air Sampling Results - 2009

Significantly reduced indoor air concentrations (Apts Building No. 1, Plaza 3815 space, Mexican store space) below or slightly above the IDEM new draft April 2006 target levels are illustrated in attached Figure 4. Also, reduced concentrations were noted in the soil gas monitoring wells (MGW-1 and MGW-3) indicating COCs are being remediated in the area. Table 7d presents the U.S. EPA and IDEM screening/target levels.

The indoor air results at the Village Pantry, Mexican store and the Laundromat are all below both IDEM and U.S. EPA action levels (with the vapor mitigation systems running). This is consistent with testing over the past year or two in the Plaza spaces where mitigation systems have been installed.

Indoor air concentrations have dramatically reduced in the 3817 Michigan Street location (currently Alcoholics Anonymous) and the 3805 Michigan Street space (Old Library space, unoccupied). Please note that these spaces DO NOT have vapor mitigation systems in place. This is a very positive development demonstrating that site remedial activities have been successful in significantly reducing the indoor air impacts (see attached Figure 4). The PCE concentrations in both these spaces are below U.S. EPA action levels, and slightly exceed the IDEM occupational vapor intrusion action level (6.8 ug/m3). The old library space is currently unoccupied, and the AA space is used only occasionally for meetings. A follow up test will be conducted in the upcoming quarters.

One of the Michigan Meadows Apartment building basement apartments (Apt No. 1001) and one of the second floor apartment (Apt No. 108) also exhibited slight exceedances to IDEM action levels. These will be re-sampled in order to verify this data. It should be noted that all the indoor air concentrations have been compared to the most conservative (25 or 30 year exposure) IDEM action levels. The basement apartment is presently unoccupied with no exposure, and Apt No.108 residents have been living at that location much less than a 25 or 30 years duration.

The soil gas monitoring well (MGW-5) in the middle of the plaza parking lot will also be sampled in June 2009. It showed a spike in the contaminant concentrations during the March 2009 sampling round which could be attributed to subsurface changes resulting from the 2nd CAP-18 injection event in February 2009. The soil gas well MGW-5, in the middle of the plaza parking lot, shows impacts exceeding some of the IDEM soil gas screening levels (worst case conditions with an exposure duration of 25 years). This duration of exposure is a very conservative comparison, as this location has only been a parking lot since the development of the land. Furthermore, the nearest inhabited indoor spaces are all currently being addressed with air mitigation systems; therefore, exposure pathways are significantly being reduced. MUNDELL will sample this gas well (MGW-5) again in June 2009 along with the next quarterly groundwater sampling round, to monitor soil gas trends in this area, particularly since it is located in the heart of Source Area B. MUNDELL anticipates these levels have been introduced from the previously existing groundwater plume in Source Area B which is currently undergoing dechlorination via the CAP-18 remediation.

Indoor Air Mitigation Systems Performance

Four sub-floor slab depressurization units were installed by Air Quality Control (AQC) under the oversight of MUNDELL in September 2006. Three additional sub-floor slab depressurization units were installed by AQC under the oversight of MUNDELL on March 19 and 26, 2008. Unit/blowers were installed in the following spaces at Michigan Plaza: 1) the Village Pantry (B1), 2) the former Handicap Space (B2), 3) the Mexican Store (B3), and 4) the Laundromat (B4). The systems installed at the Michigan Apartments are: Building No. 1, Basement Apartment 101 (B5), Building No. 6, Basement Apartment 602 (B6), and Building No. 10, Basement Apartment 1001 (B7). The system locations are illustrated in Figure 6.

Since the time of installation, system stack air samples were collected weekly for a few weeks followed by bi-weekly sampling for a month, monthly for a quarter and then on a quarterly basis thereafter. PID readings have also been concurrently measured in each of the stacks. The historical PCE concentration trends and cumulative pounds of PCE and total contaminants removed by each of the systems (B1 through B7) are summarized in Figures 7 through 15. The associated calculations are provided in Appendix D.

We appreciate the opportunity to update IDEM on the progress of remedial activities and monitoring at the Site. If you have any questions, please don't hesitate to contact us at (317) 630-9060 or via email (jmundell@MundellAssociates.com; llothe@MundellAssociates.com).

- a. Whele

President/Senior Environmental Consultant

ohn A. Mundell, P.E., L.P.G.

Sincerely,

MUNDELL & ASSOCIATES, INC.

Leena A. Lothe

Project Environmental Engineer

Attachments: Tables

Figures Appendices

cc: Mr. Stephen Evanoff, AIMCO

TABLES

Table 1	Tabulated Groundwater Level Measurements
Table 2	Monitoring Well Construction Summary
Table 2a	Monitoring Well Construction Summary
Table 3	Soil Analytical Results
Table 4	Monitoring Well Groundwater Analytical Results
Table 5	Monitoring Well Cumulative Analytical Results
Table 6	Sewer Analytical Results March 2009
Table 7a	Air Sampling Analytical Results – TO-15 SIM Analysis: Michigan Plaza Shopping Center
Table 7b	Air Sampling Analytical Results – TO-15 SIM Analysis: Michigan Meadows Apartments
Table 7c	Air Sampling Analytical Results – TO-15 SIM Analysis: Soil Gas Monitoring Data
Table 7d	Air Concentration Health-based Limits: Michigan Plaza Shopping Center
	FIGURES
Figure 1	CAP-18 Injection (Round 2) and Soil Testing Locations (February 2009)
Figure 2	Potentiometric Surface Map
Figure 3	Further Soil Delineation
Figure 4	Recent & Historical Air Analytical Results

Groundwater Analytical Results (First Quarter 2009)

Figure 5

Figure 6	Vapor Mitigation System Locations
Figure 7	PCE Concentration Trends & Cumulative Pounds Removed (B-1)
Figure 8	PCE Concentration Trends & Cumulative Pounds Removed (B-2)
Figure 9	PCE Concentration Trends & Cumulative Pounds Removed (B-3)
Figure 10	PCE Concentration Trends & Cumulative Pounds Removed (B-4)
Figure 11	PCE Concentration Trends & Cumulative Pounds Removed (B-5)
Figure 12	PCE Concentration Trends & Cumulative Pounds Removed (B-6)
Figure 13	PCE Concentration Trends & Cumulative Pounds Removed (B-7)
Figure 14	PCE Concentration Trends & Cumulative Pounds Removed (B-I through B-4)
Figure 15	PCE Concentration Trends & Cumulative Pounds Removed (B-5 through B-7)
Figure 16	Indicator Compound Trends in Groundwater
Figure 17	Parent and Daughter Products Distribution in Groundwater
Figure 18	Sewer Analytical Results March 2009

APPENDICES

Appendix A.	Lab Analytical	Results (soil,	groundwater, air, sewer)	1
-------------	----------------	----------------	--------------------------	---

Appendix B. Soil Boring Logs

Appendix C. Injection Logs

Appendix D. Air Mitigation Systems: Pounds of Contaminants Removed

Appendix E. Photographic Documentation

TABLES

Table I Tabulated Water Level Measurements Quarter I (2009) Michigan Plaza 3801-3823 West Michigan Street Indianapolis, Indiana MUNDELL Project No. M01046

Monitoring Well	Date of Water Level	Top of Casing Elevation (feet MSL)	Total Depth	Depth To Water	Groundwate Elevation
n-Site Monitoring Well	<u> </u>	(teet MSL)	(feet)	(feet)	(feet MSL)
MMW-P-01	3/17/2009	715.79	28	19.09	696.70
MMW-P-02	3/17/2009	716.70	30	20.19	696.51
MMW-P-03S	3/17/2009	716.55	28	20.05	696.50
MMW-P-03D	3/17/2009	716.45	35	19.94	696.51
MMW-P-04*	3/18/2009	716.27	28	19.76	696.51
MMW-P-05	3/17/2009	716.12	28	19.52	696.60
MMW-P-06	3/17/2009	716.50	28	19.91	696.59
MMW-P-07	3/17/2009	715.30	28	18.10	697.20
MMW-P-08	3/17/2009	715.22	28	17.99	697.23
MMW-P-10S	3/17/2009	714.59	28	17.82	696.77
MMW-P-10D	3/17/2009	714.98	38	18.21	696.77
ff-Site Monitoring Wel				12.23	
MMW-P-09D	3/17/2009	715.21	45	19.62	695.59
MMW-P-09S	3/17/2009	715.36	28	18.02	697.34
ff-Site Monitoring Wel	ls (Keramida)			•	
MW-168S	3/17/2009	714.79	22	17.97	696.82
MW-168D	3/17/2009	714.71	31	17.89	696.82
ff-Site Monitoring Wel	ls (Michigan Meadows Apar	tments)			
MMW-1S	3/16/2009	713.66	20	16.17	697.49
MMW-8S	3/16/2009	714.75	24	16.92	697.83
MMW-9S	3/16/2009	714.09	25	17.06	697.03
MMW-10S	3/16/2009	713.23	25	16.17	697.06
MMW-LIS	3/16/2009	713.69	33	15.95	697.74
MMW-11D	3/16/2009	713.64	33	16.02	697.62
MMW-12S	3/16/2009	712.82	24	15.18	697.64
MMW-13D	3/16/2009	713.53	50	NA	NA
MMW-14D	3/18/2009	712.61	50	14.95	697.66
This GW elevation has	been corrected due to 3.77	feet of product in the we	AL.		
MW 171S	3/17/2009	711.83	37	15.71	696.12
MW 17ID	3/17/2009	711.88	25	16.09	695.79
MW 169S	3/17/2009	715.95	49	19.99	695.96
MW 169D	3/17/2009	715.23	22	20.01	695.22
ff-Site Monitoring Wel					
MMW-C-01	3/17/2009	715.36	28	19.47	695.89
MMW-C-02	3/17/2009	715.21	45	18.89	696.32

This well has been corrected for 3.77 of cap 18 (density of 0.96) oil in well

Table 2

Monitoring Well Construction Summary
Michigan Plaza
3801-3823 West Michigan Street
Indianapolls, Indiana
MUNDELL Project No. M01046

Monitoring Well	Date Installed	Date of Water Level	*Top of Casing Elevation (feet MSL)	Total Depth (feet)	Screened Interval (feet)	Depth To Water (feet)	Groundwater Elevation (feet MSL)
MM W-P-01	09/28/05	9/19/07	715.79	28.00	18.00 - 28.00	19.69	696.10
MM W-P-02	09/27/05	9/19/07	716.70	30.00	20.00 - 30.00	20.90	695.80
MM W-P-03S	09/26/05	9/19/07	716.55	28.00	18.00 - 28.00	20.79	695.76
MMW-P-03D	09/27/05	9/19/07	716.45	35.00	25.00 - 35.00	20.63	695.82
MMW-P-04	09/26/05	9/19/07	716.27	28.00	18.00 - 28.00	20.49	695.78
MMW-P-05	09/26/05	9/19/07	716.12	28.00	18.00 - 28.00	20.14	695.98
MMW-P-06	09/28/05	9/19/07	716.50	28.00	18.00 - 28.00	20.57	695.93
MMW-P-07	01/11/07	9/19/07	715.30	28.00	18.00 - 28.00	18.84	696.46
MM W-P-08	01/11/07	9/19/07	715.22	28.00	18.00 - 28.00	18.61	696.61
MM W-P-09S	01/29/07	9/19/07	715.36	28.00	18.00 - 28.00	20.17	695.19
MMW-P-09D	05/31/07	9/19/07	71521	45.00	35.00 - 45.00	20.35	694.86
MM W-P-10S	06/01/07	9/19/07	714.59	28.00	18.00 - 28.00	18.30	696.29
MMW-P-10D	06/01/07	9/19/07	714.98	38.00	28.00 - 38.00	18.69	696.29

Note: The top of casing elevation for each well was determined assuming a surveyed top of casing elevation of 712.54 it elevation given in the Keramida Phase II Investigation Report dated March 2002 for well MW-165S (located along Michigan Meadows Apartments northern property line) and a surveyed top of casing elevation of 711.88 it for well MW-171D located east-southeast of Michigan Plaza on Olin Avenue.

Table 2a

Monitoring Well Construction Summary
Michigan Apartments
3801-3823 West Michigan Street
Indianapolis, Indiana
MUNDELL Project No. M01046

Monitoring Well	Date Installed	Date of Water Level	*Top of Casing Elevation (feet MSL)	Total Depth (feet)	Screened Interval (feet)	Depth To Water (feet)	Groundwater Elevation (feet MSL)
MMW-1S	8/20/04	9/19/07	713.66	20.00	10.00 - 20.00	16.36	697.30
MMW-8S	1/11/07	9/19/07	714.75	24.00	14.00 - 24.00	17.41	697.34
MMW-9S	1/12/07	9/19/07	714.09	25.00	15.00 - 25.00	17.45	696.64
MMW-10S	1/12/07	9/19/07	713.23	25.00	15.00 - 25.00	16.17	697.06
MMW-11S	5/31/07	9/19/07	713.69	33.00	23.00 - 33.00	16.43	697.26

Note: The top of easing elevation for each well was determined assuming a surveyed top of easing elevation of 712.54 ft elevation given in the Keramida Phase II Investigation Report dated March 2002 for well MV 165S (located along Michigan Meadows Apartments northern property line) and a surveyed top of easing elevation of 711.88 ft for well MW-171D located east-southeast of Michigan Plaza on Olin Avenue.

Table 3 Soil Analytical Results Nov-Dec 2008 Well Installation & Feb 2009 Delineation Michigan Plaza Indianapolis, Indiana MUNDELL Job No.: M01046

6	6 D	PCE	TCE	cis-1,2-	trans-1,2-	Chlorofor	Vinyl
Sample ID (Depth)	Sample Date			DCE	/kg	m	chloride
MMM 110 (0 100	11/21/2008	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057
MMW-11S (8-10') MMW-12S (10-12')	11/24/2008	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057 <0.0055
MMW-13D (6-8')	11/21/2008	<0.0052	<0.0052	<0.0052	<0.0053	<0.0052	<0.0052
MMW-14D (6')	12/10/2008	< 0.006	< 0.0052	< 0.006	< 0.006	< 0.0052	< 0.0052
MM (4-14D (0)]	12/10/2008	₹ 0.000	₹0.000	< 0.000	₹ 0.000	₹0.000	₹ 0.000
SB-1 (6-7)	2/3/2009	0.010	<0.005	<0.005	<0.005	< 0.005	< 0.002
SB-1(11-12)	2/3/2009	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.002
SB-1 (14-15)	2/3/2009	0.012	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
SB-2 (7-8)	2/3/2009	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
\$B-2 (11-12)	2/3/2009	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
SB-2 (15-16)	2/3/2009	0.017	< 0.005	< 0.005	<0.005	< 0.005	< 0.002
SB-3 (2-3)	2/3/2009	0.071	< 0.005	<0.005	<0.005	< 0.005	< 0.002
SB-3 (11-12)	2/3/2009	6.09	< 0.005	<0.005	<0.005	< 0.005	< 0.002
SB-3(15-16)	2/3/2009	3.60	< 0.005	<0.005	<0.005	<0.005	<0.002
SB-4 (6-7)	2/3/2009	0.061	<0.005	<0.005	<0.005	< 0.005	< 0.002
SB-4 (10-11)	2/3/2009	0.118 E	< 0.005	<0.005	<0.005	< 0.005	< 0.002
SB-4 (16-17)	2/3/2009	8.43	< 0.005	<0.005	<0.005	< 0.005	< 0.002
SB-5 (3-4')	2/5/2009	<0.0059	<0.0059	<0.0059	<0.0059	< 0.0059	< 0.005
SB-5 (9-10')	2/5/2009	<0.0061	< 0.0061	<0.0061	<0.0061	<0.0061	< 0.006
SB-5 (15-16')	2/5/2009	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054
SB-6 (5-6')	2/5/2009	0.0059	<0.0053	<0.0053	<0.0053	<0.0053	<0.005
\$B-6 (7-8')	2/5/2009	0.0065	<0.0052	<0.0052	<0.0052	<0.0052	< 0.0052
SB-6 (14-15')	2/5/2009	0.0264	<0.0059	<0.0059	<0.0059	<0.0059	<0.005
SB-7 3-4	2/4/2009	0.009	<0.005	<0.005	<0.005	<0.005	< 0.002
SB-7 10-11	2/4/2009	0.010	<0.005	<0.005	<0.005	<0.005	<0.002
SB-7 15-16	2/4/2009	0.010	<0.005	<0.005	<0.005 <0.0052	<0.005	<0.002
SB-8 (5-6') SB-8 (12-13')	2/16/2009 2/16/2009	0.02	<0.0052 <0.0051	<0.0052 <0.0051	<0.0052	<0.0052 <0.0051	<0.005
	2/16/2009	0.168	<0.0051	<0.0051	<0.0051	<0.0051	< 0.005
SB-8 (15-16') SB-9 (6-7')	2/16/2009	0.0065	<0.0052	<0.0052	<0.0052	<0.0052	<0.005
SB-9 (15-16')	2/16/2009	0.0003	<0.0052	<0.0052	<0.0052	<0.0052	< 0.005
SB-9 (12-13')	2/16/2009	0.0104	<0.0052	<0.0052	<0.0052	<0.0052	< 0.0052
SB-10 (4-6')	2/17/2009	0.0181	<0.0052	<0.0052	<0.0052	<0.0052	< 0.0052
SB-10 (8-10')	2/17/2009	0.0234	< 0.0052	< 0.0052	<0.0052	< 0.0052	< 0.005
SB-10 (14-16)	2/17/2009	0.0858	<0.0052	<0.0052	<0.0052	< 0.0052	< 0.005
SB-11 (5-6)	2/13/2009	3.89	0.0253	<0.0052	<0.0052	< 0.0052	< 0.005
SB-11 (8-9)	2/13/2009	4.32	0.034	<0.0052	<0.0052	< 0.0052	< 0.0052
SB-11 (12-13))	2/13/2009	7.69	0.0364	0.0067	<0.0053	< 0.0053	< 0.005
SB-12 (13-14)	2/13/2009	6.29	0.0359	0.0123	<0.0052	< 0.0052	< 0.0052
SB-12 (17-18)	2/13/2009	19.1	0.0849	0.0458	<0.0053	< 0.0053	< 0.005.
SB-12 (18-19)	2/13/2009	53.4	0.154	1.66	0.0154	< 0.0054	0.0378
SB-13 (9-10)	2/13/2009	1.41	0.0452	0.0325	<0.0055	<0.0055	< 0.005:
SB-13 (10-11)	2/13/2009	1.64	0.0557	0.0458	<0.0054	< 0.0054	< 0.0054
SB-13 (17-18)	2/13/2009	55	0.105	0.831	0.0081	< 0.0055	0.246
SB-14 (13-14)	2/13/2009	21	0.0135	0.0086	<0.0054	< 0.0054	< 0.005
SB-14 (16-17)	2/13/2009	31.6	0.0154	0.0073	<0.0053	<0.0053	< 0.005
SB-14 (17-18)	2/13/2009	41.1	0.0276	<0.0058	<0.0058	<0.0058	< 0.005
SB-15 (4-6')	2/17/2009	0.11	<0.0054	<0.0054	<0.0054	<0.0054	< 0.005
SB-15 (8-10')	2/17/2009	0.13	<0.0052	<0.0052	<0.0052	<0.0052	<0.005
SB-15 (12-14')	2/17/2009	7.64	0.0117	<0.0052	<0.0052	<0.0052	<0.005
SB-16 (4-6')	2/17/2009	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.005
SB-16 (8-10')	2/17/2009	0.011	<0.0056 0.0088	<0.0056 0.0304	<0.0056 <0.0054	<0.0056 <0.0054	<0.005
SB-16 (12-14') SB-17 (4-6')	2/17/2009 2/17/2009	0.0772	<0.0058	<0.0058	<0.0054	<0.0054	< 0.005
SB-17 (10-12')	2/17/2009	10.5	0.0096	<0.0058	<0.0058	<0.0055	< 0.005
SB-17 (10-12)	2/17/2009	30.6	0.0098	<0.0053	<0.0053	<0.0053	<0.005.
OB-11 (12-14)	2/11/2003	30.0	0.0120	-0.0033	-0.0033	-0.0023	~0.00J.
IDEM RISC Default							
Industrial Cleanup		0.64	0.082	6	14	1	0.013
Level							
man datas a second		-					
IDEM RISC Default		4		11.00	W.5-21	1197-11	10-1-12
Residential Cleanup		0.058	0.057	0.4	0.68	0.47	0.013
Level							

Note:

All Values Over IDEM RISC Industrial Default Cleanup Level shown in RED

All Values Over IDEM RISC Residential Default Cleanup Level shown in BLUE

PCE = Tetrachloroethene; TCE = Trichloroethene; cis-1,2-DCE = cis-1,2-Dichloroethene; trans-1,2

-DCE = trans-1,2-Dichloroethene

Table 4 Monitoring Well Groundwater Analytical Results Quarter 1 (2009) Michigan Plaza Indianapolis, Indiana

Indianapolis, Indiana MUNDELI, Job No.: M01046

Well 1D	Sample Date	PCE	TCE	ck-1,2-DCE	trans-1.2-DCE	Chloroform	Vinyl chloride
		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Monitoring Wells (Apts)							
MMW-1S	3/16/2009	199	11.3	<5.0	<5.0	<5.0	<2.0
MMW-8S	3/16/2009	<5.0	<5.0	95	<5.0	<5.0	348
MMW-9S	3/16/2009	<50.0	<50.0	7,490	73.8	<5.0	1.800
MMW-10S	3/16/2009	<5.0	<5.0	302	<5.0	<5.0	114
MMW-11S	3/16/2009	<5.0	<5.0	37.6	<5.0	<5.0	<2.0
MMW-HD	3/16/2009	<5.0	<5.0	288	20.1	<5.0	2.2
MMW-12S	3/16/2009	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MMW-t3D	3/16/2009	<5.0	<5.0	699	6.6	<5.0	25.4
MMW-14D	3/18/2009	<5.0	<5.0	454	9.9	<5.0	70
Monitoring Wells (Plaza)					és.		*
MMW-P-01	3/17/2009	17.5	22.6	12,300	143	<5.0	3,290
MMW-P-02	3/17/2009	23.4	<5.0	65.4	5.3	<5.0	68.4
MMW-P-03S	3/17/2009	7.5	<5.0	904	38.7	<5.0	283
MMW-P-03D	3/17/2009	<5.0	<5.0	65.2	<5.0	<5.0	69.8
MMW-P-04	3/18/2009	19.4	5.4	304	10.8	<5.0	<2.0
MMW-P-05	3/17/2009	<5.0	<5.0	13.7	<5.0	<5.0	<2.0
MMW-P-06	3/17/2009	<5.0	<5.0	292	35.3	<5.0	<2.0
MMW-P-07	3/17/2009	<5.0	< 5.0	361	17.7	<5.0	1.830
MMW-P-08	3/17/2009	<5.0	<5.0	1,130	47.1	<5.0	5,680
MMW-P-09S	3/17/2009	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MMW-P-09D	3/17/2009	<5.0	<5.0	<5.0	<5.0	<5.0	85.1
MMW-P-10S	3/17/2009	11.9	8.6	1,160	71.5	<5.0	<2.0
MMW-P-10D	3/17/2009	<5.0	<5.0	4,860	12.9	<5.0	2,500
Keramida Monitoring Well's (O	(Fsite)						
MW-168S	NS	NS	NS	NS	NS	NS	NS
MW-168D	3/17/2009	<5.0	<5.0	16.5	<5.0	<5.0	<2.0
Floral Park Monitoring Wells (Off-site)						
MMW-C-01	3/17/2009	<5.0	<5.0	508	7.3	<5.0	<2.0
MMW-C-02	3/17/2009	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
DEM RISC Default Industrial Cleanup Level		55	31	1,000	2,000	1,000	4
IDEM RISC Default Residential Cleanup Level		5	5	70	100	80	2

Note

All Vibres Over IDEM RISC Definit Industrial Cleanup Level filt [1]

All Values Over IDEM RISC Default Residential Champ Level disLUL

PCE = Tetrachior cothene | TCE = Trichioroothene: cis-1,2-DCE = cis-1,2-Dichioroothene: trans-1,2-DCE = trans-1,2-Dichioroothene

Table 5 Monitoring Well Groundwater Analytical Results First Quarter 2009 Michigan Plaza 3801-3823 W. Michigan Street Indianapolis, Indiana

MUNDELL Job No.: Mu1046

Weff 117	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Chloroform	Vinyl chlorid
		ug/L	ug/l	ug/l	ug/I	ug/I	ug/l
itoring Wells (Apts)							
	9/10/2004	3.1 J	< 5.0	< 5.0	< 5.0	<5.0	4.1
<u>.</u>	3/15/2005	150	10	< 5.0	< 5.0	< 5.0	< 2.0
	11/9/2005	130	8.3	<5.0	<5.0	<5.0	8.9
	9/5/2006	200	13	<5.0	<5.0	<5.0	4.6
	2/22/2007	220	14.9	<5.0	<5.0	<5.0	<2.0
	6/14/2007	240	<5.0	<5.0	<5.0	<5.0	<2.0
MMW-1S	9/19/2007	362	10.5	<5.0	<5.0	. 31.6	<2.0
_	12/13/2007	-330	8.1	<5.0	<5.0	27	<2.0
	3/21/2008	280	14	<5.0	<5.0	<5.0	<2.0
	6/6/2008	277	13.2	<5.0	<5.0	<5.0	<2.0
_	9/11/2008	288	14.7	<5.0	<5.0	<5.0	<2.0
	11/20/2008	223	45.5	169	<5.0	<5.0	14.5
	3/16/2009	199	11.3	<5.0	<5.0	<5.0	<2.0
	9/10/2004	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MMW-2S	11/9/2005	<5.0	<5.0	<5.0	<5.0	<5.0	5.2
	9/5/2006	<5.0	<5.0	<5.0	<5.0	<5.0	5.2
	6/2/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
_	8/26/2004	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MMW-3S	9/10/2004	<5.0	5.2	<5.0	<5.0	<5.0	<2.0
	11/9/2005	<5.0	28	5.4	<5.0	<5.0	<2.0
	9/5/2006	<5.0	23	7.4	<5.0	<5.0	<2.0
	6/2/2008	<5.0	20.2	7.9	<5.0	<5.0	2.8
	8/25/2004	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	9/10/2004	<5.0	<5.0	980	<5.0	<5.0	200
MMW-4D	11/10/2005	<5.0	<5.0	850	<5.0	<5.0	. 240
-	9/5/2006	<5.0	<5.0	. 1,100	. 2.3J	<5.0	220
	6/2/2008	<5.0	<5.0	515	<5.0	<5.0	32.2
-	8/24/2004	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	9/10/2004	<5.0	<5.0	3400	. 13	<5.0	270
MMW-5D	11/10/2005	< 5.0	<5.0	3900	19	<5.0	140
<u>.</u>	9/5/2006	<50	<50	2500	<50	<5.0	. 170
	6/2/2008	<5.0	<5.0	1360	19.9	<5.0	207
	9/10/2004	<5.0	<5.0	540	<5.0	<5.0	400
MMW-6D	11/10/2005	<5.0	<5.0	750	<5.0	<5.0	700
-	9/5/2006	<5.0	<5.0	300	<5.0	<5.0	440
	6/2/2008	<5.0	<5.0	65.5	<5.0	<5.0	242
	8/24/2004	<5.0	<5.0	28	<5.0	<5.0	<2.0
104111.70	9/10/2004	<5.0	<5.0	8.5	<5.0	<5.0	<2.0
MMW-7S	11/9/2005	<5.0	<5.0	9.5	<5.0	<5.0	<2.0
-	9/5/2006	<5.0	<5.0	5.8	<5.0	<5.0	4.5
	6/2/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
EM RISC Default Industrial Cleanup Level - 2006		55	31	1,000	2,000	E,000,	4
EM RISC Default Residential Cleanup Level - 2006		\$	5	70.	100	80	Ź

Note:

All Values Over IDEM RISC Default Industrial Cleanup Level in ED

All Values Over IDEM RISC Default Residential Cleanup Level inBLUE

 $PCE = Tetrachloroethene; \ TCE = Trichloroethene; \ eis-1,2-DCE = eis-1,2-Dichloroethene; \ trans-1,2-DCE = trans-1,2-Dichloroethene; \ trans-1,2-DCE = trans-1,2-Dichloroethene; \ trans-1,2-DCE = trans-1,2-Dichloroethene; \ trans-1,2-DCE = trans-1,2-DC$

Green Shading indicates areas that are appear to be undergoing reductive dechlorination due to CAP-18 Injections

"I" designation indicates concentration was estimated due to high concentration of one parameter requiring dilution on other parameter quantitations

[&]quot;-" indicates geochemical parameter was not collected, "NV" indicates data was not valid due to equipment error

Table 5 Monitoring Well Groundwater Analytical Results First Quarter 2009 Michigan Plaza 3801-3823 W. Michigan Streef Indianapolis, Indiana MUNDELL Job No.: M01046

Wefi I D	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1.2-DCE	Chloroform	Vinyl chloride
		ugʻl	ug/l	ug/l	ug/l	ug/l	ug/l
: . *	-2/22/2007	114	<5.0	289	13.8	<5.0	40.6
	6/14/2007	15.9	<5.0	364	9.5	<5.0	82. t
	9/19/2007	< 5.0	<5.0	778	24.6	<5.0	145
	12/13/2007	7.7	<5.0	1,000	. 7A	<5.0	586
MMW-8S	3/20/2008	<5.0	<5.0	470	<5.0	<5.0	330
	6/6/2008	<5.0	<5.0	336	<5.0	<5.0	509
	9/10/2008	<5.0	<5.0	275	<5.0	<5.0	322
	11/20/2008	<5.0	<5.0	123	<5.0	<5.0	584
	3/16/2009	<5.0	<5.0	95	<5.0	<5.0	348
	2/22/2007	782	88,6	78.9	<5.0	<5.0	<2.0
	6/14/2007	858	85.7	65.3	<5.0	<5.0	<2.0
	9/20/2007	1,430	112	70.3	8.2	<5.0	<2.0
76.	12/12/2007	37.9 J	17.9 J	1.700	29.8 J	<50.0	<20.0
MMW-9S	3/21/2008	57	20	2,900	39	<5.0	16
	6/6/2008	52.9	28	1.540	38.2	<5.0	295
	9/10/2008	\$2.6	22.7	4,920	94.5	<5.0	167
	11/20/2008	<5.0	<5.0	5,820	90.2	<5.0	1.010
	3/16/2009	<50.0	<50.0	7,490	73.8	<50.0	1,800
	2/22/2007	49.6	<5.0	<5.0	<5.0	<5.0	<2.0
	6/14/2007	77.6	<5.0	<5.0	<5.0	<5.0	<2.0
	9/19/2007	66	<5.0	<5.0	<5.0	<5.0	<2.0
İ	12/12/2007	124	56	149	<5.0	<5.0	<2.0
MMW-10S	3/21/2008	440	12	8.1	<5.0	<5.0	12
	6/6/2008	541	62.1	218	<5.0	<5.0	30.4
Ì	9/10/2008	6.9	<5.0	353	82	<5.0	<2.0
	11/20/2008	<5.0	<5.0	212	<5.0	<5.0	15.9
7	3/16/2009	<5.0	<5.0	302	<5.0	<5.0	. 114
	6/14/2007	<5.0	<5.0	225	6.8	<5.0	18.6
	9/19/2007	<5.0	<5.0	+42	21.1	<5.0	30.1
ŀ		7.2	<5.0	920	27	<5.0	49
in the second se	12/13/2007						
MMW-11S	3/20/2008	<5.0	<5.0	420	17	<5.0	4.9
	6/5/2008	<5.0	<5.0	623	23.1	<5.0	26.7
-	9/10/2008 11/20/2008	<5.0 <5.0	<5.0 <5.0	327 554	18.3 23.9	<5.0 <5.0	9.9
}							
DEM RISC Default Industrial Cleanup Level - 2006	3/16/2009	<5.0 55	<5.0 31	37.6 1.000	<5.0 2.000	<5.0 1.000	<2.0
DEM RISC Default Residential Cleanup Level - 2006		-5	5	·70	100	80°	2

Note

All Values Over (DEM RISC Default Industrial Cleanup Level in RED

All Values Over (DEM RISC Default Residential Cleanup Level in BLUE

PCE = Tetrachloroethene: TCE = Trichloroethene: eis-1,2-DCE = eis-1,2-Diehloroethene: trans-1,2-DCE = trans-1,2-Dichloroethene

Green Shading indicates areas that are appear to be undergoing reductive dechlorination due to CAP-18 Injections

[&]quot;I" designation indicates concentration was estimated due to high concentration of one parameter requiring dilution on other parameter quantitations

[&]quot;-" indicates geochemical parameter was not collected, "NV" indicates data was not valid due to equipment error

Table 5

Monitoring Well Groundwater Analytical Results

First Quarter 2009

Michigan Plaza

3801-3823 W. Michigan Street Indianapolis, Indiana MUNDELL Job No.: M01046

WellID	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Chloroform	Vinyl chloric
		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
nitoring Wells (Plaza)				_			
	11/9/2005	33	210	160	9.6	<5.0	76
	2/22/2007	85.2	356	274	16.7	<5.0	28.7
<u> </u>	6/14/2007	111	368	350	10	<5.0	79.6
_	9/20/2007	206	322	300	. 11.5	<5.0	127
MMW-P-01	12/14/2007	230	320	240	7.1	<5.0	87
	3/21/2008	120	170	3,100	25	<5.0	42
	6/5/2008	22	31.5	3,660	68.6	<5.0	123
	9/(1/2008	14.2	15.1	1,690	<5.0	<5.0	87.7
1	11/19/2008	<5.0	<5.0	4.320	<5.0	<5.0	116
	3/17/2009	2008 22 31.5 3,660 68.6 <5 2008 14.2 15.1 1,690 <5.0	<5.0	3,290			
1	11/8/2005	24	<5.0	87	7.3	<5.0	49
	-2/22/2007	184	<5.0	39.4	<5.0	<5.0	27.4
	6/14/2007	17.1	<5.0	35	<5.0	<5.0	27.5
<u>.</u>	9/19/2007	13.3	<5.0	66.3	5.6	<5.0	50.1
MMW-P-02	12/13/2007	7.8	<5.0	69	<5.0	<5.0	53
	3/20/2008	19	<5.0	67	<5.0	<5.0	42
	6/5/2008	94.9	<5.0	44	<5.0	<5.0	46.4
	9/11/2008	17.5	<5.0	46.6	<5.0	<5.0	42
	11/19/2008	10.7	<5.0	75.4	<5.0	<5.0	69.5
31	3/17/2009	23.4	<5.0	65.4	5.3	<5.0	68.4
7-1	11/9/2005	110	<5.0	97	9.6.	<5.0	<2.0
	2/22/2007	397	<5.0	105	10	<5.0	<2.0
	6/14/2007	256	<5.0	96.4	9.2	<5.0	93
	9/20/2007	1144	<5.0	131	15.8	<5.0	16
MMW-P-03S	12/13/2007	67	<5.0	88	5.3	<5.0	. 15
WIW W-1 -055	3/20/2008	1.30	<5.0	84	7.3	<5.0	10
	6/5/2008	19.4	<5.0	380	14.9	<5.0	10.6
	9/11/2008	< 5.0	<5.0	<5.0	<5.0	<5.0	72.6
	11/19/2008	<5.0	6	494	<5.0	<5.0	40.8
	3/17/2009	7.5	<5.0	904	38.7	<5.0	283
	L1/9/2005	22	<5.0	42	<5.0	<5.0	2
	2/22/2007	48.9	<5.0	57.8	<5.0	39	15.6
[6/14/2007	21.7	<5.0	74.9	<5.0	<5.0	34.5
	9/19/2007	14.3	<5.0	76.1	7.3	<5.0	36.6
AAAAA D 02D	12/13/2007	II	<5.0	40	<5.0	<5.0	20
MMW-P-03D	3/20/2008	<5.0	<5.0	170	6	<5.0	18
	6/5/2008	<5.0	<5.0	150	7.4	<5.0	26
	9/11/2008	<5.0	<5.0	95.7	6.4	<5.0	<2
	11/19/2008	< 5.0	<5.0	80.6	<5.0	<5.0	36.9
	3/17/2009	<5.0	<5.0	65.2	<5.0	<5.0	69.8
	11/9/2005	l 80	<5.0	<5.0	<5.0	<5.0	<2.0
	2/22/2007	315	<5.0	<5.0	<5.0	<5.0	<2.0
	6/14/2007	268	<5.0	<5.0	<5.0	<5.0	<2.0
Î.	9/20/2007	214	<5.0	<5.0	<5.0	<5.0	<2.0
MANANE DI OA	12/13/2007	62	<5.0	<5.0	<5.0	<5.0	<2.0
MMW-P-04.	3/20/2008	120	<5.0	<5.0	<5.0	<5.0	<2.0
	6/6/2008	154	6	59.7	<5.0	<5.0	<2.0
	9/11/2008	31.9	<5.0	360	7.I.	<5.0	<2.0
	11/19/2008	45	<5.0	248	<5.0	<5.0	<2.0
	3/18/2009	19.4;	5.4	304	10.8	<5.0	<2.0
DEM RISC Default Industrial Cleanup Level - 2006		55	31	1.000	2.000	1.000	4
DEM RISC Default Residential Cleanup Level - 2006		5	3	70	100	80	2

Note:

All Values Over IDEM RISC Default Industrial Cleanup Level in RED

All Values Over IDEM RISC Default Residential Cleanup Level in BLUE

 $PCE = Tetrachloroethene; \ TCE = Trichloroethene; \ eis-1.2-DCE = eis-1.2-Dichloroethene; \ trans-1.2-DCE = trans-1.2-Dichloroethene$

Green Shading indicates areas that are appear to be undergoing reductive dechlorination due to CAP-18 Injections

[&]quot;I" designation indicates concentration was estimated due to high concentration of one parameter requiring dilution on other parameter quantitations

[&]quot;-" indicates geochemical parameter was not collected, "NV" indicates data was not valid due to equipment error

Table 5 Monitoring Well Groundwater Analytical Results First Quarter 2009 Michigan Plaza 3801-3823 W. Michigan Street Indianapolis, Indiana MUNDELL Job No.: M01046

WellID	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Chloroform	Vinyl chlorid
		սց/Լ	ng/l	ug/l	ug/l	ug/l	ug/l
	11/8/2005	<5.0	<5.0	6.2	<5.0	<5.0	<2.0
	2/22/2007	23.7	<5.0	9.1	<5.0	<5.0	<2.0
	6/14/2007	<5.0	<5.0	18.8	<5.0	<5.0	<2.0
	9/19/2007	<5.0	<5.0	18.8	<5.0	<5.0	<2.0
MMW-P-05	12/14/2007	<5.0	<5.0	14.8	<5.0	<5.0	<2.0
	3/20/2008	<5.0	<5.0	8.1	<5.0	<5.0	<2.0
4	6/5/2008	<5.0	<5.0	. 15.6	. <5.0	<5.0	. <2.0
	9/11/2008	<5.0	<5.0	16.7	<5.0	<5.0	<2.0
	11/19/2008	<5.0	<5.0	22.1	<5.0	<5.0	<2.0
	3/17/2009	<5.0	<5.0	13.7	<5.0	<5.0	<2.0
	11/8/2005	<5.0	<5.0	200	24	<5.0	21
	2/22/2007	<5.0	<5.0	158	19.2	<5.0	<2.0
	6/14/2007	<5.0	<5.0	214	22.7	<5.0	13.3
	9/19/2007	<5.0	<5.0	283	38.2	<5.0	26 , l
MMW-P-06	12/14/2007	<5.0	<5.0	260	40	<5.0	. 31
	3/20/2008	<5.0	<5.0	250	31	<5.0	26
	6/5/2008	<5.0	<5.0	265	30.9	<5.0	40.1
	9/11/2008	<5.0	<5.0	271	33.3	<5.0	<2.0
	11/19/2008	<5.0	<5.0		<5.0	<5.0	61.4
= .	3/17/2009	<5.0	<5.0	292	35.3	<5.0	<2.0
	2/22/2007	3,060	81.5	-82	8.8	<5.0	<2.0
	6/14/2007	2,850	90	82.5	<50.0	<50.0	<20.0
	9/20/2007	5,200	109	. 121	. 16.1	<5.0	2
	12/13/2007	1,440	157	930	8.8	7.4	_80
MMW-P-07	3/21/2008	31	7.6	1,700	s 27	<5.0	110
	6/5/2008	<5.0	<5.0	938	15.6	<5.0	466
	9/11/2008	<5.0	<5.0	1,870	55.2	<5.0	1,620
-	11/19/2008	<5.0	<5.0	797	<5.0	<5.0	749
	3/17/2009	<5.0	<5.0	361	17.7	<5.0	1830
	2/22/2007	6,280	281	240	26.7	<5.0	<2.0
	6/14/2007	6,440	310	169	. <50.0	< 50.0	<20.0
	9/20/2007	9,780	494	201	25.3	<5.0	6.5
	12/14/2007	390	210	5,800	<50.0	<50.0	<20.0
MMW-P-08	3/21/2008	6.7	11	6,500	130	<5.0	55
e e	6/5/2008	<5.0	<5.0	<5.0	<5.0	<5.0	562
	9/11/2008	5.8	5	18,300	686	<50.0	4,740
-	11/19/2008	<50.0	<50.0	5,690	91.4	< 50.0	13.000
	3/17/2009	<5.0	<5.0	1,130	47.1	<5.0	5,680
	2/22/2007	10.0	<5.0	<5.0	. <5.0	<5.0	<2.0
-	6/14/2007	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
_	9/19/2007	, <5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MANUNCOO	12/12/2007	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MMW-P-09S	3/20/2008	<5.0	<5.0	< 5.0	<5.0	<5.0	<2.0
-	6/5/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
-	9/11/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
-	11/19/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	3/17/2009	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
EM RISC Default Industrial Cleanup Level - 2006		55	áì	1.000	2.000	E.000	4
EM RISC Default Residential Cleanup Level - 2006		5	3	70.	100	80	ż

Note:

All Values Over IDEM RISC Default Industrial Cleanup Level in ED

All Values Over IDEM RISC Default Residential Cleanup Level inBLUE

PCE = Tetrachloroethene: TCE = Trichloroethene: cis-1,2-DCE = eis-1,2-Dichloroethene: trans-1,2-DCE = trans-1,2-Dichloroethene

Green Shading indicates areas that are appear to be undergoing reductive dechlorination due to CAP-18 Injections

[&]quot;I" designation indicates concentration was estimated due to high concentration of one parameter requiring dilution on other parameter quantitations'

[&]quot;-" indicates geochemical parameter was not collected, "NV" indicates data was not valid due to equipment error

Table 5

Monitoring Well Groundwater Analytical Results First Quarter 2009 Michigan Plaza 3801-3823 W. Michigan Street Indianapolis, Indiana

MUNDELL Job No.: M01046

Well ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1.2-DCE	Chloroform	Vinyl chlorid
		ug/l	ng/l	ug/l	ug/l	ug/l	ug/l
	6/14/2007	<5.0	<5.0	<5.0	<5.0	<5.0	46.2
	9/19/2007	<5.0	<5.0	<5.0	<5.0	<5.0	83.1
	12/12/2007	<5.0	<5.0	<5.0	<5.0	<5.0	71
MMW-P-09D	3/20/2008	<5.0	<5.0	<5.0	<5.0	<5.0	3
101101 W -F -0 9D	6/5/2008	<5.0	<5.0	<5.0	<5.0	<5.0	100
	9/11/2008	<5.0	<5.0	<5.0	<5.0	<5.0	72.6
17	11/19/2008	<5.0	<5.0	<5.0	<5.0	<5.0	97.2
	3/17/2009	<5.0	<5.0	<5.0	<5.0	<5.0	85.1
MMW-P-10S	6/14/2007	36.1	36.3	61.6	6.9	<5.0	<2.0
	7/6/2007	87.9	54.9	92.1	10.2	<5.0	<2.0
	9/19/2007	192	82.6	126	14.4	<5.0	<2.0
	12/14/2007	71	<5.0	<5.0	<5.0	<5.0	2.4
	3/20/2008	26.8	19.2	250	12.2	<5.0	<2.0
	6/5/2008	15	9.7	537	16	<5.0	114
	9/11/2008	74.8	36.5	1,650	74	<5.0	27.7
	11/19/2008	78.6	28	1,510	<5.0	<5.0	22.3
	3/17/2009	11.9	8.6	1,160	71.5	<5.0	<2.0
	6/14/2007	<5.0	10.6	481	7.7	<5.0	98.7
	7/6/2007	< 5.0	<5.0	498	9	<5.0	118
	9/19/2007	<5.0	<5.0	350	<5.0	<5.0	76.1
	12/14/2007	<5.0	<5.0	270	<5.0	<5.0	77
MMW-P-10D	3/20/2008	<5.0	<5.0	<5.0	<5.0	<5.0	3
	6/5/2008	<5.0	<5.0	508	<5.0	<5.0	267
	9/11/2008	<5.0	<5.0	435	<5.0	<5.0	288
	11/19/2008	<5.0	<5.0	3,390	<5.0	<5.0	5,030
	3/17/2009	<5.0	<5.0	4.860	12.9	<5.0	2,500
EM RISC Default Industrial Cleanup Level - 2006		55	31	1,000	2,000	1,000	4.
M RISC Default Residential Cleanup Level - 2006		5	5	70.	:100	80	2

Note

All Values Over IDEM RISC Default Industrial Cleanup Level in RED

All Values Over IDEM RISC Default Residential Cleanup Level in BLUE

PCE = Tetrachloroethene: TCE = Trichloroethene: cis-1,2-DCE = cis-1,2-Dichloroethene: trans-1,2-DCE = trans-1,2-Dichloroethene

Green Shading indicates areas that are appear to be undergoing reductive dechlorination due to CAP-18 injections

"I" designation indicates concentration was estimated due to high concentration of one parameter requiring dilution on other parameter quantitations

"-" indicates geochemical parameter was not collected, "NV" indicates data was not valid due to equipment error

Table 5 Monitoring Well Groundwater Analytical Results First Quarter 2009 Michigan Plaza 3801-3823 W. Michigan Street Indianapolis, Indiana MUNDELL Job No.: M01046

Weff1D	Sample Date	PCE	TCE	cis-1.2-DCE	trans-1.2-DCE	Č hloro form	Vinyl chloride
		ug/l	ug/l	ugʻl	ug/l	ug/l	ug/l
ramida Monitoring Wells (Off-site)							
	11/7/2005	<5.0	<5.0	<5.0	<5.0		14
MW-167S	6/5/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	11/7/2005	<5.0	<5.0	750	<5.0		110
MW167D	6/5/2008	<5.0	<5.0	616	28	<5.0	43.8
+	+						
-	11/7/2005	280	16	53	<5.0	<5.0	3
	2/21/2007 6/14/2007	30.1 <5.0	<5.0	155	<5.0 <5.0	<5.0 <5.0	29.6 34
	9/19/2007	32.6	8	82.4	<5.0	<5.0	3.5
MW-168S	12/13/2007	52	14	78	<5.0	<5.0	4.1
		92		46	<5.0	<5.0	4.2
<u>-</u>	6/5/2008	80.4	10.1	41.1	<5.0	<5.0	3.6
-	9/11/2008	68.5	10.1	66.9	<5.0	<5.0	5.5
	NS :	NS NS	NS NS	NS	NS NS	NS NS	NS
MW-168D	11/7/2005	<5.0	<5.0	6.8	<5.0	<5.0	49
	2/21/2007	<5.0	<5.0	8.4	<5.0	<5.0	58.1
	6/14/2007	<5.0	<5.0	5.2	<5.0	<5.0	47.5
	9/19/2007	<5.0	<5.0	<5.0	<5.0	<5.0	89.7
	12/12/2007	<5.0	<5.0	<5.0	<5.0	<5.0	. 74
	3/20/2008	<5.0	<5.0	8	<5.0	<5.0	39
	6/5/2008	<5.0	<5.0	13.4	<5.0	<5.0	65.9
	9/11/2008	<5.0	<5.0	5,5	<5.0	<5.0	<2
	3/17/2009	<5.0	<5.0	16.5	<5.0	<5.0	<2.0
MW 1/00	11/7/2005	<5.0	<5.0	<5.0	<5.0		<2.0
MW-169S	6/5/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MW-169D	11/7/2005	<5.0	<5.0	<5.0	<5.0		5.1
161 (6 - 1021)	6/5/2008	<5.0	<5.0	<5.0	<5.0	<5.0	14.3
MW-170S	6/3/2008	<5.0	<5.0	<5.0	<5.0	<5.0	5.5
MW-170D	6/3/2008	<5.0	<5.0	<5.0	<5.0	<5.0	230
MW-171S	6/3/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
MW-171D	6/3/2008	<5.0	<5.0	<5.0	<5.0	<5.0	3
ral Park Cemetery Wells (Off-site)							
MMW-C-01	11/20/2008	15.7	8.3	296	<5.0	<5.0	<2.0
	3/17/2009	<5.0	<5.0	508	73	<5.0	<2.0
MMW-C-02	11/20/2008	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
	3/17/2009	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0
DEM RISC Default Industrial Cleanup Level - 2006		55	31	1,000	2,000	1.000	4
DEM RISC Default Residential Cleanup Level - 2006		5	5	70	100	80	2

Note:

All Values Over IDEM RISC Default Industrial Cleanup Level in RED

All Values Over IDEM RISC Default Residential Cleanup Level in BLUE

 $PCE = Tetrachloroethene; \ TCE = Trichloroethene; \ cis-1,2-DCE = cis-1,2-Dichloroethene; \ trans-1,2-DCE =

Green Shading indicates areas that are appear to be undergoing reductive dechlorination due to CAP-18 Injections

"I" designation indicates concentration was estimated due to high concentration of one parameter requiring dilution on other-parameter quantitations

"-" indicates geochemical parameter was not collected, "NV" indicates data was not valid due to equipment error

Table 6 Historical Sewer Analytical Results Michigan Plaza Indianapolis, Indiana MUNDELL Job No.: M01046

Sample	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Chloroform	Vinyl chloride	Chloro mediane	Methylene chloride	Naphthalene	1,23-Trichloro benzene	1,4-Dichloro benzene	Toluene	Acetone
	Dek	ug/l	ugA	ugA	ugA	ug1	ug/l	ugA	ugA	ug/l	Agu	ug1	ug/l	ugʻi
	9/30/05	15	< 5.0	19	≤ 5.0	66	= 2.0	< 5.0	- 5.0	≪ 5.0	≤ 5.0	< 5.0	= 5.0	89
SS-P-01 (7')	11/8/05	9.3	=5.0	47	-:5.0	200	~2.0	≤5.0	≪5.0	15	<5.0	-5.0	≤5.0	130
	3/18/09	~50.0	=50.0	10.53	⊴50.0	70.7	=20.0	NA	<50.0	450.0	NA	NA	50.0	NA
	9/26/05	58	< 5.0	24	< 5.0	44	∈ 2.0	< 5.0	₹ 5.0	< 5.0	< 5.0	< 5.0	~: 5.0	< 5.0
SS-A-01(7')	11.8.05	51	< 5.0	27	≥ 5.0	49	= 2.0	≠ 5.0	< 5.0	≈ 5.0	- 5.0	< 5.0	~ 5.0	60
CKF700T(T)	6:14:07	≤ 5.0	≤ 5.0	< 5.0	= 5.0	11	<2.0	≈ 5.0	- 5.0	≈ 5.0	= 5.0	9.8	⊴ 5.0	= 100
	3/18/09	<50.0	<50.0	<50.0	~50.0	-50.0	-20.0) NA	≤50.0	~50.0	NA)	NA	≤50.0) NA
1	9/26/05	< 5.0	< 5.0	< 5.0	< 5.0	22	< 2.0	< 5.0	< 5.0	< 5.0	< 5.0	12	6.8	94
SS-A-02(9°)	11.8.05	12	< 5.0	< 5.0	< 5.0	16	< 2.0	< 5.0	< 5.0	< 5.0	< 5.0	14	< 5.0	< 25.
33-70-02(4)	6/14/07	< 5.0	< 5.0	< 5.0	< 5.0	12	< 2.0	< 5.0	< 5.0	< 5.0	< 5.0	11	< 5.0	< 100
	3/18/09	<50.0	<50.0	<50.0	<50.0	<50.0	<20.0	NA	<50.0	<50.0	NA	NA .	<50.0	NA.
	9/30/05	< 5.0	< 5.0	< 5.0	< 5.0	140	< 2.0	37	< 5.0	< 5.0	< 5.0	6.1	< 5.0	410
SS-A-03 (10')	11/8/05	20	< 5.0	< 5.0	< 5.0	19	< 2.0	< 5.0	< 5.0	< 5.0	< 5.0	10	5.2	< 25.
337743 (10)	614.07	< 5.0	< 5.0	< 5.0	< 5.0	10	< 2.0	< 5.0	< 5.0	< 5.0	< 5.0	10	< 5.0	< 100
	3:18.09	<50.0	<50.0	<50.0	<50.0	<50.0	<20.0	NA	<50.0	<50.0	NA	NA	<50.0	NA
SS-P-3819	11/8.05	0.2 >	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	87
DEM RISC Default Industrial Cleanup Level		55	7.2	1000	2000	1000	2	NA	380	2000	NA	120	20000	92000
DEM RISC Default Residential Cleanup Level		5	5	70	100	80	2	NA	5	8.3	NA	75	1000	950

Nofe:

All Values Over IDEM RISC Default Industrial Cleanup Level in RED

All Values Over ID EM RISC Default Residential Cleanup Level in BLUE

PCE = Tetrachloroethene; TCE = Trichloroethene; cis-1,2-DCE = cis-1,2-Dichloroethene; trans-1,2-DCE = trans-1,2-Dichloroethene

*TVOIIs = Total Volatile Organic Halides (results from SDI Quick Test = Sum of TCE, PCE and 1,1,1-Trichloiethane)

J value = Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit

MDL - Not Available

NA Not Applicable. Test kit not ran

TABLE 7a

AIR SAMPLING ANALYTICAL RESULTS - TO-15 SIM ANALYSIS

Sampling Events - April 2003, October 2004, September 2005, October 2006, April 2008, February 2009, March 2009

Michigan Plaza Shopping Center

Indianapolis, Indiana

MUND EL L. Project No. M01046

6 . In		Tetrachioroethene (PCE)			Trie	hloroethen	e (TCE)	cis-1,2-Di	chloroether	ne (cis-1,2-	Vinyl Chloride (VC)		
Sample ID.	Sample Date	ppb	ng/m³	mg/m3	ppb	ug/m³	mg/m3	ppb	ug/m³	mg/m3	ppb	ng/m³	mg/m3
	4/25/2003	38	260	0.26	0.09	0.49	0.00049	ND	ND	ND	ND	ND	ND
	9/29/2005	26	180	0.18	0.07	0.39	0.00039	0.09	0.36	0.00036	0.98	2.50	0.0025
PLAZA 3801 (Village Puntry)	10/12/2006	0.98	6.70	0.0067	ND	ND	ND	0.061	0.24	0.00024	0.10	0.27	0.0003
	4/14/2008	0.15	1.0	0.0010	ND	ND	ND	ND	ND	ИD	0.079	0.20	0.00020
	2/26/2009	0.84	5.7	0.0057	ND	ND	ND	ND	ND	ND	0.460	1.20	0.00120
LIBRARY	4/25/2003	176.75	L. 200	1.20	0.43	2.30	0.00230	0.09	0.36	0.00036	ND	ND	ND
FORMER LIBRARY	3/17/2009	1.70	11	0.01	ND	ND	מא	ND	ND	ND	1.10	2.90	0.0029
	4/25/2003	250	1,700	1.70	0.43	2.30	0.00230	0.08	0.33	0.00033	ND	ND	ND
PLAZA 3815 (Vacant)	10/7/2004	18	120	0.12	0.16	0.86	0.00086	0.17	0.67	0.00067	0.73	1.90	0.0019
	9/29/2005	42	280	0.28	0.10	0.53	0.00053	0.36	1.40	0.00140	0.07	0.18	0.0002
	10/12/2006	3.6	25	0.03	ND	ND	ND	ND	ND	ND	ND	ND	ND
	4/14/2008	1.6	11	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND
	2/26/2009	1.8	12	0.01	ND	ND	ND	ND	ND	ND	0.051	0.13	0.00013
PLAZA 3817	4/25/2003	200	1,400	1.40	0.18	1.0	0.00100	0.03	0.18	0.00018	ND	ND	ND
PLAZA 3817 (AA Suite)	3/17/2009	1.00	7.00	0.007	ND	ND	ND	ND	ND	ND	0.16	0.40	0.0004
	10/7/2004	26	180	0.18	0.16	0.86	0.00086	0.17	0.67	0.00067	2.6	6.6	0.0066
	9/29/2005	75	510	0.51	0.08	0.45	0.00045	0.19	0.75	0.00075	1.6	4.10	0.0041
PLAZA 3819 (Mexican Store)	10/12/2006	2.2	15	0.02	ND	ND	ND	0.06	0.22	0.00022	0.20	0.51	0.0005
	4/14/2008	1.30	8.8	0.009	ND	ND	ND	ND	ND	ND	0.14	0.35	0.0004
	2/26/2009	0.41	2.8	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND
wwidy (Make harms My 81 achan.)	10/7/2004	1.70	12	0.01	1.70	9.1	0.00910	0.96	3.80	0,00380	0.04	0.09	0.0001
PLAZA3823 (Laundromat)	10/12/2006	0.32	2.20	0.002	ND	ND	ND	ND	ND	ND	0.05	0.14	0.0001
PLAZA 3823 (Laundromat)	4/14/2008	0.35	2.30	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND
PLAZA 3823 (Laundromat)	2/26/2009	0.13	0.90	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ambent Air	10/12/2006	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND
on Fence	4/14/2008	0.13	0.90	0.001	ND	ИD	ND	ND	ND	ND	ND	ND	ND
on Fence	2/26/2009	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.460	1.20	0.00120

Note: Results shown in RED exceed the draft U.S. EPA occupational guidance white results in bold BLACK and with blue SHADING exceed IDEM target occupational air concentrations.

Data on this table was originally presented as Table 6b in MUNDELL's Further Site Characterization Report, dated May 10, 2006

TABLE 7b

AIR SAMPLING ANALYTICAL RESULTS - TO-15 SIM ANALYSIS

Michigan Meadows Apartments Indianapolis, Indiana

MUNDELL Project No. M01046

Comple ID	Sample Date	Tetrach	oroether	ie (PCE)	Trichlo	roethen	(TCE)	cis-1,2-Die	hloroethene (c	is-1,2-DCE)	Vinyl	Chloride	(VC)
Sample ID	Sample Date	ppb v/v	ug/m³	mg/m3	ppb v/v	ug/m ³	mg/m3	ppb v/v	ug/m³	mg/m3	ppb v/v	ug/m³	mg/m3
Building I (basement-laundry room)	4/23/2003	28	190	0.19	0.38	2.00	0.002	0.054	0.22	0.00022	ND	ND	ND
Building 1, Basement Apt 101	10/7/2004	6.8	46	0.046	0.21	I I	0.001	0.17	0.67	0.00067	0.052	0.13	0.00013
Building 1, Basement Apt 101	4/14/2008	0.11	0.74	0.0007	ND	ND	ND	NT)	ND	ND	ND	ND	ND
Building 1. Basement Apt 101	2/26/2009	0.23	1.60	0.0016	ND	ND	ND	ND	ND	ND	ND	ND .	ND
Building 1, Apt 104 (second floor)	10/7/2004	0.96	6.5	0.0065	0.077	0.4i	0.00041	0.39	1.5	0.0015	0.096	0.25	0.00025
Building I. Apt 108 (Daughter's Room)	2/26/2009	3.9	27	0.027	ND	ND	ND	ND.	ND	ND	ND	ND	ND
Building 1, Apt 109 (third floor)	10/7/2004	5.8	39	0.039	0.16	0.86	0.00086	0.13	0.52	0.00052	0.062	0.16	0.00016
Building 1, Apt 109 (third floor)	4/14/2008	1.80	12	0.012	ND .	ND	ND	ND	ND I	ND	NDI	ND	ND
Building 6. basement	4/24/2003	0.95	6.4	0.0064	0.049	0.26	0.00026	0.039	0.95	0.00095	ND	ND	ND
Building 6, Basement Apt 602	4/14/2008	0.26	1.8	0.0018	ND	ND	ND	ND	ND	ND	ND	ND)	ND
Building 6, Basement Ant 602	2/26/2009	0.45	3.1	0.0031	ND	ND.	ND	ND	ND	ND	ND	ND	ND
Building 20 Apt 2002	1.0/7/2004	0.06	9.37	0.00	0.078	0.42	0.00042	0.17	9.67	0.00	0.046	0.12	0.00012
Building 20 Apt 2006	i 0/7/2004	0.095	0.64	0,00064	0	0.59	0.00059	0.22	0.87	0.00087	0.066	0.17	0.00017
Building 20 Apt 2008	16/7/2004	0.36	2.4	0.0024	0.4	2.1	0.002 i	0.23	0.91	0.00091	0.066	0.17	0.00017
Building 10, Basement Apt 1001	4/14/2008	0.26	0.25	0.0003	ND	ND	ND	ND	ND	ND	ND	ND	ND
Building 10, Basement Apt 1001	2/26/2009	0.99	6.70	0.0067	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ambient Air NW Meadows MAA-1	10/7/2004	0.29	2.0	0.002	0.3	1.6	0.0016	0.33	1.3	0.0013	0.06	0.15	0.00015
Ambient Air NE Meadows MAA-2	10/7/2004	0.21	1.4	0.0014	0.19	1.0	0.0	0.18	0.71	0.00071	0.046	0.12	0.00012
Ambient Air SE Meadows MAA-3	10/7/2004	0.3	2.0	0.0	0.15	0.81	0.00081	0.16	0.63	0.00063	0.053	0.14	0.00014
Ambient Air - Fence East of Bldg	4//14//2008	0.08	0.54	0.00 i	ND	ND	ND	ND	ND	ND	ΔN	ND	ND
Ambient Air - Fence Enst of Bldg I	2/26/2009	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND

Note: Results shown in bold RED exceed the draft U.S. EPA residential guidance while results shown in bold BLACK with blue SHADING exceed IDEM target residential air concentrations.

TABLE 7c

AIR SAMPLING ANALYTICAL RESULTS - TO-15 SIM ANALYSIS

Soil Gas Monitoring Data

Michigan Plaza Shopping Center & Michigan Meadows Apartments

Indianapolis, Indiana

MUNDELL Project No. M01046

Samula ID	Sample	Tetracl	nloroethen	e (PCE)	Trict	lo roethen	(TCE)	cis-1,2-Di	chloroether DCE)	ne (cis-1,2-	Vinyl Chloride (VC)		
Sample ID	Date	ppb	ug/m³	mg/m3	ppb	ug/m³	mg/m3	ppb	ug/m³	mg/m3	ppb	ug/m³	mg/m3
MGW-1	10/7/2004	0.26	1.8	0.0	0.079	0.42	0.00042	ND	ND	ND	0.2	0.51	0.00051
MGW-1	4/15/2008	0.08	0.55	0.001	0.06	0.29	0.00029	ND	ND	ND	ND	ND	ND
MGW-1	2/26/2009	4.80	32	0.032	1.30	6.80	0.00680	0.20	0.80	0.00080	ND	ND .	ND
MGW-3	10/7/2004	0.31	2.1	0.0	0.068	0.37	0.00037	ND	ND	ND	ND	ND	ND
MGW-3	4/15/2008	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MGW-3	2/26/2009	40.00	270	0.27000	7.40	40	0.04000	1.10	4.40	0.00440	0.29	0.73	0.00073
MGW-5	4/25/2003	18	120	0.12	297	1,600	1.60000	479	1,900	1.900	0.43	1.10	0.0011
MGW-5	10/7/2004	200	1400	1.40	730	3900	3.90000	730	2,900	2.900	0.60	1.50	0.0015
MGW-5	4/15/2008	680	4,600	4.60	660	3,600	3.60	230	910	0.91	ND	ND	ND
MGW-5	2/26/2009	2,100	14,000	14.00	1,100	5,800	5.80	330	1,300	1.30	790	2,000	2

Note: The analytical results from the Gas Well (MGW) samples are not indicative of 'breathing zone' air quality, and comparison to published regulatory standards established for the breathing zone are included here for informational purposes only.

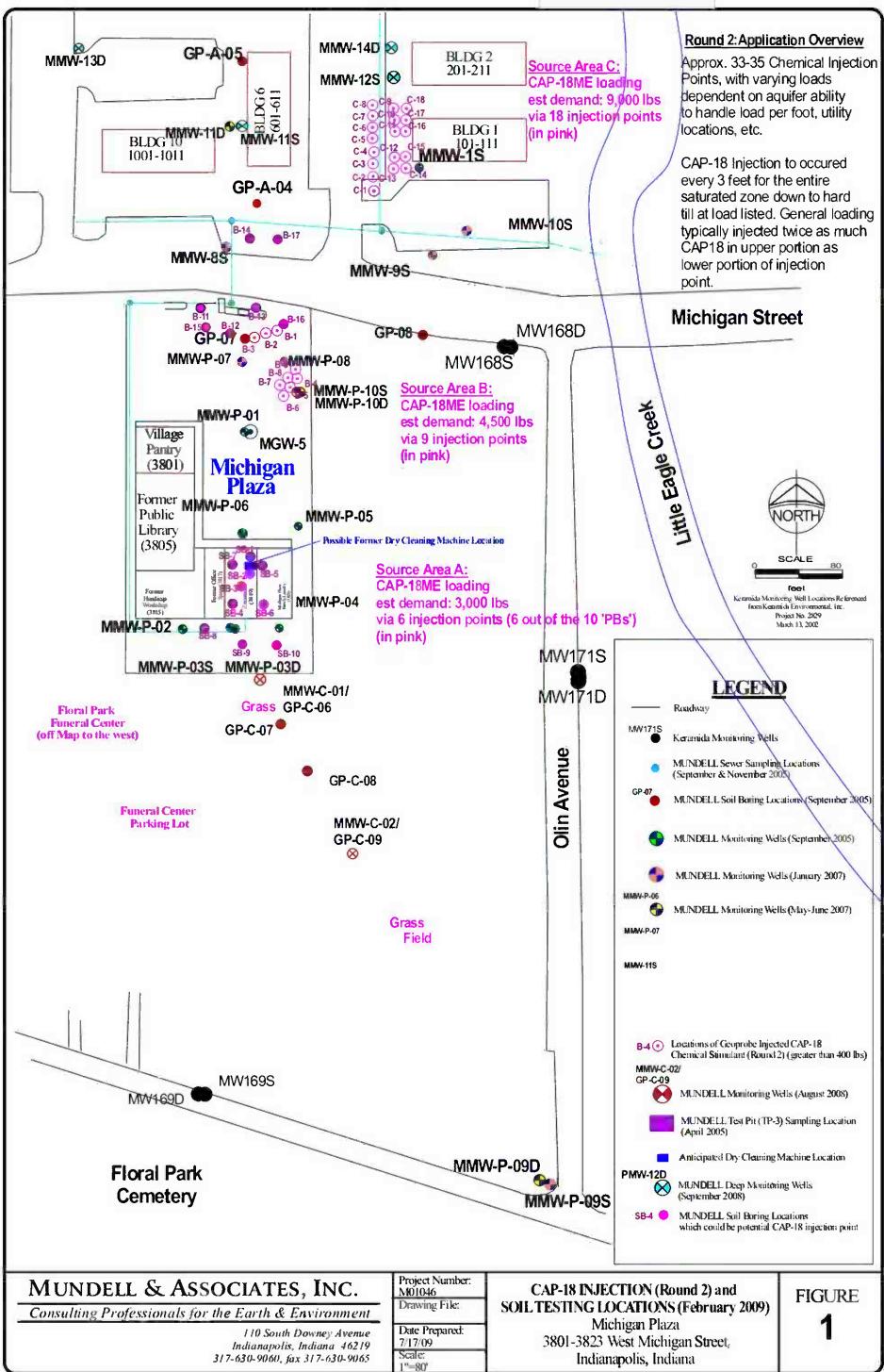
Note: Results shown in bold RED exceed the draft U.S. EPA occupational guidance while results shown in bold BLACK with blue SHADING exceed IDEM target occupational air concentrations.

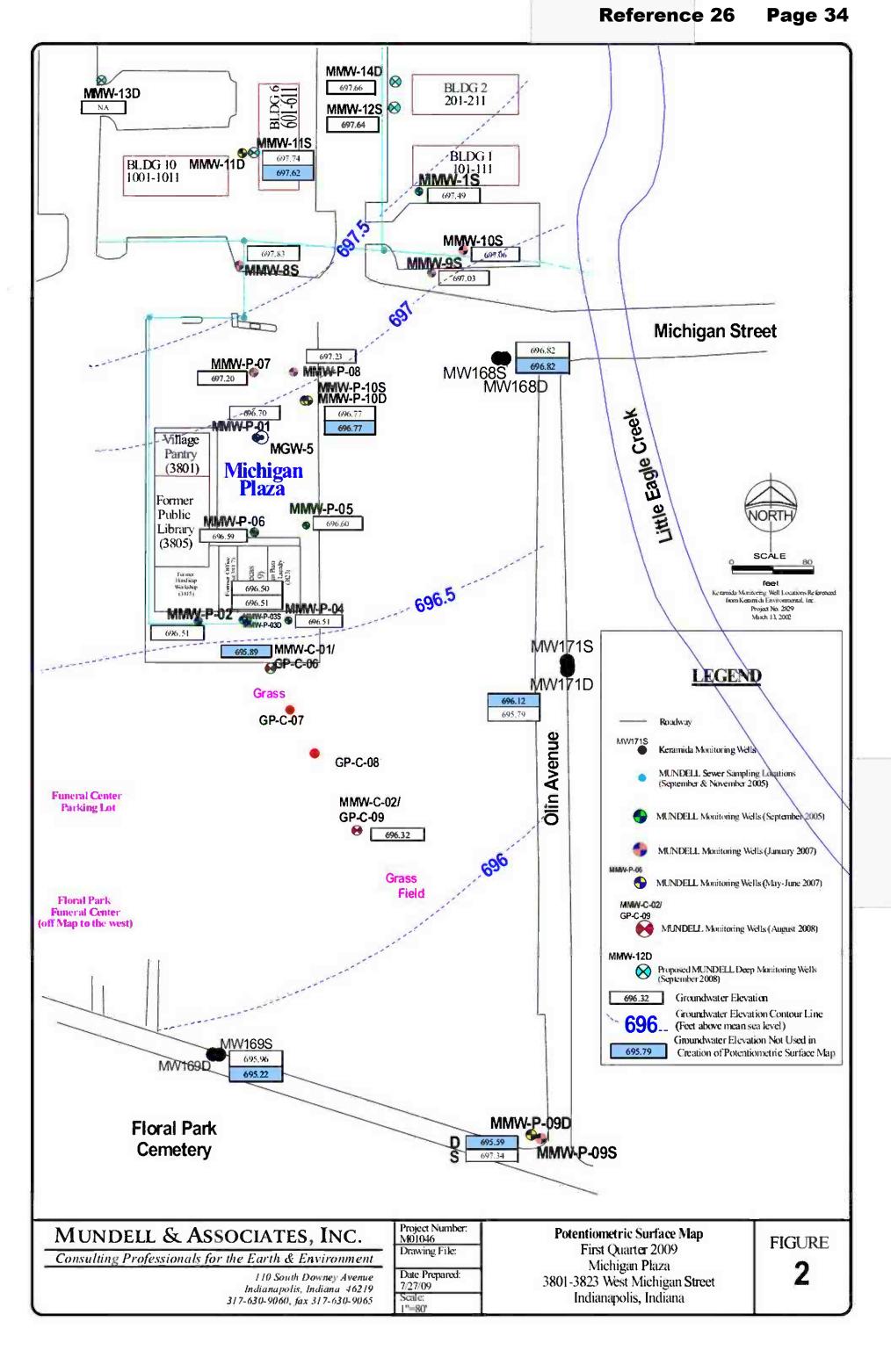
TABLE 7d

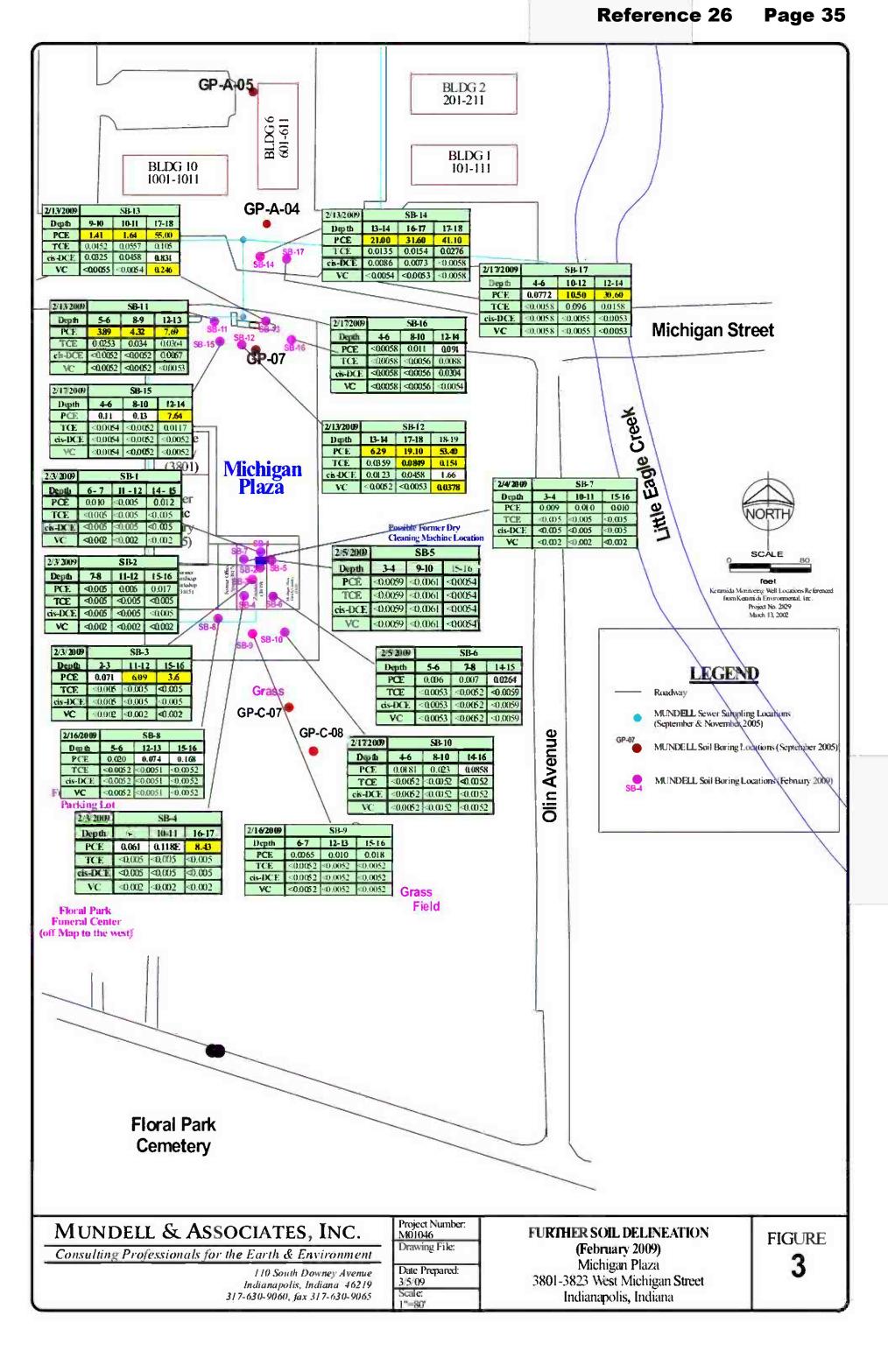
AIR CONCENTRATION HEALTH-BASED LIMITS

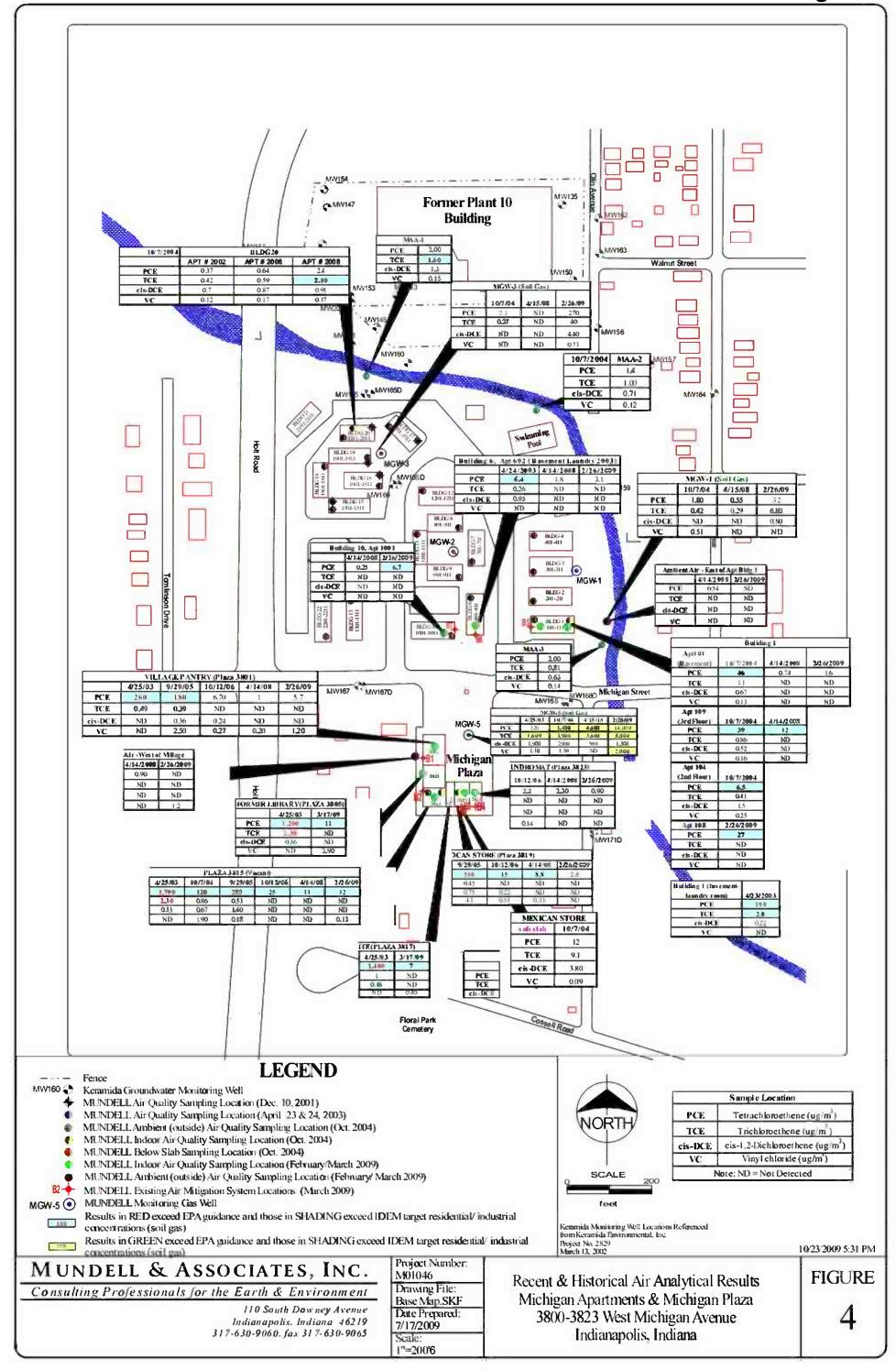
Michigan Plaza Shupping Center Indianapolis, Indiana MUNDELL Project No. M01046

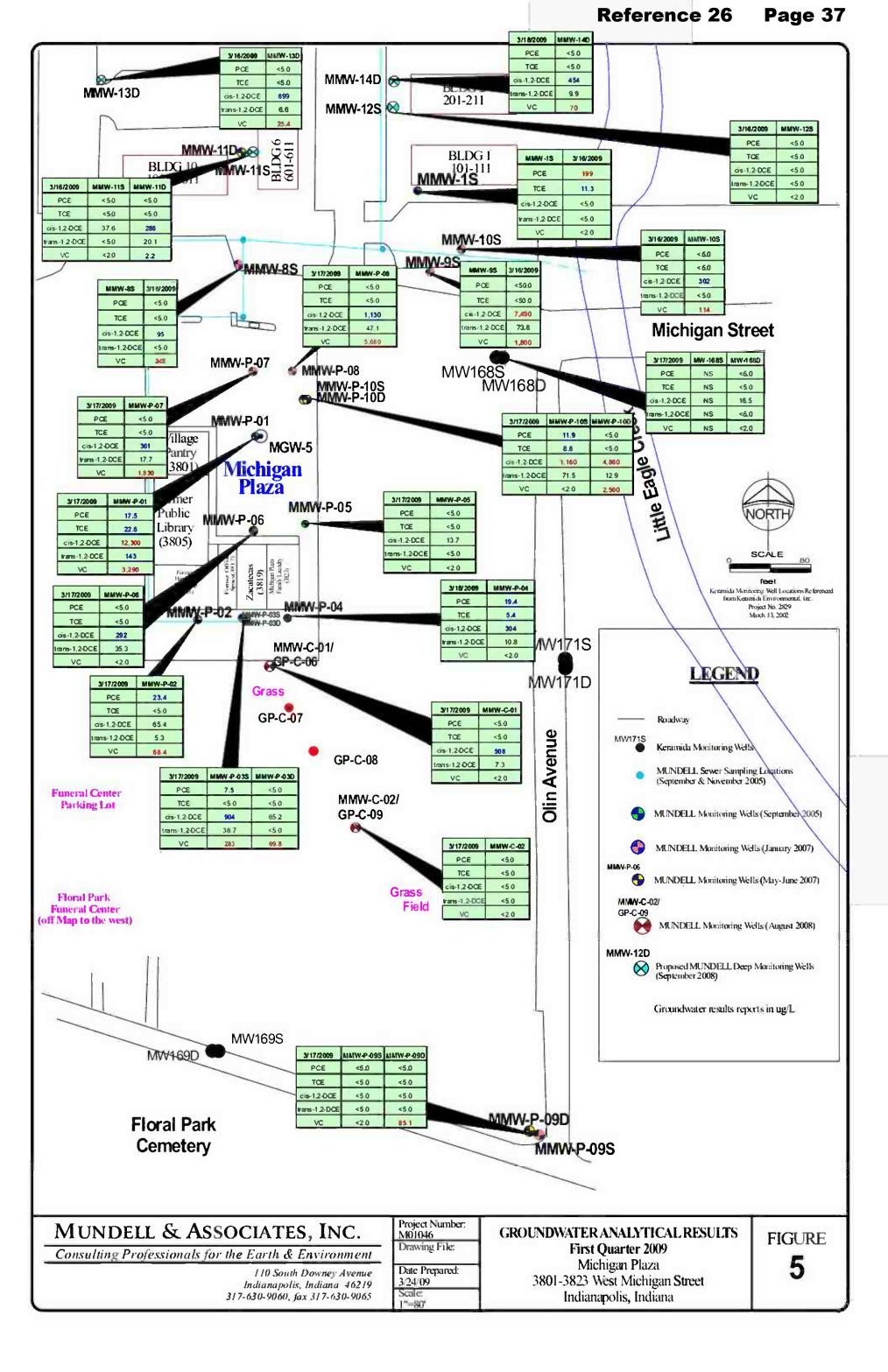
Chemical Name	Carcinugen Classification*	U.S. EPA Draft Guidance Target Indoor Air Concentration.(ug/m ³) a	1DE M Draft Default Residential Vapor Intrusion Concentration, (ug/m²) b	IDEM Draft Default Occupational Vapor Intrusion Concentration. (ug/m²) b	U.S. EPA Draft Guidance Target Deep Soil Gas (ug/m²) °	IDEM Draft Guidance Residential Suil Gas Screening Levels (ug/m²) b	IDEM Draft Guidance Commercial Suil Gas Screening Levels (ug/m²) ^b	IDEM Draft Guidance Residential Sub- slab Screening Levels (ug/m²) b	IDEM Draft Guidance Commercial Sub- slab Screening Levels (ug/m ³) b
cis-1,2-Dich kroethy lene (cis-1,2-DCE)	D	35	37	51	3500	NA NA	NA	NA	NA NA
Tetrachlor oethylene (PCE)	BC	81	3.2	6.8	8100	320	680	32	68
Trichloroethylene (TCE)	BC	2.2	1.2	7.9	220	120	790	12	79
Vinyl Chloride	Α	28	22	8.9	280	220	890	22	89

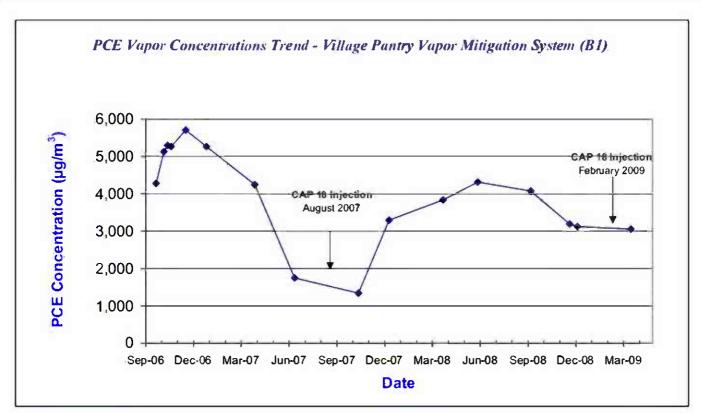

*Integrated Risk Information System (RISC), U.S. Environmental Protection Agency (EPA)

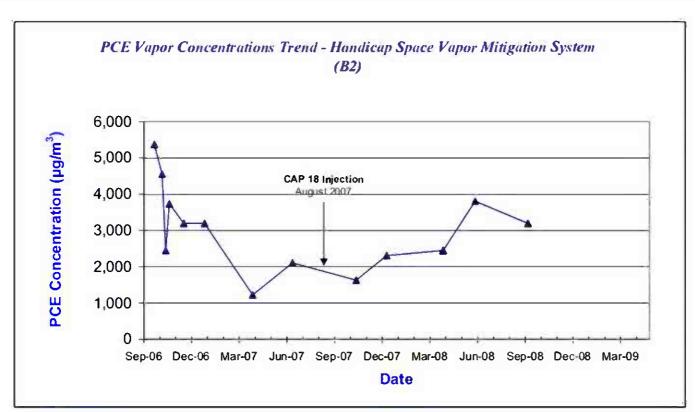

EPA Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Sojls, November 2002

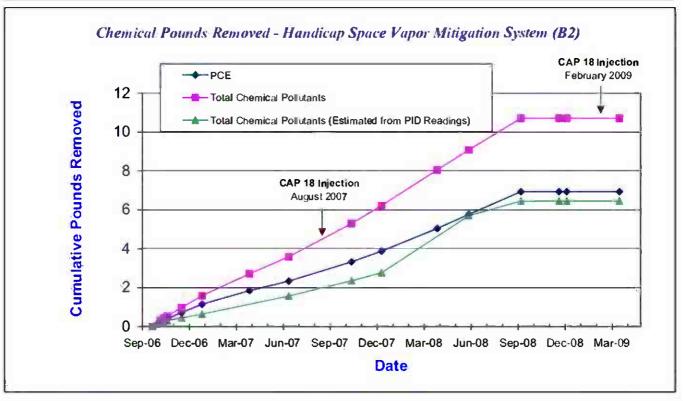

DEM Draft Vapor Intrusion Pilot Program Guidance - April 26, 2006


- A = Human Carcinogen
- B = Probable human carcinogen
- C = Possible human cascinogen
- D = Not classifiable as to human carcinogenicity
- NA Not Available


FIGURES



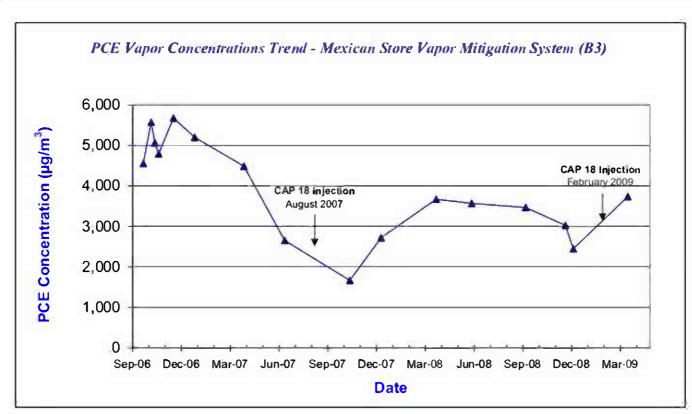

Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 rown, Mundell Associates, con

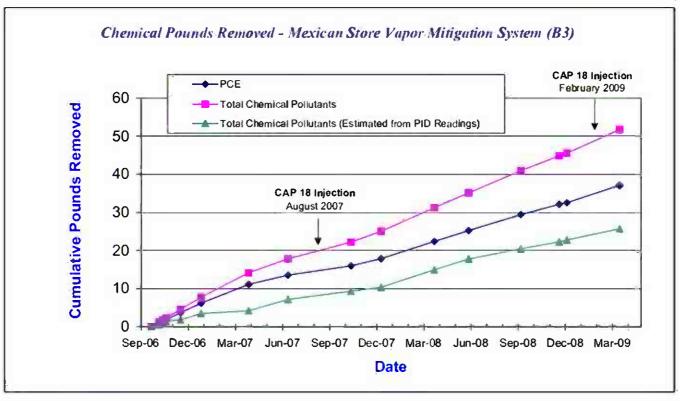

Project Number: M01046 File: Att Mendows charts Date Prepared: 10/21/2009 Scale:

o scale

PCE Concentration Trends and Cumulative Pounds Removed Vapor Mitigation System 8-1 (Village Parmy) First Quarter 2009 Michigan Plaza 3801-3823 West Michigan Avenue Indianapolis, IN

FIGURE

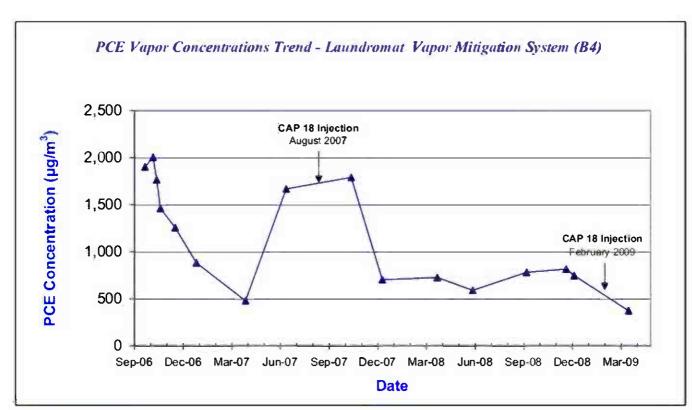


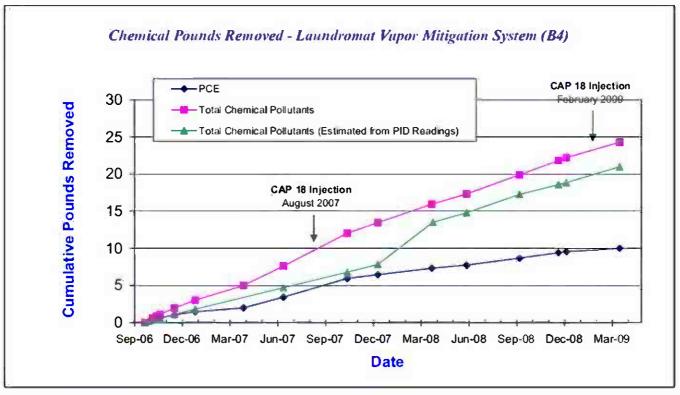

Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 rown Mundell Associates, com Project Number: M01046 File: Atl Meadows charts Date Prepared: 10/21/2009 Scale:

o scale

PCE Concentration Trends and Cumulative Pounds Removed Vapor Midgation System 8-2 (Handicap Space) First Cuarter 2009 Michigan Plaza 3801-3823 West Michigan Avenue Indianapolis, IN

FIGURE

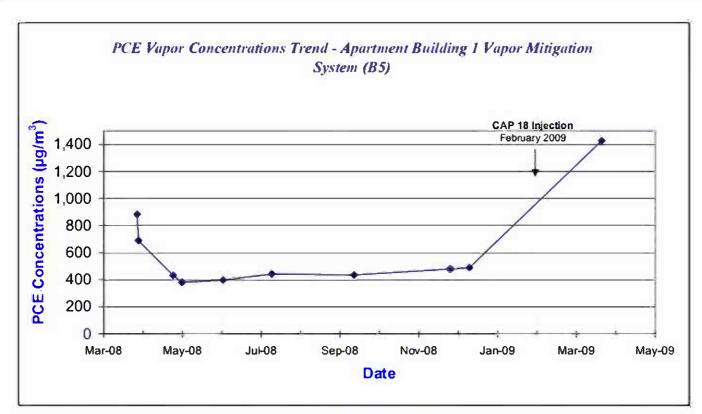

Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 rown, Mundell Associates, con

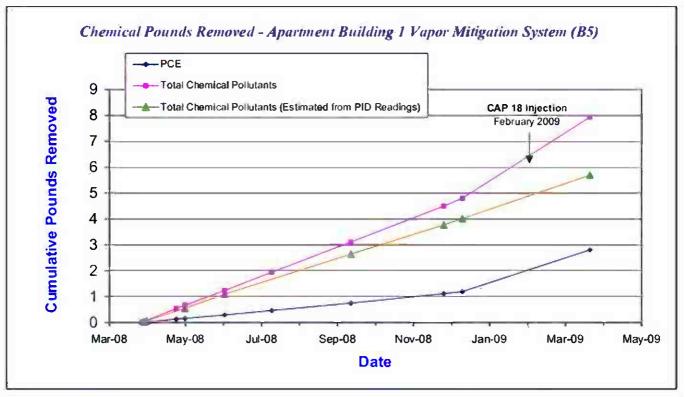

Project Number: M01046 File: MI Meadows charts Date Prepared: 10/21/2009 Scale:

o scale

PCE Concentration Trends and Cumulative Pounds Removed Vapor Mitigation System 8-3 (Medican Store) First Cuarter 2009 Michigan Plaza 3801-3823 West Michigan Avenue Indianapolis, IN

FIGURE

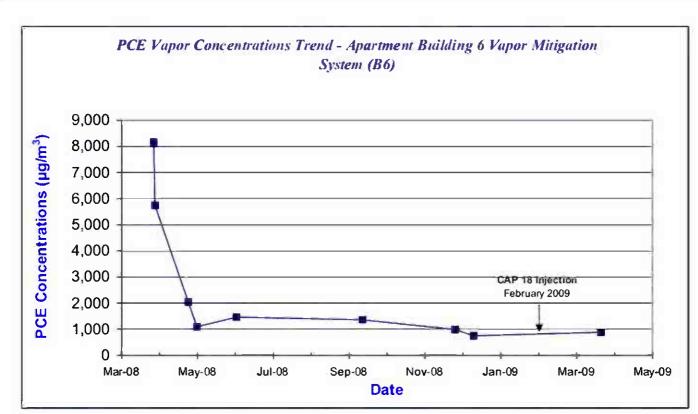

Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 rown Mundell Associates com

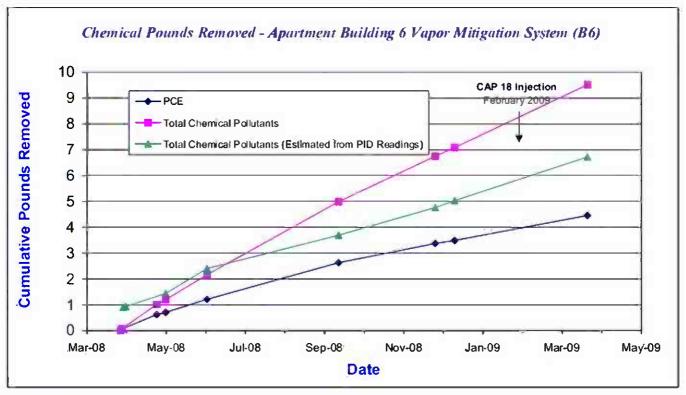

M01046
File:
MI Meadows charts
Date Prepared:
10/21/2009
Scale:
no scale

roject Number:

PCE Concentration Trends and Cumulative Pounds Removed Vapor Miligation System 8-4 (Laundromar) First Quarter 2009 Mithigan Plaza 3801-3823 West Michigan Avenue Indianapolis, IN

FIGURE

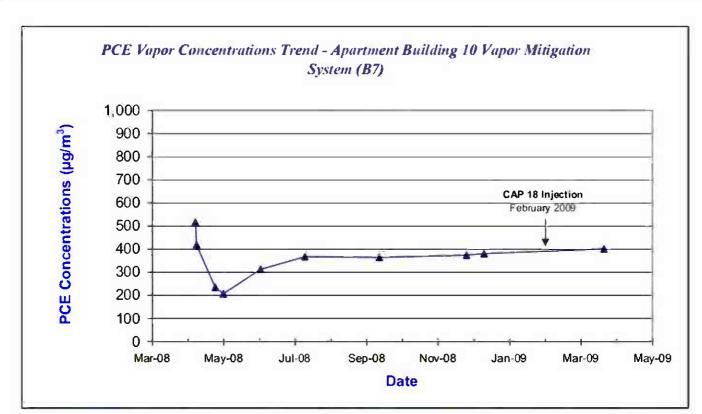


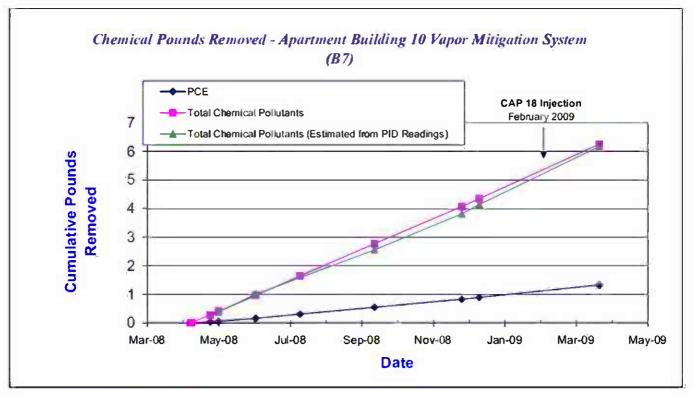

Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 www.MandellAssociates.com Project Number:
M01046
File:
Atl Meadows charts
Date Prepared:
10/21/2009

Scale:

o scale

PCE Concentration Trends and Cumulative Pounds Removed Vapor Mitigation System 8-5 (Apartments, Bidg. 1) First Quarter 2009 Michigan Plaza 3801-3823 West Michigan Avenue Indianapolis, IN **FIGURE**



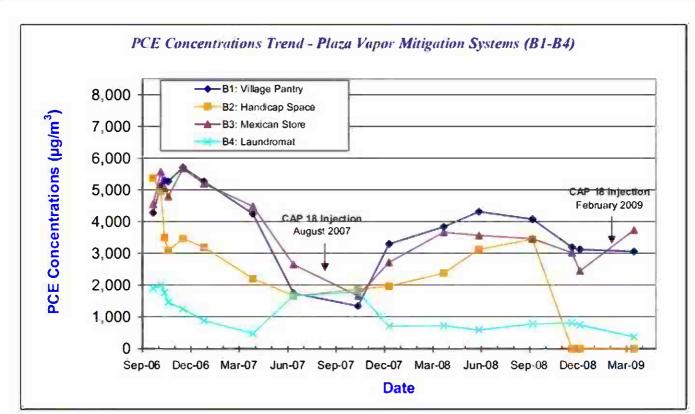


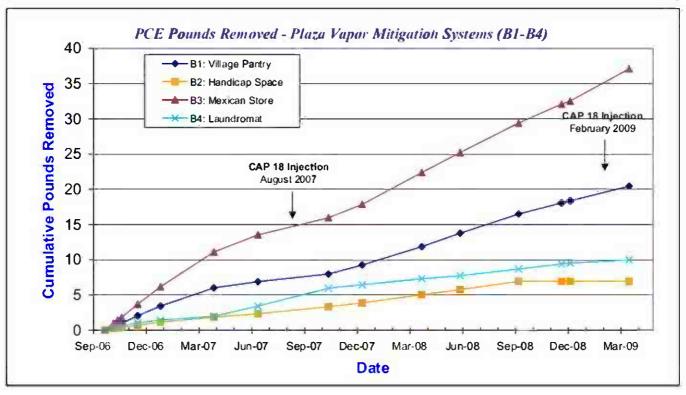
Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 www.MundellAssociates.com Project Number: M01046 File: MI Meadows charts Date Prepared: 10/21/2009 Scale:

o scale

PCE Concentration Trends and Cumulative Pounds Removed Vapor Mitigation System 8-6 (Apartments, Bidg-6) First Quarter 2009 Michigan Plaza 3801-3823 West Michigan Avenue indianapolis, IN **FIGURE**

Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 www.MundellAssociates.com

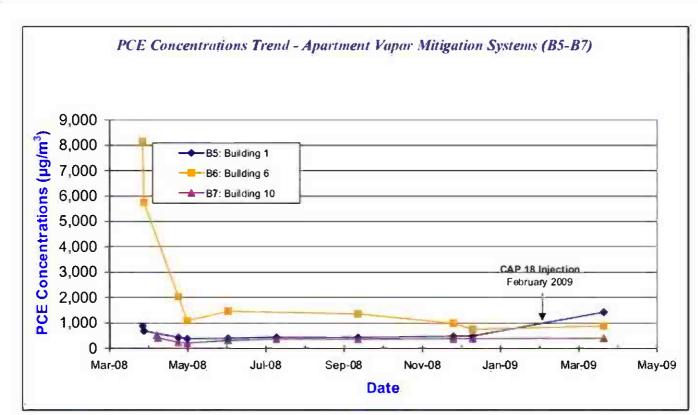

Project Number: M01046 File: MI Meadows charts Date Prepared: 10/21/2009

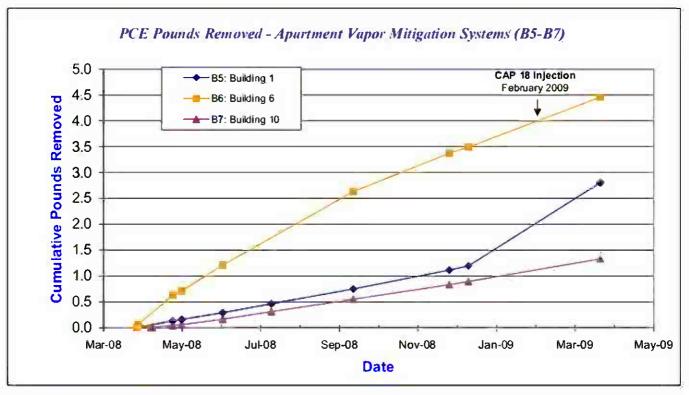

Scale:

o scale

PCE Concentration Trends and Cumulative Pounds Removed Vapor Mitigation System 8-7 (Apartments, 8tdg. 10) First Cuarier 2009 Michigan Plaza 3801-3823 West Michigan Avenue Indianspolls, IN

FIGURE

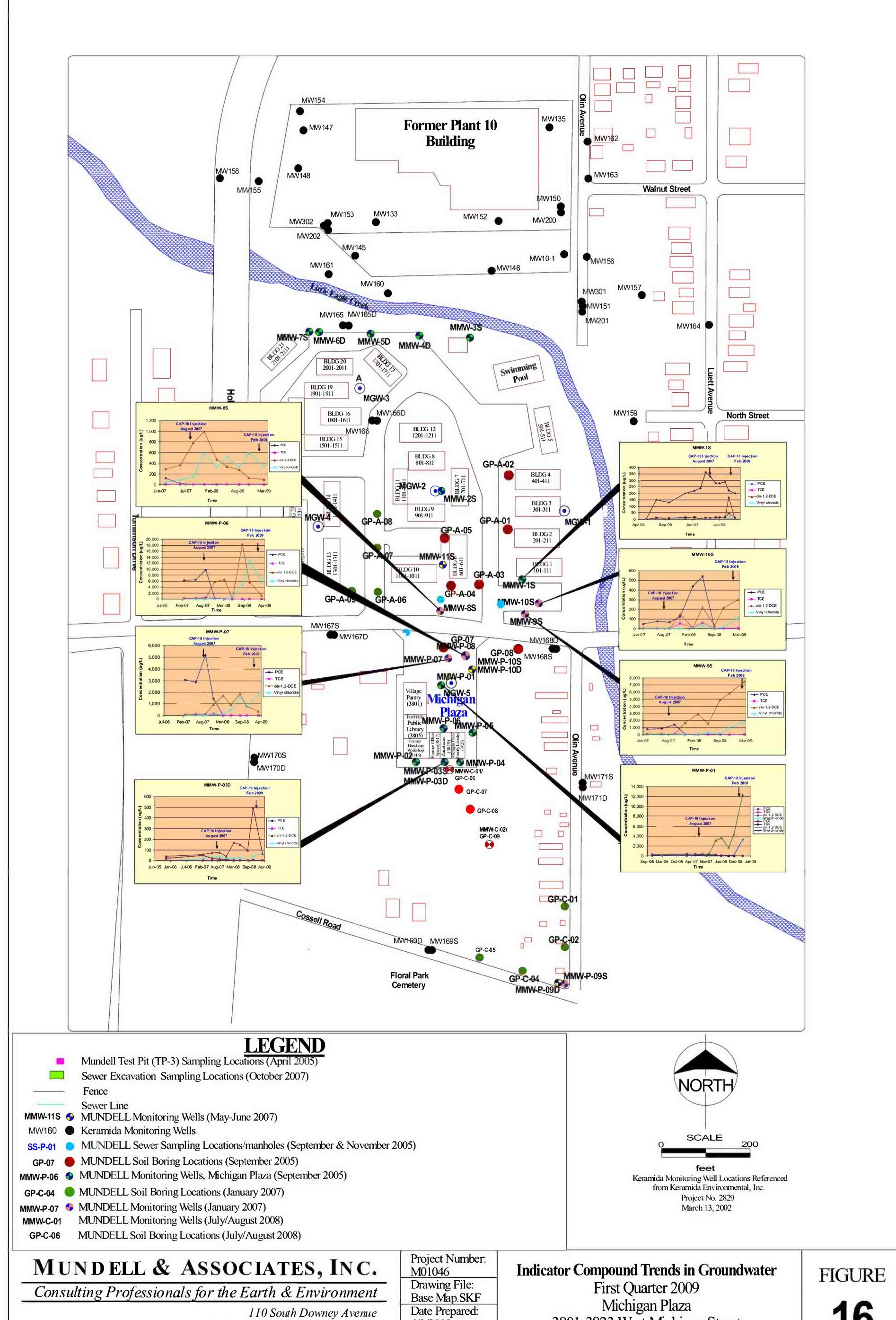




Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 rown Mundell Associates, con Project Number: M01046 File: M1Meadows charts Date Prepared: 1021/2009 Scale: no scale

PCE Concentration Trends and Cumulative Pounds Removed Vapor Mitgation Systems 81-84 First Quarter 2009 Mitchigan Plaza 3801-3823 West Michigan Avenue Indianspols, III

FIGURE


Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, Indiana 46219 rown, Mundell Associates, con Project Number:
M01046
File:
All Meadows charts
Date Prepared:
10/21/2009

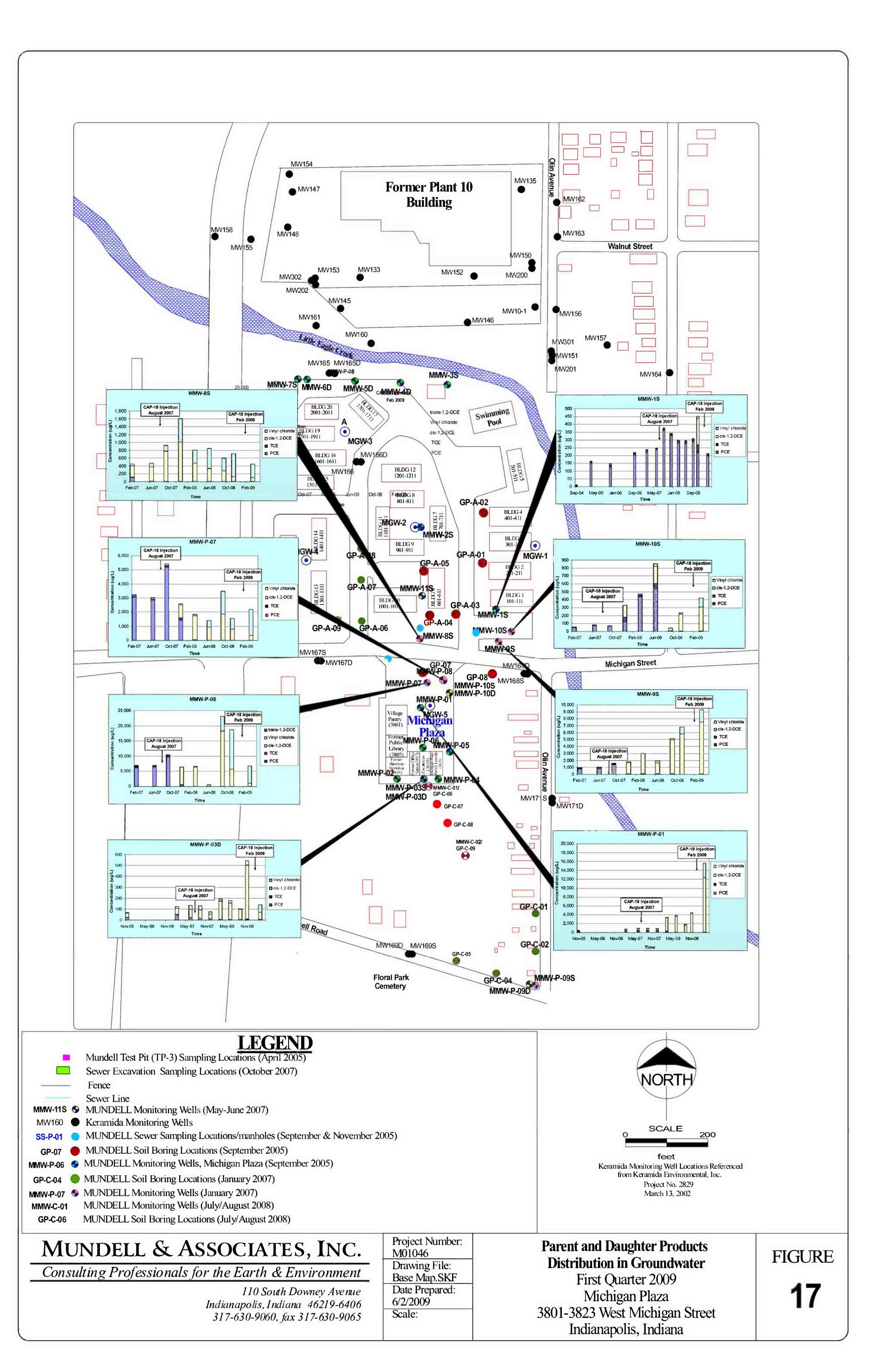
Scale:

o scale

PCE Concentration Trends and Oumulative Pounds Removed Vapor Mitigation Systems 85-87 (Apartments) First Quarter 2009 Michigan Plaza 3801-3823 West Michigan Avenue Indianapolis, IN

FIGURE

6/2/2009


Scale:

Indianapolis, Indiana 46219-6406

317-630-9060, fax 317-630-9065

3801-3823 West Michigan Street

Indianapolis, Indiana

Consulting Professionals for the Earth & Environment

429 East Vermont Street, Suite 200 Indianapolis, Indiana 46202-3688 317-630-9060, fax 317-630-9065

Project Number: M01046 Drawing File: Base Map.SKF Date Prepared: 9/30/09 Scale:

 $1''=200' \pm$

SEWER ANALYTICAL RESULTS **Further Site Characterization** Michigan Plaza

3801-3823 West Michigan Avenue Indianapolis, Indiana

FIGURE

APPENDIX A

LAB ANALYTICAL RESULTS

Air Results – March 2009

Soil and Groundwater Results – February 2009

Groundwater Results – March 2009

	Client Name: Mundell & Associates Contact: Leena Lothe Address: 110 South Downey Avenue Indianapolis, IN 46219	Page: Page 1 of 7 Lab Proj #: P0903374 Report Date: 04/01/09 Client Proj Name: Michigan Plaza Client Proj #: M01046	
		Laboratory Results Total pages in data package:	
Lab Sample #	Client Samole ID	Fotal pages III data package.	
P0903374-01	B-1		
P0903374-02	B-3		
P0903374-03	B-4		
P0903374-04	B-5		
P0903374-05	B-6		
P0903374-06	B-7		
	Microseeps test results meet all the requireme	ints of the NELAC standards or provide reasons and/or justification if they do not.	
Approved By:		Date:	_
Proiect Manage	Debbie Hallo		
	•	e to the precision expressed in this report. As required by some regulating authorities, a full obtained at our web site or through oustomer service. Unless otherwise specified, all results	

are reported on a wet weight basis. As a valued client we would appreciate your comments on our service. Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

Client Name: Mundell & Associates

Contact: Leena Lothe

Address: 110 South Downey Avenue

Indianapolis, IN 46219

Page: Page 2 of 7 Lab Proj #: P0903374 Report Date: 04/01/09 Client Proj Name: Michigan Plaza

Sample Description	<u>Matrix</u>	Lab Sample:	_	Sampled Date/Time	Received	
B-1	Vapor	P0903374-0	1	24 Mar. 09 15:05	30 Mar. 09 13:4	43
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis						
N 1,1,1-Trichloroethane	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethane	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Carbon Tetrachloride	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N Chloroform	0.0100	0.0050	PPMV	AM4.02	4/1/09	mm
N cis-1,2-Dichloroethene	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N Methylene Chloride	<2.0000	2.0000	PPMV	AM4.02	4/1/09	mm
N Tetrachloroethene	0.4500	0.0100	PPMV	AM4.02	4/1/09	mm
N trans-1,2-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Trichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Vinyl Chloride	<1.0000	1.0000	PPMV	AM4.02	4/1/09	mm

Client Name: Mundell & Associates

Contact: Leena Lothe

Address: 110 South Downey Avenue

Indianapolis, IN 46219

Page: Page 3 of 7 Lab Proj #: P0903374 Report Date: 04/01/09 Client Proj Name: Michigan Plaza

Sample Description B-3	<u>Matrix</u> Vapor	<u>Lab Sample</u> P0903374-0	_	Sampled Date/Time 24 Mar. 09 14:50	Received 30 Mar. 09 13:4	13
Analyte(s)	Result	PQL	Units	Method#	Analysis Date	Ву
RiskAnalysis						,
N 1,1,1-Trichloroethane	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethane	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Carbon Tetrachloride	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N Chloroform	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N cis-1,2-Dichloroethene	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N Methylene Chloride	<2.0000	2.0000	PPMV	AM4.02	4/1/09	mm
N Tetrachloroethene	0.5500	0.0100	PPMV	AM4.02	4/1/09	mm
N trans-1,2-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Trichloro ethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Vinyl Chloride	<1.0000	1.0000	PPMV	AM4.02	4/1/09	mm

Client Name: Mundell & Associates

Contact: Leena Lothe

Address: 110 South Downey Avenue

Indianapolis, IN 46219

Page: Page 4 of 7
Lab Proj #: P0903374
Report Date: 04/01/09
Client Proj Name: Michigan Plaza

Sample Description B-4	<u>Matrix</u> Vapor	<u>Lab Sample :</u> P0903374-03	_	Sampled Date/Time 24 Mar. 09 14:37	Received 30 Mar. 09 13:	43
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis N 1,1,1-Trichloroethane	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethane	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Carbon Tetrachloride	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N Chloroform	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N cis-1,2-Dichloroethene	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N Methylene Chloride	<2.0000	2.0000	PPMV	AM4.02	4/1/09	mm
N Tetrachloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N trans-1,2-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Trichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Vinyl Chloride	<1.0000	1.0000	PPMV	AM4.02	4/1/09	mm

Client Name: Mundell & Associates

Contact: Leena Lothe

Address: 110 South Downey Avenue

Indianapolis, IN 46219

Page: Page 5 of 7
Lab Proj #: P0903374
Report Date: 04/01/09
Client Proj Name: Michigan Plaza

Sample Description B-5	<u>Matrix</u> Vapor	<u>Lab Sample</u> P0903374-0	_	Sampled Date/Time 24 Mar. 09 15:41	<u>Received</u> 30 Mar. 09 13:	43
Analyte(s)	Result	PQL	Units	Method#	Analysis Date	Ву
RiskAnalysis						
N 1,1,1-Trichloroethane	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethane	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Carbon Tetrachloride	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N Chloroform	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N cis-1,2-Dichloroethene	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N Methylene Chloride	<2.0000	2.0000	PPMV	AM4.02	4/1/09	mm
N Tetrachloroethene	0.2100	0.0100	PPMV	AM4.02	4/1/09	mm
N trans-1,2-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Trichloro-ethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Vinyl Chloride	<1.0000	1.0000	PPMV	AM4.02	4/1/09	mm

Client Name: Mundell & Associates

Contact: Leena Lothe

Address: 110 South Downey Avenue

Indianapolis, IN 46219

Page: Page 6 of 7 Lab Proj #: P0903374 Report Date: 04/01/09 Client Proj Name: Michigan Plaza

Sample Description B-6	<u>Matrix</u> Vapor	<u>Lab Sample</u> P0903374-0	_	Sampled Date/Time 24 Mar. 09 15:50	Received 30 Mar. 09 13:	43
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis						
N 1,1,1-Trichloroethane	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethane	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Carbon Tetrachloride	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N Chloroform	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N cis-1,2-Dichloroethene	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N Methylene Chloride	<2.0000	2.0000	PPMV	AM4.02	4/1/09	mm
N Tetrachloroethene	0.1300	0.0100	PPMV	AM4.02	4/1/09	mm
N trans-1,2-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Trichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Vinvl Chloride	<1.0000	1.0000	PPMV	AM4.02	4/1/09	mm

Client Name: Mundell & Associates

Contact: Leena Lothe

Address: 110 South Downey Avenue

Indianapolis, IN 46219

Page: Page 7 of 7 Lab Proj #: P0903374 Report Date: 04/01/09 Client Proj Name: Michigan Plaza

Sample Description B-7	<u>Matrix</u> Vapor	<u>Lab Sample</u> P0903374-0	_	Sampled Date/Time 24 Mar. 09 15:59	Received 30 Mar. 09 13:	43
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву
RiskAnalysis N 1,1,1-Trichloroethane	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethane	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N 1,1-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Carbon Tetrachloride	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N Chloroform	<0.0050	0.0050	PPMV	AM4.02	4/1/09	mm
N cis-1,2-Dichloroethene	<0.0200	0.0200	PPMV	AM4.02	4/1/09	mm
N Methylene Chloride	<2.0000	2.0000	PPMV	AM4.02	4/1/09	mm
N Tetrachloroethene	0.0590	0.0100	PPMV	AM4.02	4/1/09	mm
N trans-1,2-Dichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Trichloroethene	<0.0100	0.0100	PPMV	AM4.02	4/1/09	mm
N Vinyl Chloride	<1.0000	1.0000	PPMV	AM4.02	4/1/09	mm

Collected: February 26-27, 2009

Sample #1 Canister # 108980	Start: 09:32 - 2/26/09 Stop: 10:25 - 2/27/09				
Sample Type: BREATHIN	IG ZONE - AMBIE	NT Sample I	Location: East	Fence Line by Bldg. 1	
		Indoor	Air Action Level	s - µg/m³ (ppbv)	
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic	Chronic		
		2:3041	5-Year	25-Year	
Vinyl Chloride	<0.13 (<0.050)	220 (86)	45 (18)	8.9 (3.5)	
cis-1, 2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)	
Trichloroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)	
Tetrachloroethene (PCE)	<0.34 (<0.050)	170 (25)	34 (5)	6.8(1)	

Environmentai Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (*F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 09:32	3.4	416	46.5	82.5
Stop Date/Time	2-27-09 / 10:25	0.0	391	37.8	72.6

Collected: February 26-27, 2009

Sample # 2 Canister # 107009	Start: 09:36 - 2/26/09 Stop: 10:43 - 2/27/09					
Sample Type: BREATHING ZONE Sample Location: Bidg. 1, Apt. 108, Daughter's Room						
	20.15	Indoor	Air Action Leve	ls - µg/m³ (ppbv)		
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic	Chronic			
		1-Year	5-Year	25-Year		
Vinyl Chloride	<0.13 (<0.050)	220 (86)	45 (18)	8.9 (3.5)		
cis-1,2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)		
Trichioroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)		
Tetrachloroethene (PCE)	27 (3.9)	170 (25)	34 (5)	6.8(1)		

	onmental ameters	Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 09:36	6.9	1860	68.0	56.6
Stop Date/Time	2-27-09 / 10:43	4.6	530	64.0	44.0

Collected: February 26-27, 2009

Sample #3 Canister # 108692	Start: 09:50 - 2/26/09 Stop: 10:51 - 2/27/09						
Sample Type: BREATHING ZONE Sample Location: Village Pantry							
	20.15	Indoor	Air Action Leve	ls - μg/m³ (ppbv)			
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic	Chronic				
		1-Year	5-Year	25-Year			
Vinyl Chloride	1.2 (0.46)	220 (86)	45 (18)	8.9 (3.5)			
cis-1,2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)			
Trichloroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)			
Tetrachioroethene (PCE)	5.7 (0.84)	170 (25)	34 (5)	6.8(1)			

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09/09:50	5.8	1350	65.0	39.8
Stop Date/Time	2-27-09/10:51	5.5	1176	68.1	46.0

Collected: February 26-27, 2009

Sample #4 Canister # 107056	Start: 10:00 - 2/26/09		Stop:	11:15 - 2/27/09	
Sample Type: BREATHIN	IG ZONE - AMBI	ENT Sample L	ocation: W. Fe	ence by Village Pantry	
	20.145	Indoor Air Action Levels - µg/m³ (ppbv)			
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic	Chronic		
	pg/m (ppov)	1-Year	5-Year	25-Year	
Vinyl Chioride	<0.13 (<0.050)	220 (86)	45 (18)	8.9 (3.5)	
cis-1,2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)	
Trichioroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)	
Tetrachioroethene (PCE)	<0.34 (<0.050)	170 (25)	34 (5)	6.8(1)	

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 10:00	3.4	402	47.0	82.5
Stop Date/Time	2-27-09 / 11:15	0.0	374	36.6	69.0

Collected: February 26-27, 2009

Sample #5 Canister # 108016	Start: 10:13 - 2/26/09 Stop: 10:58 - 2/27/09			10:58 - 2/27/09
Sample Type: BREATHIN	G ZONE Samp	le Location: 38	15 W. Michiga	in Suite
	20.15	Indoor Air Action Levels - µg/m³ (ppbv)		
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic	Chronic	
		1-Year	5-Year	25-Year
Vinyl Chioride	0.13 (0.051)	220 (86)	45 (18)	8.9 (3.5)
cis-1, 2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)
Trichioroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)
Tetrachioroethene (PCE)	12 (1.8)	170 (25)	34 (5)	6.8(1)

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (*F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 10:13	3.2	436	48.3	72.5
Stop Date/Time	2-27-09 / 10:58	2.1	402	48.2	78.2

TO-15 Air Sampling Results Michigan Apartments/Plaza Indianapolis, IN Collected: February 26-27, 2009

Sample #6 Start: 10:24 - 2/26/09 Stop: 11:07 - 2/27/09 Canister # 108812 Sample Type: BREATHING ZONE Sample Location: 3819 W. Mich. Zacateca's Grocery Indoor Air Action Levels - µg/m³ (ppbv) Results -Analyte Chronic Sub-Chronic µg/m³ (ppbv) 5-Year 25-Year < 0.13 (< 0.050) 220 (86) Vinyl Chloride 45 (18) 8.9 (3.5) cis-1, 2-Dichloroethene <0.20 (<0.050) NE 51 (13) 51 (13) Trichloroethene (TCE) <0.27 (<0.050) 200 (37) 40 (7.4) 7.9 (1.5) Tetrachloroethene (PCE) 2.8 (0.41) 170 (25) 34 (5) 6.8(1)

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 10:24	5.4	714	66.7	45.2
Stop Date/Time	2-27-09 / 11:07	9.4	671	64.4	36.0

6.8(1)

TO-15 Air Sampling Results Michigan Apartments/Plaza Indianapolis, IN Collected: February 26-27, 2009

Sample #7 Start: 10:45 - 2/26/09 Stop: 10:21 - 2/27/09 Canister # 108885 Sample Type: BREATHING ZONE Sample Location: Basement Bldg. 1, Apt. 101 Indoor Air Action Levels - µg/m³ (ppbv) Results -Analyte Chronic Sub-Chronic µg/m³ (ppbv) 5-Year 25-Year < 0.13 (< 0.050) 220 (86) Vinyl Chloride 45 (18) 8.9 (3.5) cis-1, 2-Dichloroethene <0.20 (<0.050) NE 51 (13) 51 (13) Trichloroethene (TCE) <0.27 (<0.050) 40 (7.4) 200 (37) 7.9 (1.5)

NOTES: µg/m³ = micrograms per cubic meter; ppbv = parts per billion by volume; NE = None Established Reference: IDEM Draft Vapor Intrusion Pilot Program Guidance; APPENDIX VIII, Table 3: "Indoor Action Levels – Commercial"

170 (25)

34 (5)

1.6 (0.23)

Tetrachloroethene (PCE)

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 10:45	4.4	760	59.5	54.0
Stop Date/Time	2-27-09 / 10:21	4.6	572	65.5	38.6

Collected: February 26-27, 2009

Sample #8 Canister # 108678	Start: 10:54 - 2/26/09 Stop: 10:28 - 2/27/09			
Sample Type: BREATHIN	G ZONE Samp	le Location: Ba	sement Bldg.	6, Apt. 602
	20.15	Indoor	Air Action Leve	is - µg/m³ (ppbv)
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic	Chronic	
		1-year	5-Year	25-Year
Vinyl Chloride	<0.13 (<0.050)	220 (86)	45 (18)	8.9 (3.5)
cis-1, 2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)
Trichioroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)
Tetrachioroethene (PCE)	3.1 (0.45)	170 (25)	34 (5)	6.8(1)

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 10:54	5.0	491	67.5	42.2
Stop Date/Time	2-27-09 / 10:28	13.5	929	66,5	49.6

6.8(1)

TO-15 Air Sampling Results Michigan Apartments/Plaza Indianapolis, IN Collected: February 26-27, 2009

Sample #9 Start: 11:00 - 2/26/09 Stop: 10:47 - 2/27/09 Canister # 107105 Sample Type: BREATHING ZONE Sample Location: Basement Bldg. 10, Apt. 1001 Indoor Air Action Levels - µg/m³ (ppbv) Results -Analyte Chronic Sub-Chronic µg/m³ (ppbv) 5-Year 25-Year < 0.13 (< 0.050) 220 (86) Vinyl Chloride 45 (18) 8.9 (3.5) cis-1, 2-Dichloroethene <0.20 (<0.050) ΝĒ 51 (13) 51 (13) Trichloroethene (TCE) <0.27 (<0.050) 40 (7.4) 200 (37) 7.9 (1.5)

NOTES: µg/m³ = micrograms per cubic meter; ppbv = parts per billion by volume; NE = None Established Reference: IDEM Draft Vapor Intrusion Pilot Program Guidance; APPENDIX VIII, Table 3: "Indoor Action Levels – Commercial"

170 (25)

34 (5)

6.7 (0.99)

Tetrachloroethene (PCE)

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 11:00	2.7	538	62.2	62.5
Stop Date/Time	2-27-09 / 10:47	3.6	740	67.4	52.0

Collected: February 26-27, 2009

Sample # 10 Canister # 107110	Start: 11:08 - 2/26/09 Stop: 11:10 - 2/27/09			
Sample Type: BREATHIN	G ZONE Samp	le Location: Fa	mily Laundry	
	20.15	Indoor	Air Action Leve	ls - µg/m³ (ppbv)
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic	Chronic	
		1-Year	S-Year	25-Year
Vinyl Chloride	<0.13 (<0.050)	220 (86)	45 (18)	8.9 (3.5)
cis-1, 2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)
Trichioroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)
Tetrachloroethene (PCE)	0.90 (0.13)	170 (25)	34 (5)	6.8(1)

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)
Start Date/Time	2-26-09 / 11:08	5.2	652	63.6	48.4
Stop Date/Time	2-27-09 / 11:10	4.2	875	66.4	33.1

Collected: February 26-27, 2009

Sample # 11 Canister # 108816	Start: 11:26 - 2/26/09 Stop: 11:30 - 2/26/09				
Sample Type: GAS WELL	Sample Location: Village Pantry Parking Lot; MGW-5				
Analyte	Results - µg/m³ (ppbv)	Prompt Action Levels - μg/m³ (ppbv)			
		Sub-Chronic	Chronic		
		1-Year	S-Year	25-Year	
Vinyl Chioride	2000 (790)	2200 (860)	450 (180)	89 (35)	
cis-1,2-Dichloroethene	1300 (330)	NE	510 (130)	510 (130)	
Trichioroethene (TCE)	5800 (1100)	2000 (370)	400 (74)	79 (15)	
Tetrachioroethene (PCE)	14000 (2100)	1700 (250)	340 (50)	68 (10)	

NOTES: $\mu g/m^3$ = micrograms per cubic meter; ppbv = parts per billion by volume; NE = None Established

Reference: IDEM Draft Vapor Intrusion Pilot Program Guidance; APPENDIX VIII, Table 3; According to IDEM guidance (page 20 of Guidance Document), sub-slab screening levels for these contaminants should be determined by multiplying their associated indoor air action levels by a factor of 10.

Environmental		Carbon Monoxide	Carbon Dioxide	Temperature	Relative Humidity
Parameters		(ppm)	(ppm)	(°F)	(%)
Start Date/Time	2-26-09 / 11:26	2.4	362	49.5	77.3

Collected: February 26-27, 2009

Sample # 12 Canister # 108738	Start: 11:40 - 2/26/09 Stop: 11:44 - 2/26/09			11:44 - 2/26/09
Sample Type: GAS WELL	Sample Location: Michigan Apartments; MGW-3			
Analyte	Results - µg/m³ (ppbv)	Prompt Action Levels - μg/m³ (ppbv)		
		Sub-Chronic	Chronic	
		1-Year	S-Year	25-Year
Vinyl Chioride	0.73 (0.29)	2200 (860)	450 (180)	89 (35)
cis-1,2-Dichloroethene	4.4 (1.1)	NE	510 (130)	510 (130)
Trichioroethene (TCE)	40 (7.4)	2000 (370)	400 (74)	79 (15)
Tetrachloroethene (PCE)	270 (40)	1700 (250)	340 (50)	68 (10)

NOTES: µg/m³ = micrograms per cubic meter; ppbv = parts per billion by volume; NE = None

Reference: IDEM Draft Vapor Intrusion Pilot Program Guidance; APPENDIX VIII, Table 3; According to IDEM guidance (page 20 of Guidance Document), sub-slab screening levels for these contaminants should be determined by multiplying their associated indoor air action levels by a factor of 10.

Environmental		Carbon Monoxide (ppm) Carbon Dioxide (ppm)		Temperature	Relative Humidity
Parameters				(°F)	(%)
Start Date/Time	2-26-09 / 11:40	2.3	402	49.4	80.9

Collected: February 26-27, 2009

Sample # 13 Canister # 107109	Start: 11:52 - 2/26/09 Stop: 11:56 - 2/26/09				
Sample Type: GAS WELL	Sample Location: Michigan Apartments; MGW-1			NGW-1	
	Results - µg/m³ (ppbv)	Prompt Action Levels - μg/m³ (ppbv)			
Analyte		Sub-Chronic	Chronic		
		1-Year	S-Year	25-Year	
Vinyl Chioride	<0.24 (<0.093)	2200 (860)	450 (180)	89 (35)	
cis-1,2-Dichloroethene	0.80 (0.2)	NE	510 (130)	510 (130)	
Trichioroethene (TCE)	6.8 (1.3)	2000 (370)	400 (74)	79 (15)	
Tetrachioroethene (PCE)	32 (4.8)	1700 (250)	340 (50)	68 (10)	

NOTES: µg/m³ = micrograms per cubic meter; ppbv = parts per billion by volume; NE = None Established

Reference: IDEM Draft Vapor Intrusion Pilot Program Guidance; APPENDIX VIII, Table 3; According to IDEM guidance (page 20 of Guidance Document), sub-slab screening levels for these contaminants should be determined by multiplying their associated indoor air action levels by a factor of 10.

Environmental		Carbon Monoxide	Carbon Dioxide	Temperature	Relative Humidity
Parameters		(ppm)	(ppm)	(°F)	(%)
Start Date/Time	2-26-09 / 11:52	3.3	436	49.8	79.2

ANALYTICAL REPORT

Report Date: March 10, 2009

Phone: (317) 281-3917 Fax: (317) 253-9754

E-mail: rgriffith@workplace-safety.net

Dick Griffith Workplace Safety & Health Co. 6314 Rucker Rd., Suite F Indianapolis, IN 46220

Workorder: 9065023

Project ID: Workpalce Safety & Healt030609

Purchase Order: K09036

	V 47.25		US INTEREST	20 20
Client Sample ID	Lab ID	Collect Date	Receive Date	Sampling Site
1	9065023001	02/27/09	03/03/09	Michigan Apts/Plaza
	9065023002	02/27/09	03/03/09	Michigan Apts/Plaza
}	9065023003	02/27/09	03/03/09	Michigan Apts/Plaza
}	9065023004	02/27/09	03/03/09	Michigan Apts/Plaza
	9065023005	02/27/09	03/03/09	Michigan Apts/Plaza
	9065023006	02/27/09	03/03/09	Michigan Apts/Plaza
	9065023007	02/27/09	03/03/09	Michigan Apts/Plaza
720	9065023008	02/27/09	03/03/09	Michigan Apts/Plaza
)	9065023009	02/27/09	03/03/09	Michigan Apts/Plaza
0	9065023010	02/27/09	03/03/09	Michigan Apts/Plaza

Client: Workplace Safety & Health Co. Project Manager: Rand Potter

Analysis Method - EPA TO-15

Analytical Results Workorder: 9065023

Sample ID: 1 Matrix: Air Collected: 2/27/2009

Lab ID: 9065023001 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Preparation: Not Applicable		Batch: IV	EPA TO-15 SIM, A OA/1016 (HBN: 25 3/3/2009 2:36:00 F	506)	instr ID: 5972-O Percent Solids: NA
Analyte	ppb	ug/m³	RL	Dilution	Qual.

Analyte	ppu	ug/m	KL	Dilution	Qual.
Vinyl chloride	<0.050	<0.13	0.050	1	
cis-1,2-Dichloroethene	<0.050	<0.20	0.050	1	
Trichtoroethene	<0.050	<0.27	0.050	1	
Tetrachloroethene	<0.050	<0.34	0.050	1	

 Sample ID: 2
 Matrix: Air
 Collected: 2/27/2009

 Lab ID: 9065023002
 Media: Summa 6 Liter Canister
 Received: 3/3/2009

Lab ID: 9065023002 Media: Summa 6 Liter Canister Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Analysis Method - EPA TO-15						
Preparation: Not Applicable		Batch: IV	EPA TO-15 SIM, A /OA/1016 (HBN: 25 : 3/3/2009 3:15:00	506)	Instr ID: 5972-O Percent Solids: NA	
A na lyte	ppb	ug/m³	RL	Dilution	Qual.	
Vinyl chloride	<0.050	<0.13	0.050	1		
cis-1,2-Dichloroethene	<0.050	<0.20	0.050	1		
Trichloroethene	<0.050	<0.27	0.050	1		
Tetrachloroethene	3.0	27	0.050	1	E	

 Sample ID: 3
 Matrix: Air
 Collected:
 2/27/2009

 Lab ID: 9065023003
 Media: Summa 6 Liter Canister
 Received:
 3/3/2009

Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Analysis Method - EPA TO-15					
Preparation: Not Applicable	Analysis: EPA TO-15 SIM, Air Batch: IVOA/1016 (HBN: 25506) Analyzed: 3/3/2009 3:53:00 PM			Instr ID: 5972-O Percent Solids: NA	
Analyte	ppb	ug/m³	RL	Dilution	Qual.
Vinyl chloride	0.46	1.2	0.050	1	
cis-1,2-Dichloroethene	<0.050	<0.20	0.050	1	

Results Continued on Next Page

Trichloroethene

960 West LeVoy Drive / Salt Lake City, UT 84123-2547

< 0.27

Phone: (801) 266-7700 Fax: (801) 268-9992

< 0.050

Web: www.datachem.com Email: lab@datachem.com

0.050

1

ENVREP-V1.0

Page 2 of 6 Fax: (801) 268-9992 Email: lab@datachem.com Tue, 03/10/09 1:26 PM

2/27/2009

Collected:

Client: Workplace Safety & Health Co. Project Manager: Rand Potter

Workorder: 9065023 **Analytical Results**

Matrix: Air Sample ID: 3

Lab ID: 9065023003 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Parameter: NA Sampling Site: Michigan Apts/Plaza

Analysis Method - EPA TO-15

Preparation: Not Applicable Analysis: EPA TO-15 SIM, Air Instr ID: 5972-0

Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA Analyzed: 3/3/2009 3:53:00 PM

RL Dilution Qual. **Anaiyte** ug/m³ ppb Tetrachloroethene 0.84 5.7 0.050

Sample ID: 4 Matrix: Air Collected: 2/27/2009 Media: Summa 6 Liter Canister, 3/3/2009 Received:

Lab ID: 9065023004 Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Analysis Method - EPA TO-15

Preparation: Not Applicable Analysis: EPA TO-15 SIM. Air Instr ID: 5972-O Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA

Analyzed: 3/3/2009 4:31:00 PM A a a bala Pitterstine.

Analyte	ppo	ug/mi-	RL	Dilution	Qual.
Vinyl chloride	<0.050	<0.13	0.050	1	
cis-1.2-Dichloroethene	<0.050	<0.20	0.050	1	
Trichloroethene	<0.050	<0.27	0.050	.1	
Tetrachloroethene	<0.050	<0.34	0.050	1	-

Sample ID: 5 2/27/2009 Matrix: Air Collected:

Lab ID: 9065023005 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Parameter: NA Sampling Site: Michigan Apts/Plaza

Analysis Method - EPA TO-15

Preparation: Not Applicable Analysis: EPA TO-15 SIM. Air Instr ID: 5972-0 Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA

Analyzed: 3/3/2009 5:09:00 PM

Analyte ug/m³ RL Dilution Qual. ppb 0.050 Vinyl chloride 0.051 0.13 < 0.050 < 0.20 0.050 1 cis-1.2-Dichloroethene Trichloroethene < 0.050 < 0.27 0.050 1 Tetrachloroethene 1.8 12 0.050

960 West LeVoy Drive / Salt Lake City, UT 84123-2547

Phone: (801) 266-7700 (801) 268-9992 Fax:

Web: www.datachem.com Email: lab@datachem.com

ENVREP-V1.0 Tue. 03/10/09 1:26 PM

2/27/2009

3/3/2009

Collected:

Received:

1

Client: Workplace Safety & Health Co. Project Manager: Rand Potter

Analytical Results Workorder: 9065023

Sample ID: 6 Matrix: Air

Lab ID: 9065023006 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Analysis Method - EPA TO-15

Preparation: Not Applicable Analysis: EPA TO-15 SIM, Air Instr ID: 5972-O

Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA

Analyzed: 3/3/2009 5:48:00 PM

0.050

RL Dilution Qual. ppb ug/m³ Analyte Vinyl chloride < 0.050 < 0.13 0.050 cis-1,2-Dichloroethene < 0.050 < 0.20 0.050 1 < 0.27 Trichloroethene < 0.050 0.050 1

Sample ID: 7 Matrix: Air Collected: 2/27/2009

2.8

Lab ID: 9065023007 Media: Summa 6 Liter Canister Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

0.41

Analysis Method - EPA TO-15

Tetrachloroethene

Preparation: Not Applicable

Analysis: EPA TO-15 SIM, Air Instr ID: 5972-O

Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA

Analyzed: 3/3/2009 6:25:00 PM

Analyte	ppb	ug/m³	RL	Dilution	Qual.
Vinyl chloride	<0.050	<0.13	0.050	1	
cis-1,2-Dichloroethene	<0.050	<0.20	0.050	1	
Trichloroethene	<0.050	<0.27	0.050	1	
Tetrachloroethene	0.23	1.6	0.050	1	

 Sample ID: 8
 Matrix: Air
 Collected:
 2/27/2009

 Lab ID: 9065023008
 Media: Summa 6 Liter Canister
 Received:
 3/3/2009

Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Analysis Method - EPA TO-15

Analysis: EPA TO-15 SIM, Air Preparation: Not Applicable Instr ID: 5972-0 Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA Analyzed: 3/3/2009 7:02:00 PM Dilution Analyte ppb ug/m³ RL Qual. Vinyl chloride < 0.050 < 0.13 0.050

 Analyte
 ppb
 ug/m³
 RL
 Difution
 Qual.

 Vinyl chloride
 <0.050</td>
 <0.13</td>
 0.050
 1

 cis-1,2-Dichloroethene
 <0.050</td>
 <0.20</td>
 0.050
 1

 Trichloroethene
 <0.050</td>
 <0.27</td>
 0.050
 1

Results Continued on Next Page

Page 4 of 6

Web: www.datachem.com Email: lab@datachem.com

Tue: 03/10/09 1:26 PM

ENVREP-V1.0

2/27/2009

Collected:

Received:

1

Client: Workplace Safety & Health Co. Project Manager: Rand Potter

9065023 Workorder: **Analytical Results**

Matrix: Air Sample ID: 8

Lab ID: 9065023008 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Parameter: NA Sampling Site: Michigan Apts/Plaza

Analysis Method - EPA TO-15

Preparation: Not Applicable Analysis: EPA TO-15 SIM, Air Instr ID: 5972-0

Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA Analyzed: 3/3/2009 7:02:00 PM

RL Dilution Qual. **Anaiyte** ug/m³ ppb Tetrachloroethene 0.45 3.1 0.050

Sample ID: 9 Matrix: Air Collected: 2/27/2009 3/3/2009

Lab ID: 9065023009 Media: Summa 6 Liter Canister. Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Analysis Method - EPA TO-15

0.99

Preparation: Not Applicable Analysis: EPA TO-15 SIM. Air Instr ID: 5972-O Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA

Analyzed: 3/3/2009 7:41:00 PM

0.050

ug/m³ Dilution Analyte ppb RL Qual. Vinyl chloride < 0.050 < 0.13 0.050 cis-1.2-Dichloroethene < 0.050 < 0.20 0.050 1 Trichloroethene < 0.050 < 0.27 0.050 1

6.7

2/27/2009 Sample ID: 10 Matrix: Air Collected:

Lab ID: 9065023010 Media: Summa 6 Liter Canister 3/3/2009 Received:

Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Analysis Method - EPA TO-15

Tetrachloroethene

Preparation: Not Applicable Analysis: EPA TO-15 SIM. Air Instr ID: 5972-0 Batch: IVOA/1016 (HBN: 25506) Percent Solids: NA

Analyzed: 3/3/2009 8:19:00 PM

Analyte RL Dilution Qual. ppb ug/m³ < 0.050 < 0.13 0.050 Vinyl chloride < 0.050 < 0.20 0.050 1 cis-1.2-Dichloroethene Trichloroethene < 0.050 < 0.27 0.050 1 Tetrachloroethene 0.13 0.90 0.050

960 West LeVoy Drive / Salt Lake City, UT 84123-2547

Phone: (801) 266-7700 (801) 268-9992 Fax:

Web: www.datachem.com Email: lab@datachem.com **ENVREP-V1.0**

Page 5 of 6 Tue. 03/10/09 1:26 PM

Reference 26

ANALYTICAL REPORT

Client: Workplace Safety & Health Co.

Project Manager: Rand Potter

Report Authorization

Analysis Method - EPA TO-15	
Lisa M. Reid Analyst	Christopher Q. Coleman Peer Raylew

General Lab Comments

The results provided in this report relate only to the items tested. Samples were received in acceptable condition unless otherwise noted. Samples have not been blank corrected unless otherwise noted.

This test report shall not be reproduced, except in full, without written approval of ALS DataChem.

ALS DataChem is accredited by the State of Utah, Bureau of Laboratory Improvement under NELAP for specific fields of testing as documented in its current scope of accreditation (ID# DATA1) which is available by request or on the internet at http://health.utah.gov/lab/labimp/labcert/envlabcert.html. The quality systems implemented in the laboratory apply to all methods performed by ALS DataChem regardless of this current scope of accreditation which does not include performance based methods, modified methods and methods applied to matrices not listed in the methods.

ALS DataChem provides professional analytical services for all samples submitted. ALS DataChem is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

Result Symbol Definitions

MDL = Method Detection Limit, a statistical estimate of method/media/instrument sensitivity.

RL = Reporting Limit, a verified value of method/media/instrument sensitivity.

ND = Not Detected, testing result not detected above the MDL or RL.

- < This testing result is less than the numerical value.
- ** No result could be reported, see sample comments for details.

Qualifier Symbol Definitions

- U = Qualifier indicates that the analyte was not detected above the MDL.
- J = Qualifier Indicates that the analyte value is between the MDL and the RL. It is also used to indicate an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.
- E = Qualifier indicates that the analyte result exceeeds calibration range.

960 West LeVoy Drive / Salt Lake City, UT 84123-2547

Phone: (801) 266-7700 Fax: (801) 268-9992

Web: www.datachem.com Email: lab@datachem.com ENVREP-V1.0

Report Date: March 10, 2009

Phone: (317) 281-3917 Fax: (317) 253-9754

E-mail: rgriffith@workplace-safety.net

Dick Griffith Workplace Safety & Health Co. 6314 Rucker Rd., Suite F Indianapolis, IN 46220

Workorder: 9065022

Project ID: Workplace Safety & Safet030609

Purchase Order: K09036

Client Sample ID	Lab ID	Collect Date	Receive Date	Sampling Site
11	9065022001	02/27/09	03/03/09	Michigan Apts/Plaza
12	9065022002	02/27/09	03/03/09	Michigan Apts/Plaza
13	9065022003	02/27/09	03/03/09	Michigan Apts/Plaza

Page 7

2/27/2009

Collected:

Client: Workplace Safety & Health Co. Project Manager: Rand Potter

Workorder: 9065022 **Analytical Results**

Matrix: Air Sample ID: 11

Lab ID: 9065022001 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Parameter: NA Sampling Site: Michigan Apts/Plaza

Analysis Method - EPA TO-15

Preparation: Not Applicable Analysis: EPA TO-15. Air Instr ID: 5972-W Batch: IVOA/1015 (HBN: 25494) Percent Solids: NA Analyzed: 3/4/2009 12:44:00 PM

Analyte	ppb	ug/m³	MDL	RL	Dilution	Qual.
Vinyl chloride	790	2000	1.9	10	20	E
cis-1,2-Dichloroethenë	330	1300	3.7	10	20	
Trichtoroethene	1100	5800	1.2	10	20	Е
Tetrachloroethene	2100	14000	1.8	10	20	Е

Collected: 2/27/2009 Sample ID: 12 Matrix: Air Lab ID: 9065022002 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Parameter: NA Sampling Site: Michigan Apts/Plaza

Analysis Method - EPA TO-15 Preparation: Not Applicable

Analysis: EPA TO-15, Air Instr ID: 5972-W Batch: IVOA/1015 (HBN: 25494) Percent Solids: NA Analyzed: 3/4/2009 2:06:00 PM

Analyte Dilution ppb ug/m³ MDL RL Qual. 0.29 0.73 0.093 0.50 Vinyl chloride cis-1.2-Dichloroethene 1.1 0.50 1 4.4 0.19 7.4 0.060 0.50 Trichloroethene 40 1 Tetrachloroethene 1.8 10 20 40 270

Sample ID: 13 Matrix: Air Collected: 2/27/2009 Lab ID: 9065022003 3/3/2009 Media: Summa 6 Liter Canister Received:

Sampling Parameter: NA Sampling Site: Michigan Apts/Plaza

Analysis Method - EPA TO-15

Analysis: EPA TO-15, Air Preparation: Not Applicable Instr ID: 5972-W Batch: IVOA/1015 (HBN: 25494) Percent Solids: NA Analyzed: 3/4/2009 2:46:00 PM

Analyte	ррь	ug/m³	MDL	RL	Dilution	Qual.
Vinyl chloride	<0.093	<0.24	0.093	0.50	1	U
cis-1,2-Dichloroethene	0.2	0.80	0.19	0.50	(1)	J
Trichloroethene	1.3	6.8	0.060	0.50	1	

Results Continued on Next Page

Page 2 of 3

Web: www.datachem.com Email: lab@datachem.com

Tue: 03/10/09 1:23 PM

ENVREP-V1.0

Reference 26

ANALYTICAL REPORT

1

Client: Workplace Safety & Health Co.

Project Manager: Rand Potter

Analytical Results Workorder: 9065022

Sample ID: 13 Matrix: Air Collected: 2/27/2009

Lab ID: 9065022003 Media: Summa 6 Liter Canister Received: 3/3/2009

Sampling Site: Michigan Apts/Plaza Sampling Parameter: NA

Preparation: Not Applicable		Batch: IV	EPA TO-15, Air OA/1015 (HBN: 25494) 3/4/2009 2:46:00 PM		Instr ID: 5972-W Percent Solids: N	
Apaluto	ppb	ua/m³	MDL	RL	Dilution	Qu

32

0.091

0.50

Report Authorization

Tetrachloroethene

Analysis Method - EPA TO-15	
Lisa M. Reid	Christopher Q. Coleman
Analyst	Peer Review

General Lab Comments

The results provided in this report relate only to the items tested.

Samples were received in acceptable condition unless otherwise noted.

Samples have not been blank corrected unless otherwise noted.

This test report shall not be reproduced, except in full, without written approval of ALS DataChem.

4.8

ALS DataChem is accredited by the State of Utah, Bureau of Laboratory Improvement under NELAP for specific fields of testing as documented in its current scope of accreditation (ID# DATA1) which is available by request or on the internet at http://health.utah.gov/lab/labimp/labcert/envlabcert.html. The quality systems implemented in the laboratory apply to all methods performed by ALS DataChem regardless of this current scope of accreditation which does not include performance based methods, modified methods and methods applied to matrices not listed in the methods.

ALS DataChem provides professional analytical services for all samples submitted. ALS DataChem is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

Result Symbol Definitions

MDL = Method Detection Limit, a statistical estimate of method/media/instrument sensitivity.

RL = Reporting Limit, a verified value of method/media/instrument sensitivity.

ND = Not Detected, testing result not detected above the MDL or RL.

- < This testing result is less than the numerical value.
- ** No result could be reported, see sample comments for details.

Qualifier Symbol Definitions

- U = Qualifier indicates that the analyte was not detected above the MDL.
- J = Qualifier Indicates that the analyte value is between the MDL and the RL. It is also used to indicate an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.
- E = Qualifier indicates that the analyte result exceeeds calibration range.

960 West LeVoy Drive / Salt Lake City, UT 84123-2547

Phone: (801) 266-7700 Fax: (801) 268-9992 Web: www.datachem.com Email: lab@datachem.com ENVREP-V1.0

TO-15 Air Sampling Results
Michigan Apartments/Plaza
Indianapolis, IN
Collected: March 17-18, 2009

Sample # 090317-01 Canister # 108531	Start: 16	5:18 - 3/17/09	Stop:	16:09 - 3/18/09		
Sample Type: BREATHIN	IG ZONE Samp	le Location: A	Suite			
		Indoor	Air Action Leve	ls - µg/m³ (ppbv)		
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic		Chronic		
	(voidd) m/Sti	2:3001	5-Year	25-Year		
Vinyl Chloride	0.40 (0.16)	220 (86)	45 (18)	8.9 (3.5)		
cis-1,2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)		
Trichloroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)		
Tetrachloroethene (PCE)	7.0 (1.0)	170 (25)	34 (5)	6.8(1)		

NOTES: µg/m³ = micrograms per cubic meter; ppbv = parts per billion by volume; NE = None Established Reference: IDEM Draft Vapor Intrusion Pilot Program Guidance; APPENDIX VIII, Table 3: "Indoor Action Levels – Commercial"

Environmental Parameters		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%)	
Start Date/Time	3-17-09 / 16:18	2.7	493	71.0	35.0	
Stop Date/Time	3-18-09 / 16:09	4.0	528	65,3	45.5	

TO-15 Air Sampling Results Michigan Apartments/Plaza Indianapolis, IN Collected: March 17-18, 2009

Sample # 090317-02 Canister # 107111	Start: 16:22 - 3/17/09 Stop: 15:59 - 3/18/09					
Sample Type: BREATHIN	IG ZONE Samp	le Location: Fo	rmer Library Su	uite		
	-20 12	Indoor	Air Action Levels	- μg/m³ (ppbv)		
Analyte	Results - µg/m³ (ppbv)	Sub-Chronic		Chronic		
	heym (bbos)	1-Year	S-Year	25-Year		
Vinyl Chioride	2.9 (1.1)	220 (86)	45 (18)	8.9 (3.5)		
cis-1, 2-Dichloroethene	<0.20 (<0.050)	NE	51 (13)	51 (13)		
Trichloroethene (TCE)	<0.27 (<0.050)	200 (37)	40 (7.4)	7.9 (1.5)		
Tetrachloroethene (PCE)	11 (1.7)	170 (25)	34 (5)	6.8(1)		

NOTES: µg/m³ = micrograms per cubic meter; ppbv = parts per billion by volume; NE = None Established Reference: IDEM Draft Vapor Intrusion Pilot Program Guidance; APPENDIX VIII, Table 3: "Indoor Action Levels – Commercial"

Environmental Parameters Start Date/Time 3-17-09 / 16:22		Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	Temperature (°F)	Relative Humidity (%) 47.6	
		1.7	375	63.9		
Stop Date/Time	3-18-09 / 15:59	4.0	497	63.3	48.8	

Report Date: March 27, 2009

Phone: (317) 281-3917 Fax: (317) 253-9754

E-mail: rgriffith@workplace-safety.net

Dick Griffith Workplace Safety & Health Co. 6314 Rucker Rd., Suite F Indianapolis, IN 46220

Workorder: 9082053

Project ID: Workplace Safety 032309

Purchase Order: K09036

Client Sample ID	Lab ID	Collect Date	Receive Date	Sampling Site
090317-01	9082053001	03/17/09	03/23/09	Mundell-MI Plaza
090317-02	9082053002	03/17/09	03/23/09	Mundell-MI Plaza

3/17/2009

Collected:

Client: Workplace Safety & Health Co. Project Manager: Rand Potter

Analytical Results Workorder: 9082053

Sample ID: 090317-01 Matrix: Air

Lab ID: 9082053001 Media: Sulfur Summa 6 Liter Canister Received: 3/23/2009

Sampling Site: Mundell-MI Plaza Sampling Parameter: Air Volume 6 L

Preparation: Not Applicable			s: EPA TO-15 SIM, A IVOA/1029 (HBN: 26 d: 3/25/2009 4:38:00	332)	Instr ID: 5972-O Percent Solids: NA
Analyte	ppb	ug/m³	RL.	Dilution	Qual.
Vinyl chloride	0.16	0.40	0.050	1	
cis-1,2-Dichloroethene	<0.050	<0.20	0,050	1	
Trichloroethene	<0.050	<0.27	0.050	1	
Tetrachloroethene	1,0	7.0	0.050	1	

Sample ID: <u>090317-02</u> Matrix: Air Collected: 3/17/2009

Lab ID: 9082053002 Media: Sulfur Summa 6 Liter Canister Received: 3/23/2009

Sampling Site: Mundell-Mi Plaza Sampling Parameter: Air Volume 6 L

Analysis Method - EPA TO-15

Preparation: Not Applicable	Batch: IV	Analysis: EPA TO-15 SIM, Air Batch: IVOA/1029 (HBN: 26332) Analyzed: 3/25/2009 5:56:00 PM				
Analyte	ppb	ug/m³	RL	Dilution	Qual.	
/inyl chloride	1,1	2.9	0.050	1		
cis-1,2-Dichloroethene	<0.050	<0.20	0.050	1		
Trichloroethene	<0.050	<0.27	0.050	1		
Tetrachloroethene	1.7	11	0,050	1		

Report Authorization

Analysis Method - FPA TO-15

ritarjus montos Erm to	
Lisa M. Reid	Thomas J. Masoian
Analyst	Peer Review

960 West LeVoy Drive / Salt Lake City, UT 84123-2547 Phone: (801) 266-7700 Web: www.datachem.

Phone: (801) 266-7700 Web: www.datachem.com Fax: (801) 268-9992 Emall: lab@datachem.com

Reference 26

DATA CHEM LABORATORIES, INC.

ANALYTICAL REPORT

Client: Workplace Safety & Health Co.

Project Manager: Rand Potter

General Lab Comments

The results provided in this report relate only to the items tested. Samples were received in acceptable condition unless otherwise noted.

Samples have not been blank corrected unless otherwise noted.

This test report shall not be reproduced, except in full, without written approval of ALS DataChem.

ALS DataChem is accredited by the State of Utah, Bureau of Laboratory Improvement under NELAP for specific fields of testing as documented in its current scope of accreditation (ID# DATA1) which is available by request or on the internet at http://health.utah.gov/lab/labimp/labcert/envlabcert.html. The quality systems implemented in the laboratory apply to all methods performed by ALS DataChem regardless of this current scope of accreditation which does not include performance based methods, modified methods and methods applied to matrices not listed in the methods.

ALS DataChem provides professional analytical services for all samples submitted. ALS DataChem is not in a position to interpret the data and assumes no responsibility for the quality of the samples submitted.

Result Symbol Definitions

MDL = Method Detection Limit, a statistical estimate of method/media/instrument sensitivity.

RL = Reporting Limit, a verified value of method/media/instrument sensitivity.

Reg. Limit = Regulatory Limit.

ND = Not Detected, testing result not detected above the MDL or RL.

< This testing result is less than the numerical value.

** No result could be reported, see sample comments for details.

Qualifier Symbol Definitions

Page 3 of 3

- U = Qualifier indicates that the analyte was not detected above the MDL.
- J = Qualifier Indicates that the analyte value is between the MDL and the RL. It is also used to indicate an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.

E = Qualifier indicates that the analyte result exceeeds calibration range.

960 West LeVoy Drive / Salt Lake City, UT 84123-2547

Phone: (801) 266-7700 Fax: (801) 268-9992 Web: www.datachem.com Email: lab@datachem.com ENVREP-V1.0

2794/215/1

			ANALYTI	CAL REQUES	TFORM	وسرسو ۱۸	
CHEM A			1. KEGULA	R Status	408.0	155	
ALS Laborate	oru Group			atus Requested - ADDITI S REQUIRED BY			
Environmenta			CONTAC	T ALS DATACHEM PRIO	DATE R TO SENDING SAMPLE	s	
2. Date 3:19.09	Purchase Order No. K	(89.036		4. Quote No.			
3. Company Name Luc					Rand Potter		
and the second second	RUCKER ROA			_	3-11/12		
	NAPOLIS, IN				NDELL - MICHI	GAN PU	42:
	RICHARD GR				Commercial		
Telephone (317)				Date of Collection			
Fax Telephone ()				Time Collected			
	riffith @work	dace-sa	fety net		3.19.09		
Billing Address (if differen	•		1	Chain of Custody No.			
				6. How did you first leam			
. REQUEST FOR ANALY	¢E¢						
Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED -	Use method number if known	Unils**	
1158531			GL.	eis-1,2-DCE/P	4.000	1	
102/11	090317-01	Summa	61.	7(.	CE/TCE/CHLORIDE	5+6	
10 1101	010311-02	-3 21 84 140/	IS C	Cis-1,2-DCE/P	E/ ICE/ VC	13.6	
_						 	
	_					 	
				1			
_							
		<u> </u>		<u> </u>			
	be, e.g. Charcoal; Filter typ 3. ppm 4. % 5. µg/n			s; Blood; Urine; Tissue: So dicate one or more units in		••	
Comments PLEAS	a man man	1 MANE	7		and committee company		
		1-10-10-10	6				
Possible Contamination and Chain of Custody (Opti							
	7 . 7	0.		Pata/Fina 2 = 1	9-09/200		
Retinquished by	Divo	d		200	m - WAE		
Received by	Y Keeyan			Date/Time 31.44	~[- 1000		
Retinquished by	WW Abec	يہ		Date/Time 3 201	09, 1600		
Received by	VIL		<u></u>	Date/Time 3/2.	3/04 <i>[0</i>	100	

960 West LeVoy D/ve / Salt Lake City, UT 84123 800-356-9135 or 801-266-7700 FAX: 801-268-9992 ALS DATACHEM

DataChem Laboratories, Inc. CANISTER CHAIN-OF-CUSTODY AND FIELD DATA RECORD

Client: WORKPLACE			Project/Job/Tas	k: K09036	- Mundel	1/Miliga	n P1629		
Account No: 국이어권 Please do not appl Manilla tags are pro	-				e, to apply ad	hesive label	5		DataChem Labs use only
Canister Serial No.:	Date Cleaned	Initial Vacuum (inches of Hg vacuum)	VFR flow rate (mi/min)	Initials:	Field Vacuum before sampling (inches of Hg vacuum)	Final Vacuum after sampling (Inches of Hg vacuum)	Client Sample Identification	Other Client Information	
108591	01.28.09	> a/b. O		Al	28	P	090217-01		
							Y		
VFR Serial No.:	加克特性	ACCUSED BY			The River of the State of the S				网络第一位是 对中央第二
108,293	03/109		~G.8	are					
			Original Field	Sample Chain	of Custody				Return to:
Relinquished By: (Signa	ature)	Dale/Time	Received By: (Signature)		Reason for Tra	insfer/Storage Loc	cation	DataChem Laboratories, Inc.
Matter Ate		3/20/09 1600	P. Keeya		3/20/04/025				960 W. LeVoy Drive Salt Lake City, UT 84123 800-356-9135

If canisters are kept for longer than the original project scheduled sampling, a \$40 per can - per week rental fee will be assessed. If a project is cancelled after DCL has shipped cans, in addition to the cost of the initial shipping, a \$40 weekly rental fee will be charged for each unused can until they are returned to DCL.

DataChem Laboratories, Inc. CANISTER CHAIN-OF-CUSTODY AND FIELD DATA RECORD

Client: WORKPLACE SAFETY E HEALTH Account No: 7003					Project/Job/Tas	k K090	36- MUN	DELLY MICH	IGAN PLAZA
Please do not app Manilla tags are pr	ly adhesive lab	els directly ed to Canist	on Canister ers for you	rs r convenienc	e, to apply ad	hesive label	S	k.	DataChem Labs use only
Canister Serial No.:	Date Cleaned	Initial Vacuum (inches of Hg vacuum)	VFR flow rate (ml/min)	Initials:	Field Vacuum before sampling (inches of Hg vacuum)	Final Vacuum after sampling (Inches of Hg vacuum)	Client Sample Identification	Other Client Information	
107111	03.11.09	> aks . 0		THE .	28(30	1.25	090317-02		
				31					
VFR Serial No.:									
101777	09.16.09		~ ७.४	ale					
D. C	-tow-N	Date (C)		eld Sample Chai	n-of-Custody	Peason for Tr	ansfer/Storage Lo	ration	Return to: DataChem Laboratories, Inc.
Relinquished By: (Signature) Date/Time Received By: (Signature) Partie Received By: (Signature)		25	3/20/107 1025				960 W. LeVoy Drive Salt Lake City, UT 84123 800-356-9135		

if canisters are kept for longer than the original project scheduled sampling, a \$40 per can - per week rental fee will be assessed. If a project is cancelled after DCL has shipped cans, in addition to the cost of the initial shipping, a \$40 weekly rental fee will be charged for each unused can until they are returned to DCL.

THIS IS NOT AN INVOICE

GALSON LABORATORIES INDUSTRIAL HYGIENE PREP REQUEST

PSY147892

Requested by Client : 03/20/09 Date Prep Sent :

Client Needs Prep : 03/23/09 Client Name : DataChem Laboratories

Ship Prep on : 03/20/09 Account # : 13848 PO#/Project # : Client Project / Task-Dept : Account # : 13848

Rent Alliance Member

Prep Address:

Mr. Rand Potter DataChem Laboratories 960 W. LeVoy Drive

Salt Lake City, UT 84123

* Bill Prep To :

Mr. Richard Griffith

Workplace Safety & Health Co. 11715 Fox Road, Suite 400

PMB 225

Indianapolis, IN 46236

Residential: N Leave w/out Sig: N

Ship via : UPS Next Day Air Client phone : 800-356-9135

Charge to: 8T34T0/Proj#K09036 Client Contact by: Charlene Moser

Sampling QTY: Media	Preparations Required Method, SOP #, Lot # Analyte(s)	CHARO Unit	GES Final
2 INSTRUCTIONS;	Send samples Forward samples + paperwork	0.00	0.00
	Send samples		0100
	from Workplace Safety		
. ,	Send samples		
ACCESSORY	CHAIN-OF-CUSTODY FORMS		
* **		www	

Number of Return Labels:

Shipping Charge = \$ 0.00 * Total Charges = \$ 0.00

* All orders will be billed on the day of processing. Shipping costs are an estimate and are subject to change once actual cost is verified.

Comments/Special Instructions : Forwarding samples to DataChem

Reviewed B	У	: Da	ate	:
------------	---	------	-----	---

Galson Laboratories, 6601 Kirkville Road. East Syracuse, New York 13057 315-432-5227 03/20/2009 11:41:29 Return Shipment Barcode:

Reference 26

ANALYTICAL REQUEST FORM

	65022 LABORATORIES		RESULTS	Status 2790/ CO73 TUS Requested - ADDITIONAL CHARGE REQUIRED BY DATE DATACHEM LABS PRIOR TO SENDING SAMPLE	
Person to Contact Telephone (3/7) 2 Fax Telephone (7/7) E-mail Address Billing Address (if differe	rkplyce Safeto Rucker RI, S rapolis, IN 4 Dick Griffi 81-3917 253-9754 goiffilhainnak	place -5a	Getty. net	4. Quote No. DCL Project Manager Rand Pattin 5. Sample Collection Sampling Site Michigan Apts/ Industrial Frocess Commercial Industrial Frocess Date of Collection 2-27-09 Time Collected Mipm Date of Shipment 3/2/09 Chain of Custody No. K09036	tinds.
6. REQUEST FOR ANALY	SES Client Sample Number		Sample Volume	ALICA VETE DEC. IPETER L	
Laboratory Use Only		Matrix*		ANALYSES REQUESTED - Use method number if known	
168814	12	Summa	6 1.180	cis 12 dochloro thylenes	5
11) & 73%	13	1		tetrachlorotthelens) forall	+
विराध	15	-		ITTENIONS THYINE	 "
				Vinyl chloride / Samples	
		-			\vdash
		_	_	(NOT SIM mode)	+
		<u> </u>		these are	┼─┤
		_		Well Samples	+
		1			-
		_	+		+
** 1. ug/sample 2. mg/m Comments	3. ppm 4. % 5. pp	149/m3	ease indicate one	not use STM made	
Possible Contamination an	nd/or Chemical Hazards				
Relinquished by	11.1.00	21.1		Date/Time 3/2/09 5:00 pm	
Received by	and alies	-		Date/Time 3/1407/ 93	
Relinquished by				Datertime	
Received by				Date/Time	
Relinquished by				Date/Time	
Received by				Date:Time	

DataChem Laboratories, Inc. CANISTER CHAIN-OF-CUSTODY AND FIELD DATA RECORD

Client: WORKPLACE	SAFETY	E HEAL	TH_		Project/Job/Tas	k:			
Account No: 7000									
Please do not apply									DataChem Labs
Manilla tags are pro	vided, attach	ed to Canist	ters for your o	convenience	e, to apply ad	hesive labels			use only
Canister Serial No.:	Date Cleaned	Initial Vacuum (inches of Hg vacuum)	VFR flow rate (ml/min)	Initials:	Field Vacuum before sampling (inches of Hg vacuum)	Final Vacuum after sampling (Inches of Hg vacuum)	Client Sample Identification	Other Client Information	
107105	02 26 09	٥. تله <		700	30	0	#9		
107/10				1	30	0	#/0		
108885					30	Ü	#7		
			主語學院						
VFR Serial No.:								1 28 m	
107/113 230	त्रका व्यक्ति ००		~180.0	Me					
108936 Jum						= -			
107047									
			1						
				Sample Chain-	of-Custody				Return to:
Relinquished By: (Signati	nue)	Date/Time	Received By: (S	Signature)	/	Reason for Tran	isler/Storage Lo	cation.	DataChem Laboratories, Inc.
- CORD	1	0 a/24/97	Marie Zl	cal mas	6/935				960 W. LeVoy Drive Salt Lake City, UT 84123 800-356-9135

If canisters are kept for longer than the original project scheduled sampling, a \$40 per can - per week rental fee will be assessed. If a project is cancelled after DCL has shipped cans, in addition to the cost of the initial shipping, a \$40 weekly rental fee will be charged for each unused can until they are returned to DCL.

DataChem Laboratories, Inc. CANISTER CHAIN-OF-CUSTODY AND FIELD DATA RECORD

Client: WORKPLAC	E SAFETY	E HEALT	4		Project/Job/Ta	isk: Michiga	year Apts 1	Plazer	
Account No: 7000									
Please do not app Manilla tags are p	•	-			e, to apply a	dhesive label	S		DataChein Labs use only
Canister Serial No.:	Date Cleaned	Initial Vacuum (inches of Hg vacuum)	VFR flow rate (ml/min)	Initials:	Field Vacuum before sampling (inches of Hg vacuum)	Final Vacuum after sampling (Inches of Hg vacuum)	Client Sample Identification	Other Clent Information	
108016	02,36,09	> 25.0		Mo	35	0	#5	2.5	
108692					3)	0	#3		
84) YOL					3.5	U	#8		
108708					30	0	#12		
1088121				9	30	0	#6		
VFR Serial No.:									3 at 1 2 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
107045	Oak ake . 09		√6.8	TONO					
108790			Šī.						
108919									
108949									
108987	0.00		1 1						
13.00		In-t-m-		d Sample Chair	n-of-Custody	Dennan (on Ten	uncfordClareno Le	catico	Return to: DataChem Laboratories, Inc.
Relinquished By: (Sign	ature)	Date/Time	Received By:	(Signature)		reason for Tra	insfer/Slorage Lo	CaliOII	960 W. LeVoy Drive
			Walife		n / is		20 6-		Sait Lake City, UT 84123 800-356-9135

If canisters are kept for longer than the original project scheduled sampling, a \$40 per can - per week rental fee will be assessed. If a project is cancelled after DCL has shipped cans, in addition to the cost of the initial shipping, a \$40 weekly rental fee will be charged for each unused can until they are returned to DCL.

ANALYTICAL REQUEST FORM

RUSH Status Requested - ADDITIONAL CHARGE

Ê	LABORATORIES	, INC.		REQUIRED BY DATE T DATACHEM LABS PRIOR TO SENDING SAMPLE	s
Address / 3/4 Person to Contact Telephone (3/7) Fax Telephone (3/7) E-mail Address / Glidiffen	253-9754 go:ffithaiww.k	1. Hea. 1 H. 4. H. F. 16220 H. Place - Sa	tety net	5. Sample Collection Sampling Site 11 chigan 4pts/ Industrial Process Commercial April 1 december	/ D1674
	anapolis IA			•	
Laboratory Use Only	Client Sample Number	Matrix*	Sample Volume	ANALYSES REQUESTED - Use method number if known	Units**
11/8/9/80	!	Summa	le liters	cis 12 dichlorauthylenes	5
March	2		!	tetrachloroethyline	
100012	3			trichloweth dene) torall	$\sqcup \sqcup$
11774/16	4			Vinyl chloride / Samples	
115016	5				
148812	6			1 SIM Mode for	$\sqcup \sqcup$
NEWS	7			these 10 samples	
1 DK10 TR	8			only /	
107-665	9		1		
107/10	10	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>
** 1, ug/sample 2. mg/r Comments	m ³ 3. ppm 4.77 5. <i>pp</i> S. mples 6 re 4.17 Ind/or Chemical Hazards	16_(other) PI +49//x3	ease indicate one	le: Blood; Urine; Tissue; Soil; Water: Other or more units in the column entitled Units** .v. D. SIM mode	- - -
Relinquished by	(, 10/67	201		Date/Time 3/2/09 5:00 pm	
Received by	trad citizal			Date/Time Sthite 1962	
Relinquished by				Date/Time	
Received by				Date/Time	
Relinquished by				_ Date/Time	
Received by				Date/Time	

DataChem Laboratories, Inc. CANISTER CHAIN-OF-CUSTODY AND FIELD DATA RECORD

Client: WORKPLACE	SAFETY E	HEALTH			Project/Job/Tas	k: Michi	gun Apts	1P16.26	
Account No: 국으어 Please do not appl Manilla tags are pr					e, to apply ad	hesive labels			DataChem Labs use only
Canister Serial No.:	Date Cleaned	Initial Vacuum (inches of Hg vacuum)	VFR flow rate (ml/min)	Initials.	Field Vacuum before sampling (inches of Hg vacuum)	Final Vacuum after sampling (Inches of Hg vacuum)	Client Sample Identification	Other Client Information	
108980	02 20 09	>250		-6NO	30	U	#1		
108816					30	0	# # //		
107-009				4	30	0	#2		
					30	D	#13		
107/109					30	0	#4		
10子の56 VFR Serial No.:	N. R. W. W. Control	The marking				TO SERVICE	NEW MARKET		
108606	02.26.09		36.8	-240					
107044									
108+78	-								
103984		H. S. Charles	0.43111511	d Sample Chain	of Contado				Relum to:
Relinquished By: (Signa	alure)	Date/Time	Received By:		-Or-Custouy	Reason for Tra	nsfer/Storage Loc	cation	DataChem Laboratories, Inc.
730		04/4/01	Morred	C. C. Mhi	1/434				960 W. LeVoy Drive Salt Lake City, UT 84123 800-356-9135
								te	allast offer DCL has shipped cans

If canisters are kept for longer than the original project scheduled sampling, a \$40 per can - per week rental fee will be assessed. If a project is cancelled after DCL has shipped cans, in addition to the cost of the initial shipping, a \$40 weekly rental fee will be charged for each unused can until they are returned to DCL.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

February 17, 2009

Ms. Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

Re: Lab Project Number: SML09-003

Client Project ID: MO 1046 / Michigan Plaza

Dear Ms. Lothe.

Enclosed are the analytical results for samples received by the laboratory on February 4, 2009 through February 6, 2009. The reports herein were obtained following the USEPA SW-846 Methods unless otherwise specified in the report.

If you have any questions, please feel free to contact me.

tanty a. Hunnicute

Sincerely.

Stanley A. Hunnicutt

President

Sierra Mobile Labs, Inc.

stanhunnicutt@sicrramobilelabs.com

Enclosures

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

SAMPLE SUMMARY

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Number	Client Sample ID	Matrix	Date Collected	Date Received
9-0090	SB-1 11-12	soil	2/3/09 0:00	2/4/09 8:55
9-0091	SB-1 14-15	soil	2/3/09 0:00	2/4/09 8:55
9-0092	SB-3 11-12	soil	2/3/09 0:00	2/4/09 8:55
9-0093	SB-3 15-16	soil	2/3/09 0:00	2/4/09 8:55
9-0094	SB-4 10-11	soil	2/3/09 0:00	2/4/09 8:55
9-0095	SB-4 16-17	soil	2/3/09 0:00	2/4/09 8:55
9-0096	SB-I	water	2/3/09 0:00	2/4/09 8:55
9-0097	SB-3 (23)	water	2/3/09 0:00	2/4/09 8:55
9-0098	SB-4 (23°)	water	2/3/09 0:00	2/4/09 8:55
9-0099	SB-2 (33-34')	water	2/4/09 0:00	2/4/09 13:00
9-0100	SB-2 (24)	water	2/4/09 0:00	2/4/09 13:00
9-0101	SB-1 6-7	soil	2/4/09 0:00	2/4/09 13:00
9-0102	SB-2 7-8	soil	2/4/09 0:00	2/4/09 13:00
9-0103	SB-2 11-12	soil	2/4/09 0:00	2/4/09 13:00
9-0104	SB-2 15-16	soil	2/4/09 0:00	2/4/09 13:00
9-0105	SB-3 2-3	soil	2/4/09 0:00	2/4/09 13:00
9-0106	SB-4 6-7	soil	2/4/09 0:00	2/4/09 13:00
9-0107	SB-7 (23)	water	2/4/09 0:00	2/4/09 17:00
9-0108	SB-7 3-4	soil	2/4/09 0:00	2/4/09 17:00
9-0109	SB-7 10-11	soil	2/4/09 0:00	2/4/09 17:00
9-0110	SB-7 15-16	soil	2/4/09 0:00	2/4/09 17:00
9-0132	SB-6 (23°)	water	2/5/09 14:00	2/5/09 15:00
9-0140	SB-5 (23)	water	2/5/09 15:00	2/6/09 10:50

611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Sierra Mobile Labs, Inc.

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0090 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-1 11-12 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	I.	2/4/09 16:43	SAH	
Acrylonitrile	ND	mg/kg	0.005	Ī	2/4/09 16:43	SAH	
Benzene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Bromobenzene	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
Bromoehloromethane	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Bromodichloromethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Втотоботи	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
n-Butylbenzene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Chlorobenzene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
Chloroethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Chloroform	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
I.4-Dichlorobenzene	ND	mg/kg	0.005	I.	2/4/09 16:43	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
I 2-Dichloropropane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
I ,3-Dichloropropane	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Ethylbenzene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229

Phone: 31 7-509-81 40 Fax: 31 7-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0090 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-1 11-12 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quak
2CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	I	2/4/09 16:43	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/4/09 16:43	SAH	
Iodomethane	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Isopropylbenzene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
p-Isopropyltoluene	ND	mg/kg	0.005	1	2/4/09 16:43	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	l	2/4/09 16:43	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 16:43	SAH	
Naphthalene	ND	mg/kg	0.005	- 1	2/4/09 16:43	SAH	
n-Propy Ibenzene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Styrene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
1,122-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
Tetrachloroethene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Toluene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	I	2/4/09 16:43	SAH	
1.2,4-Trichlorobenzene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
1,12-Trichloroethane	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Trichloroethene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
1,2,3-Trichloropropane	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
1.2,4-Trimethylbenzene	ND	mg/kg	0.005	l	2/4/09 16:43	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 16:43	SAH	
Vinyl acetate	ND	mg/kg	0.005	1	2/4/09 16:43	SAH	
Vinyl ehloride	ND	mg/kg	0.002	- 1	2/4/09 16:43	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/4/09 16:43	SAH	
4-Bromofluorobenzene (surr)	93.6	%	70-130	ı	2/4/09 16:43	SAH	
Dibromofluoromethane (surr)	132	%	70-130	l	2/4/09 16:43	SAH	l
Toluene-d8 (surr)	101.7	%	70-130	I	2/4/09 16:43	SAH	
Fotal Solids by EPA 1684							
Total Solids	95.4	%	0.1	ı	2/5/09 7:35	SAH	

Soil results are reported on a dry weight basis.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0091 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-1 14-15 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
CMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/4/09 17:14	SAH	
Acrylonitrile	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Benzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Bromobenzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Bromoehloromethane	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Bromodichloromethane	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Bromoform	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
n-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Carbon disulfide	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Chloroethane	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
C'hloroform	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	1	2/4/09 17:14	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	1	2/4/09 17:14	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	1	2/4/09 17:14	SAH	
I ,3-Dichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
I A-Dichlorobenzene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
eis-1,2-Dichlomethene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
2-Dichloropropane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
eis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
Ethy lbenzene	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Ethyl methacrylate	DN	mg/kg	0.005	ı	2/4/09 17:14	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0091 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-1 14-15 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	l	2/4/09 17:14	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/4/09 17:14	SAH	
Iodomethane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
Isopropylbenzene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	1	2/4/09 17:14	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	I	2/4/09 17:14	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 17:14	SAH	
Naphthalene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
n-Propy lbenzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
Styrene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
1,122-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
Tetrachloroethene	0.012	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Toluene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
1,2,3-Trichlorobenzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
1,12-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
Trichloroethene	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/4/09 17:14	SAH	
1,2,3-Trichloropropane	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
1,2,4-Trimethylbenzene	ND	mg/kg	0.005	l	2/4/09 17:14	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Vinylacetate	ND	mg/kg	0.005	ı	2/4/09 17:14	SAH	
Vinyl ehloride	ND	mg/kg	0.002	I	2/4/09 17:14	SAH	
Xylenes, Total	ND	mg/kg	0.015	I	2/4/09 17:14	SAH	
4-Bromofluorobenzene (surr)	80.0	%	70-130	I	2/4/09 17:14	SAH	
Dibromofluoromethane (surr)	137	%	70-130	l	2/4/09 17:14	SAH	l
Toluene-d8 (surr)	93.4	%	70-130	I	2/4/09 17:14	SAH	
Fotal Solids by EPA 1684							
Total Solids	95.7	%	0.1	I	2/5/09 7:35	SAH	

Soil results are reported on a dry weight basis.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0092 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-3 11-12 Date Received: 2/4/09

			Reporting	_	Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
CMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/4/09 8:45	SAH	
Acrylonitrile	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
Benzene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Bromobenzene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
3 romoehloromethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
3 romodichloromethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Bromoform	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
-Butylbenzene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
ec-Butylbenzene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
ert-Butylbenzene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Carbon disulfide	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
hloroethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Chloroform	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
2-Dibromo-3-chloropropane	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
2-Dibromoethane	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	i	2/4/09 8:45	SAH	
,2-Dichlorobenzene	ND	mg/kg	0.005	ĺ	2/4/09 18:45	SAH	
3-Dichlorobenzene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
A-Dichlorobenzene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
rans-1.4-Dichloro-2-butene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
.l-Dichloroethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
2-Dichloroethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
.l-Dichloroethene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
ris-1.2-Dichlomethene	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
rans-1,2-Dichloroethene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
,2-Dichloropropane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
3-Dichloropropane	ND	mg/kg	0.005	ĺ	2/4/09 18:45	SAH	
2.2-Dichloropropane	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
,l-Dichloropropene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
ris-1,3-Dichloropropene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
rans-1,3-Dichloropropene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
Ethy Ibenzene	ND	mg/kg	0.005	i	2/4/09 18:45	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	i	2/4/09 [8:45	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0092 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-3 11-12 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quak
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	ı	2/4/09 18:45	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/4/09 18:45	SAH	
Iodomethane	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
Isopropylbenzene	ND	mg/kg	0.005	I	2/4/09 18:45	SAH	
p-Isopropyltoluene	ND	mg/kg	0.005	1	2/4/09 18:45	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	l	2/4/09 18:45	SAH	
Methyl(tert) butyl other (MTBE)	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 18:45	SAH	
Naphthalene	ND	mg/kg	0.005	- 1	2/4/09 18:45	SAH	
n-Propy Ibenzene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Styrene	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	1	2/4/09 18:45	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
Tetrachloroethene	6.09	mg/kg	1	200	2/11/09 21:20	SAH	
Toluene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	- 1	2/4/09 18:45	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	I	2/4/09 18:45	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Trichloroethene	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/4/09 18:45	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	I	2/4/09 18:45	SAH	
1.2,4-Trimethylbenzene	ND	mg/kg	0.005	l	2/4/09 18:45	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	I	2/4/09 18:45	SAH	
Vinyl acetate	ND	mg/kg	0.005	ı	2/4/09 18:45	SAH	
Vinyl chloride	ND	mg/kg	0.002	I	2/4/09 18:45	SAH	
Xylenes, Total	ND	mg/kg	0.015	I	2/4/09 18:45	SAH	
4-Bromofluorobenzene (surr)	82.3	%	70-130	l	2/4/09 18:45	SAH	
Dibromofluoromethane (surr)	136	%	70-130	l	2/4/09 18:45	SAH	l
Toluene-d8 (surr)	83.9	%	70-130	l	2/4/09 18:45	SAH	
Fotal Solids by EPA 1684							
Total Solids	96.8	%	0.1	l	2/5/09 7:35	SAH	
_							

Soil results are reported on a dry weight basis.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0093 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-3 15-16 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
27584 1757- L., EDA 9348B/EB3E							
CMS VOCs by EPA 8260B/5035	ND	man Alan	0.076		2/4/09 19:15	SAH	
Acetone	ND ND	mg/kg	0.025	I I	2/4/09 19:15	SAH	
Acrylonitrile Benzene		mg/kg				SAH	
	ND	mg/kg	0.005	I.	2/4/09 19:15	SAH	
Bromobenzene	ND	mg/kg	0.005	I	2/4/09 19:15	***************************************	
Bromoehloromethane	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Bromodichloromethane	ND	mg/kg	0.005	I.	2/4/09 19:15	SAH	
Bromoform	ND	mg/kg	0.005	L	2/4/09 19:15	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
n-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Chlorobenzene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
Chloroethane	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Chloroform	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
1.2-Dibromoethane	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
I 2-Dichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
I 3-Dichlorobenzene	ND	mg/kg	0.005	i	2/4/09 19:15	SAH	
I A-Dichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
trans-1.4-Dichloro-2-butene	ND	mg/kg	0.005	i	2/4/09 19:15	SAH	
1.1-Dichloroethane	ND	mg/kg	0.005	i	2/4/09 19:15	SAH	
1.2-Dichloroethane	ND	mg/kg	0.005	i	2/4/09 19:15	SAH	
I.I-Dichloroethene	ND	mg/kg	0.005	i	2/4/09 19:15	SAH	
cis-1.2-Dichloroethene	ND	mg/kg	0.005	i	2/4/09 19:15	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	ŀ	2/4/09 19:15	SAH	
	ND		0.005	i	2/4/09 19:15	SAH	
I 2-Dichloropropane		mg/kg		ı I		SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	-	2/4/09 19:15		
2,2-Dichloropropane	ND	mg/kg	0.005	I .	2/4/09 19:15	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	I .	2/4/09 19:15	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	I.	2/4/09 19:15	SAH	
Ethylbenzene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
Ethyl methacrylate	ИD	mg/kg	0.005	l	2/4/09 19:15	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0093 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-3 15-16 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quak
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	l	2/4/09 19:15	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
Iodomethane	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
Isopropylbenæne	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	I	2/4/09 19:15	SAH	
Methyl(tert) butyl other (MTBE)	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 19:15	SAH	
Naphthalene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
n-Propy Ibenzene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
Styrene	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
1,1,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
1,122-Tetrachloroethane	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
Tetrachloroethene	3.60	mg/kg	1	200	2/11/09 21:49	SAH	
Toluene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
1,2,3-Trichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 19:15	SAH	
1,1.2-Trichloroethane	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
Trichloroethene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/4/09 19:15	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
Vinylacetate	ND	mg/kg	0.005	ı	2/4/09 19:15	SAH	
Vinyl chloride	ND	mg/kg	0.002	i	2/4/09 19:15	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/4/09 19:15	SAH	
4-Bromofluorobenzene (surr)	86.3	%	70-130	ı	2/4/09 19:15	SAH	
Dibromofluoromethane (surr)	144	%	70-130	ı	2/4/09 19:15	SAH	ı
Toluene-d8 (surr)	86.9	%	70-130	I	2/4/09 19:15	SAH	
Fotal Solids by EPA 1684							
Total Solids	95.6	%	0.1	I	2/5/09 7:35	SAH	

Soil results are reported on a dry weight basis.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc.
Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0094 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-4 10-11 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
CMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/4/09 19:45	SAH	
Acrylonitrile	ND	mg/kg	0.005	- 1	2/4/09 19:45	SAH	
Benzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Bromobenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Bromoehloromethane	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
B romodichlo romethane	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
Bromoform	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	- 1	2/4/09 19:45	SAH	
n-Butylbenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	- 1	2/4/09 19:45	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
Chloroethane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Chloroform	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	l.	2/4/09 19:45	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	- 1	2/4/09 19:45	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	- 1	2/4/09 19:45	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
I.4-Dichlorobenzene	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
Ethy lbenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Ethyl methacrylate	ПN	mg/kg	0.005	- 1	2/4/09 19:45	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0094 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-4-10-11 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	ı	2/4/09 19:45	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/4/09 19:45	SAH	
Iodomethane	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
Isopropylbenzene	ND	mg/kg	0.005	1	2/4/09 19:45	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	l	2/4/09 19:45	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 19:45	SAH	
Naphthalene	ND	mg/kg	0.005	- 1	2/4/09 19:45	SAH	
n-Propylbenzene	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
Styrene	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	1	2/4/09 19:45	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
Tetrachloroethene	0.118	mg/kg	0.005	ı	2/4/09 9:45	SAH	E
Toluene	ND	mg/kg	0.005	I	2/4/09 19:45	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	- 1	2/4/09 19:45	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
1.1.1-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 19:45	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Trichlorochene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
1,2,3-Trichloropropane	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
1.3.5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Vinyl acetate	ND	mg/kg	0.005	ı	2/4/09 19:45	SAH	
Vinyl chloride	ND	mg/kg	0.002	i	2/4/09 19:45	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/4/09 19:45	SAH	
4-Bromofluorobenzene (surr)	83.4	%	70-130	ı	2/4/09 19:45	SAH	
Dibromofluoromethane (surr)	147	%	70-130	ı	2/4/09 19:45	SAH	ı
Toluene-d8 (surr)	85.3	%	70-130	ı	2/4/09 19:45	SAH	
Fotal Solids by EPA 1684							
Total Solids	96.3	%	0.1	ı	2/5/09 7:35	SAH	

Soil results are reported on a dry weight basis.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0095 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-4 16-17 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
COSEC NOSC. L., ED A ONGODIERNE							
GCMS VOCs by EPA 8260B/5035 Acetone	ND	mg/kg	0.025	ı	2/4/09 21:45	SAH	
Acrylonitrile	ND ND	mg/kg	0.025	i	2/4/09 21:45	SAH	
Benzene	ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Bromobenzene	ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Bromoehloromethane	ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Bromodichloromethane	ND ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Bromoform	ND	mg/kg	0.005	ŀ	2/4/09 21:45	SAH	
Bromomethane (Methyl Bromide)	ND ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
n-Butylbenzene	ND ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
n-isutyroenzene sec-Butylbenzene	DN DN	mg/kg mg/kg	0.005	ı I	2/4/09 21:45	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Carbon disulfide	ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Carbon tetrachloride	ND ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Chlorobenzene	ND		0.005	i	2/4/09 21:45	SAH	
Chlorodibromomethane	ND ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
Chloroethane	ND	mg/kg	0.005	ı I	2/4/09 21:45	SAH	
Chloroform	DN DN	mg/kg	0.005	ı I	2/4/09 21:45	SAH	
Chloromethane (Methyl Chloride)	מא מא	mg/kg mg/kg	0.005	ı	2/4/09 21:45	SAH	
2-Chlorotoluene	ND ND	mg/kg	0.005	ŀ	2/4/09 21:45	SAH	
4-Chlorotoluene	ND ND		0.005	i	2/4/09 21:45	SAH	
	ND	mg/kg	0.005	i	2/4/09 21:45	SAH	
2-Chloroethyl vinyl ether	ND ND	mg/kg	0.005	ı I	2/4/09 21:45	SAH	
1,2-Dibromo-3-chloropropane		mg/kg	0.005	ı		SAH	
1,2-Dibromoethane	ND	mg/kg		•	2/4/09 21:45 2/4/09 21:45	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	I			
I 2-Dichlorobenzene I 3-Dichlorobenzene	ND	mg/kg	0.005	l I	2/4/09 21:45	SAH SAH	
L4-Dichlorobenzene	ND ND	mg/kg	0.005	ı I	2/4/09 21:45 2/4/09 21:45	SAH	
Dichlorodifluoromethane	ND ND	mg/kg	0.005	ı I	2/4/09 21:45	SAH	
trans-1.4-Dichloro-2-butene		mg/kg	0.005	ı l		SAH	
trans-1,4-Dientoro-2-binene L.I-Diehloroethane	ND	mg/kg		ı I	2/4/09 21:45 2/4/09 21:45	SAH	
7,	ND	mg/kg	0.005				
1,2-Dichloroethane	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	DN DN	mg/kg	0.005	l l	2/4/09 21:45 2/4/09 21:45	SAH SAH	
		mg/kg		ı			
1,2-Dichloropropane	ND	mg/kg	0.005	•	2/4/09 21:45	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	I	2/4/09 21:45	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
Ethylbenzene	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	I	2/4/09 21:45	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0095 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-4-16-17 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	I	2/4/09 21:45	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
Iodomethane	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
Isopropylbenzene	ND	mg/kg	0.005	ı	2/4/09 21:45	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	ı	2/4/09 21:45	SAH	
Methyl(tert) butyl other (MTBE)	ND	mg/kg	0.005	I	2/4/09 21:45	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 21:45	SAH	
Naphthalene	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
n-Propy Ibenzene	ND	mg/kg	0.005	I	2/4/09 21:45	SAH	
Styrene	ND	mg/kg	0.005	ı	2/4/09 21:45	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
Tetrachloroethene	8.43	mg/kg	1	200	2/11/09 22:19	SAH	
Toluene	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
1.2,4-Trichlorobenzene	ND	mg/kg	0.005	I	2/4/09 21:45	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 21:45	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	ı	2/4/09 21:45	SAH	
Trichloroethene	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	ı	2/4/09 21:45	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	I	2/4/09 21:45	SAH	
1.2,4-Trimethylbenzene	ND	mg/kg	0.005	I	2/4/09 21:45	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
Vinyl acetate	ND	mg/kg	0.005	1	2/4/09 21:45	SAH	
Vinyl chloride	ND	mg/kg	0.002	ı	2/4/09 21:45	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/4/09 21:45	SAH	
4-Bromofluorobenzene (surr)	80.3	%	70-130	ı	2/4/09 21:45	SAH	
Dibromofluoromethane (surr)	132	%	70-130	l	2/4/09 21:45	SAH	l
Toluene-d8 (surr)	90.2	%	70-130	l	2/4/09 21:45	SAH	
Total Solids by EPA 1684							
Total Solids	95.4	%	0.1	ı	2/5/09 7:35	SAH	

Soil results are reported on a dry weight basis.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0096 Matrix: water Date Collected: 2/3/09
Client Sample ID: SB-1 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	13	ı	2/4/09 5:10	SAH	
Acrylonitrile	ND	μg/L	5	i	2/4/09 5:10	SAH	
Benzene	ND	μg/L	5	1	2/4/09 15:10	SAH	
Bromobenzene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
Bromochloromethane	ND	μg/L	5	I	2/4/09 15:10	SAH	
B romodichlo romethane	ND	μg/L	5	I	2/4/09 15:10	SAH	
Bromoform	ND	μg/L	5	ı	2/4/09 15:10	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	5	ı	2/4/09 5:10	SAH	
n-Butylbenzene	ND	μg/L	5	ı	2/4/09 5:10	SAH	
sec-Butylbenzene	ND	μg/L	5	I	2/4/09 15:10	SAH	
tert-Butylbenzene	ND	μg/L	5	I	2/4/09 15:10	SAH	
Carbon disulfide	ND	μg/L	5	l	2/4/09 15:10	SAH	
Carbon tetrachloride	ND	μg/L	5	ı	2/4/09 15:10	SAH	
Chlorobenzene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
Chlorodibromomethane	ND	μg/L	5	I	2/4/09 5:10	SAH	
Chloroethane	ND	μg/L	5	I	2/4/09 15:10	SAH	
Chloroform	ND	μg/L	5	l	2/4/09 5:10	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	5	I	2/4/09 15:10	SAH	
2-Chlorotoluene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
4-Ch lorotoluene	ND	μg/L	5	I	2/4/09 15:10	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5	I	2/4/09 15:10	SAH	
1.2-Dibromo-3-chloropropane	ND	μg/L	5	I	2/4/09 5:10	SAH	
1,2-Dibromoethane	ND	μg/L	5	I	2/4/09 15:10	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	ı	2/4/09 15:10	SAH	
1,2-Dichlorobenzene	ND	μg/L	5	1	2/4/09 15:10	SAH	
1,3-Dichlorobenzene	ND	μg/L	5	1	2/4/09 15:10	SAH	
l A-Dichlorobenzene	ND	μg/L	5	I	2/4/09 15:10	SAH	
Dichlorodifluoromethane	ND	μg/L	5	I	2/4/09 15:10	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	- 1	2/4/09 5:10	SAH	
I,I-Dichloroethane	ND	μg/L	5	- 1	2/4/09 5:10	SAH	
1,2-Dichloroethane	ND	μg/L	5	I	2/4/09 5:10	SAH	
I,I-Dichloroethene	ND	μg/L	5	I	2/4/09 15:10	SAH	
cis-1,2-Dichloroethene	266	μg/L	50	10	2/9/09 11:15	SAH	
trans-1,2-Dichloroethene	28.2	μg/L	5	- 1	2/4/09 15:10	SAH	
1.2-Dichloropropane	ND	μg/L	5	l	2/4/09 15:10	SAH	
1,3-Dichloropropane	ND	μg/L	5	I	2/4/09 5:10	SAH	
2,2-Dichloropropane	ND	μg/L	5	I	2/4/09 5:10	SAH	
l,l-Dichloropropene	ND	μg/L	5	ı	2/4/09 5:10	SAH	
eis-1,3-Diehloropropene	ND	μg/L	5	l	2/4/09 15:10	SAH	
trans-1,3-Dichloropropene	ND	μg/L	5	l	2/4/09 15:10	SAH	
Ethylbenzene	ND	μg/L	5	1	2/4/09 15:10	SAH	
Ethyl methacrylate	ND	μg/L	5	I	2/4/09 15:10	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0096 Matrix: water Date Collected: 2/3/09
Client Sample ID: SB-1 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	1.3	l	2/4/09 15:10	SAH	
Hexachlorobutadiene	ND	μg/L	5	- 1	2/4/09 5:10	SAH	
lodomethane	ND	μg/L	5	1	2/4/09 5:10	SAH	
l sopro pylbenzene	ND	μg/L	5	1	2/4/09 15:10	SAH	
p-fsopropyltoluene	ND	μg/L	5	I	2/4/09 5:10	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	ı	2/4/09 15:10	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	l	2/4/09 5:10	SAH	
4-Methyl-2-pentanone (MIBK)	ND	μg/L	1.3	ı	2/4/09 15:10	SAH	
Naphthalene	ND	μg/L	5	- 1	2/4/09 15:10	SAH	
n-Propylbenzene	ND	μg/L	5	ı	2/4/09 5:10	SAH	
Styrene	ND	μg/L	5	l	2/4/09 15:10	SAH	
1,1,1,2-Tetrachloroethane	ND	μg/L	5	1	2/4/09 5:10	SAH	
1,122-Tetrachloroethane	ND	μg/L	5	l	2/4/09 15:10	SAH	
Tetrachloroethene	ND	μg/L	5	ı	2/4/09 5:10	SAH	
Toluene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
1.2.3-Trichlorobenzene	ND	μg/L	5	- 1	2/4/09 15:10	SAH	
1.2.4-Trichlorobenzene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
I,I,I-Trichloroethane	ND	μg/L	5	1	2/4/09 15:10	SAH	
1,12-Trichlomethane	ND	μg/L	5	- 1	2/4/09 15:10	SAH	
Trichloroethene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
Trichlorofluoromethane	ND	μg/L	5	1	2/4/09 15:10	SAH	
1,2,3-Trichloropropane	ND	μg/L	5	ı	2/4/09 15:10	SAH	
1,2,4-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
1,3,5-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 15:10	SAH	
Vinyl acetate	ND	μg/L	5	ı	2/4/09 15:10	SAH	
Vinyl chloride	2.59	μg/L	2	ı	2/4/09 15:10	SAH	
Xylenes, Total	ND	μg/L	15	Ī	2/4/09 15:10	SAH	
I-Bromofluorobenzene (surr)	97.4	%	70-130	ı	2/4/09 15:10	SAH	
Dibromofluoromethane (surr)	112	%	70-130	ı	2/4/09 15:10	SAH	
Toluene-d8 (surr)	105	%	70-130	ı	2/4/09 15:10	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0097 Matrix: water Date Collected: 2/3/09
Client Sample ID: SB-3 (23') Date Received: 2/4/09

			Reporting		Date & Time		
A na lyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	13	ı	2/4/09 5:41	SAH	
Acrylonitrile	ND	μg/L	5	Ī	2/4/09 5:41	SAH	
Benzene	ND	μg/L	5	ı	2/4/09 [5:4]	SAH	
Bromobenzene	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
Bromochloromethane	ND	μg/L	5	ı	2/4/09 15:41	SAH	
Bromodichloromethane	ND	μg/L	5	l	2/4/09 5:41	SAH	
Bromoform	ND	μg/L	5	l	2/4/09 [5:4]	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	5	ı	2/4/09 5:41	SAH	
n-Butylbenzene	ND	μg/L	5	ı	2/4/09 5:41	SAH	
sec-Butylbenzene	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
tert-Butylbenzene	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
Carbon disulfide	ND	μg/L	5	l	2/4/09 [5:4]	SAH	
Carbon tetrachloride	ND	μg/L	5	l	2/4/09 [5:4]	SAH	
Chlorobenzene	ND	μg/L	5	l	2/4/09 15:41	SAH	
Chlorodibromomethane	ND	μg/L	5	I	2/4/09 5:41	SAH	
Chloroethane	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
Chloroform	ND	μg/L	5	l	2/4/09 5:41	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	5	l	2/4/09 15:41	SAH	
2-Chlorotoluene	ND	μg/L	5	l	2/4/09 [5:4]	SAH	
4-Chlorotoluene	ND	μg/L	5	l	2/4/09 [5:4]	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
1,2-Dibromo-3-chloropropane	ND	μg/L	5	l	2/4/09 15:41	SAH	
1,2-Dibromoethane	ND	μg/L	5	l	2/4/09 5:41	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	l	2/4/09 [5:4]	SAH	
1,2-Dichlorobenzene	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
1,3-Dichlorobenzene	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
l A-Dichlorobenzene	ND	μg/L	5	I	2/4/09 15:41	SAH	
Dichlorodifluoromethane	ND	μg/L	5	l	2/4/09 15:41	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	l	2/4/09 15:41	SAH	
1,1-Dichloroethane	ND	μg/L	5	l	2/4/09 5:41	SAH	
1,2-Dichloroethane	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
1,1-Dichloroethene	ND	μg/L	5	I	2/4/09 15:41	SAH	
cis-1,2-Dichloroethene	104	μg/L	5	I	2/4/09 15:41	SAH	E
trans-1,2-Dichloroethene	14.1	μg/L	5	l	2/4/09 [5:4]	SAH	
1,2-Dichloropropane	ND	μg/L	5	l	2/4/09 15:41	SAH	
1,3-Dichloropropane	ND	μg/L	5	I	2/4/09 5:41	SAH	
2,2-Dichloropropane	ND	μg/L	5	I	2/4/09 15:41	SAH	
1,1-Dichloropropene	ND	μg/L	5	I	2/4/09 15:41	SAH	
eis-1,3-Diehloropropene	ND	μg/L	5	l	2/4/09 15:41	SAH	
trans-1,3-Dichloropropene	ND	μg/L	5	l	2/4/09 15:41	SAH	
Ethylbenzene	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
Ethyl methacrylate	ND	μg/L	5	1	2/4/09 [5:4]	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sicrramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0097 Matrix: water Date Collected: 2/3/09
Client Sample ID: SB-3 (23') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	1.3	l	2/4/09 5:41	SAH	
Hexachlorobutadiene	ND	μg/L	5	ı	2/4/09 15:41	SAH	
Iodomethane	ND	μg/L	5	l	2/4/09 5:41	SAH	
Isopro pylbenzene	ND	μg/L	5	ı	2/4/09 15:41	SAH	
p-fsopropyltoluene	ND	μg/L	5	ı	2/4/09 [5:4]	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	ı	2/4/09 15:41	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
I-Methyl-2-pentanone (MIBK)	ND	μg/L	1.3	1	2/4/09 5:41	SAH	
Naphthalene	ND	μg/L	5	- 1	2/4/09 [5:4]	SAH	
n-Propy Ibenzene	ND	μg/L	5	ı	2/4/09 [5:41	SAH	
Styrene	ND	μg/L	5	I	2/4/09 [5:4]	SAH	
1,1,1,2-Tetrachloroethane	ND	μg/L	5	l	2/4/09 5:41	SAH	
,1.2.2-Tetrachloroethane	ND	μg/L	5	L	2/4/09 [5:4]	SAH	
l'etraehloroethene	ND	μg/L	5	1	2/4/09 5:41	SAH	
Foluene	ND	μg/L	5	1	2/4/09 5:41	SAH	
2.3-Trichlorobenzene	ND	μg/L	5	ı	2/4/09 5:41	SAH	
2.4-Trichlorobenzene	ND	μg/L	5	ı	2/4/09 15:41	SAH	
, l, l-Trichloroethane	ND	μg/L	5	ı	2/4/09 5:41	SAH	
1.2-Trichloroethane	ND	μg/L	5	I	2/4/09 5:41	SAH	
Frichloroethene	ND	μg/L	5	1	2/4/09 [5:4]	SAH	
Frichlorofluoromethane	ND	μg/L	5	ı	2/4/09 5:41	SAH	
2.3-Trichloropropane	ND	μg/L	5	ı	2/4/09 5:41	SAH	
2,4-Trimethylbenzene	ND	μg/L	5	l	2/4/09 5:41	SAH	
3.5-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 5:41	SAH	
/inyl acetate	ND	μg/L	5	ı	2/4/09 5:41	SAH	
/inyl ehloride	37.6	μg/L	2	i	2/4/09 [5:4]	SAH	
(ylenes, Total	ND	μg/L	15	i	2/4/09 5:41	SAH	
I-Bromotluorobenzene (surr)	103	%	70-130	I	2/4/09 15:41	SAH	
Dibromofluoromethane (surr)	118	%	70-130	ı	2/4/09 15:41	SAH	
Foluene-d8 (surr)	110	%	70-130	ı	2/4/09 15:41	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0098 Matrix: water Date Collected: 2/3/09
Client Sample ID: SB-4 (23') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	13	ı	2/4/09 16:12	SAH	
Acrylonitrile	ND	μg/L	5	1	2/4/09 16:12	SAH	
Benzene	ND	μg/L	5	1	2/4/09 16:12	SAH	
Bromobenzene	ND	μg/L	5	1	2/4/09 16:12	SAH	
Bromochloromethane	ND	μg/L	5	I	2/4/09 16:12	SAH	
B romodichlo romethane	ND	μg/L	5	I	2/4/09 16:12	SAH	
Bromoform	ND	μg/L	5	l	2/4/09 16:12	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	5	I	2/4/09 16:12	SAH	
n-Butylbenzene	ND	μg/L	5	I	2/4/09 16:12	SAH	
sec-Butylbenzene	ND	μg/L	5	I	2/4/09 16:12	SAH	
tert-Butylbenzene	ND	μg/L	5	I	2/4/09 16:12	SAH	
Carbon disulfide	ND	μg/L	5	- 1	2/4/09 16:12	SAH	
Carbon tetrachloride	ND	μg/L	5	I	2/4/09 16:12	SAH	
Chlorobenzene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
Chlorodibromomethane	ND	μg/L	5	I	2/4/09 16:12	SAH	
Chloroethane	ND	μg/L	5	ı	2/4/09 16:12	SAH	
Chloroform	ND	μg/L	5	I	2/4/09 16:12	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	5	- 1	2/4/09 16:12	SAH	
2-Chlorotoluene	ND	μg/L	5	- 1	2/4/09 16:12	SAH	
4-Chlorotoluene	ND	μg/L	5	- 1	2/4/09 16:12	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5	I	2/4/09 16:12	SAH	
1,2-Dibromo-3-chloropropane	ND	μg/L	5	l	2/4/09 16:12	SAH	
1,2-Dibromoethane	ND	μg/L	5	- 1	2/4/09 16:12	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	- 1	2/4/09 16:12	SAH	
1,2-Dichlorobenzene	ND	μg/L	5	- 1	2/4/09 16:12	SAH	
I ,3-Dichlorobenzene	ND	μg/L	5	I	2/4/09 16:12	SAH	
I A-Dichlorobenzene	ND	μg/L	5	I	2/4/09 16:12	SAH	
Dichlorodifluoromethane	ND	μg/L	5	l	2/4/09 16:12	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	I	2/4/09 16:12	SAH	
I,I-Dichloroethane	ND	μg/L	5	I	2/4/09 16:12	SAH	
1,2-Dichloroethane	ND	μg/L	5	I	2/4/09 16:12	SAH	
I,I-Dichloroethene	ND	μg/L	5	I	2/4/09 16:12	SAH	
cis-1,2-Dichloroethene	95.8	μg/L	5	I	2/4/09 16:12	SAH	
trans-1,2-Dichloroethene	15.3	μg/L	5	l	2/4/09 16:12	SAH	
1,2-Dichloropropane	ND	μg/L	5	I	2/4/09 16:12	SAH	
1,3-Dichloropropane	ND	μg/L	5	I	2/4/09 16:12	SAH	
2,2-Dichloropropane	ND	μg/L	5	I	2/4/09 16:12	SAH	
I,I-Dichloropropene	ND	μg/L	5	I	2/4/09 16:12	SAH	
eis-1,3-Diehloropropene	ND	μg/L	5	I	2/4/09 16:12	SAH	
trans-1,3-Dichloropropene	ND	μg/L	5	l	2/4/09 16:12	SAH	
Ethylbenzene	ND	μg/L	5	I	2/4/09 16:12	SAH	
Ethyl methacrylate	ND	μg/L	5	I	2/4/09 16:12	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0098 Matrix: water Date Collected: 2/3/09
Client Sample ID: SB-4 (23') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	1.3	l	2/4/09 16:12	SAH	
Hexachlorobutadiene	ND	μg/L	5	I	2/4/09 16:12	SAH	
lodomethane	ND	μg/L	5	1	2/4/09 16:12	SAH	
l sopro pylbenzene	ND	μg/L	5	1	2/4/09 16:12	SAH	
p-fsopropyltoluene	ND	μg/L	5	I	2/4/09 16:12	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	l	2/4/09 16:12	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	l	2/4/09 16:12	SAH	
4-Methyl-2-pentanone (MIBK)	ND	μg/L	1.3	ı	2/4/09 16:12	SAH	
Naphthalene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
n-Propy Ibenzene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
Styrene	ND	μg/L	5	l	2/4/09 16:12	SAH	
1,1,2-Tetrachloroethane	ND	μg/L	5	l	2/4/09 16:12	SAH	
1,1,2,2-Tetrachloroethane	ND	μg/L	5	l	2/4/09 16:12	SAH	
Tetrachloroethene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
l'oluene	ND	μg/L	5	1	2/4/09 16:12	SAH	
1,2,3-Trichlorobenzene	ND	μg/L	5	I	2/4/09 16:12	SAH	
1.2.4-Trichlorobenzene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
I,I,I-Trichloroethane	ND	μg/L	5	1	2/4/09 16:12	SAH	
1,1.2-Trichlomethane	ND	μg/L	5	ı	2/4/09 16:12	SAH	
Trichloroethene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
Trichlorofluoromethane	ND	μg/L	5	1	2/4/09 16:12	SAH	
1.2.3-Trichloropropane	ND	μg/L	5	ı	2/4/09 16:12	SAH	
1.2.4-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
1,3,5-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 16:12	SAH	
Vinyl acetate	ND	μg/L	5	ı	2/4/09 16:12	SAH	
Vinyl chloride	37.5	μg/L	2	i	2/4/09 16:12	SAH	
Kylenes, Total	ND	μg/L	15	Ī	2/4/09 16:12	SAH	
I-Bromofluorobenzene (surr)	102	%	70-130	ı	2/4/09 16:12	SAH	
Dibromofluoromethane (surr)	116	%	70-130	ı	2/4/09 16:12	SAH	
Toluene-d8 (surr)	105	%	70-130	ı	2/4/09 16:12	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0099 Matrix: water Date Collected: 2/4/09
Client Sample ID: SB-2 (33-34') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	125	10	2/4/09 13:58	SAH	
Acrylonitrile	ND	μg/L	50	10	2/4/09 13:58	SAH	
Benzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Bromobenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Bromochloromethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
Bromodichloromethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
Bromoform	ND	μg/L	50	10	2/4/09 13:58	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	50	10	2/4/09 13:58	SAH	
n-Butylbenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
sec-Butylbenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
tert-Butylbenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Carbon disulfide	ND	μg/L	50	10	2/4/09 13:58	SAH	
Carbon tetrachloride	ND	μg/L	50	10	2/4/09 13:58	SAH	
Chlorobenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Chlorodibromomethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
Chloroethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
Chloroform	ND	μg/L	50	10	2/4/09 13:58	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	50	10	2/4/09 13:58	SAH	
2-Chlorotoluene	ND	μg/L	50	10	2/4/09 13:58	SAH	
4-Chlorotoluene	ND	μg/L	5()	10	2/4/09 13:58	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5()	10	2/4/09 13:58	SAH	
1,2-Dibromo-3-chloropropane	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,2-Dibromoethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,2-Dichlorobenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,3-Dichlorobenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
I A-Dichlorobenzene	ND	μg/L	5()	10	2/4/09 13:58	SAH	
Dichlorodifluoromethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	50	10	2/4/09 13:58	SAH	
I,I-Dichloroethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,2-Dichloroethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
L,I-Dichloroethene	ND	μg/L	50	10	2/4/09 13:58	SAH	
cis-1,2-Dichloroethene	ND	μg/L	50	10	2/4/09 13:58	SAH	
trans-1,2-Dichloroethene	ND	μg/L	50	10	2/4/09 13:58	SAH	
1.2-Dichloropropane	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,3-Dichloropropane	ND	μg/L	50	10	2/4/09 13:58	SAH	
2,2-Dichloropropane	ND	μg/L	50	10	2/4/09 13:58	SAH	
I,I-Dichloropropene	ND	μg/L	50	10	2/4/09 13:58	SAH	
eis-1,3-Diehloropropene	ND	μg/L	50	10	2/4/09 13:58	SAH	
trans-1,3-Dichloropropene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Ethy lbenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Ethyl methacrylate	ND	μg/L	50	10	2/4/09 13:58	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0099 Matrix: water Date Collected: 2/4/09
Client Sample ID: SB-2 (33-34') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	125	10	2/4/09 13:58	SAH	
Hexachlorobutadiene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Iodomethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
l sopro pylbenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
p-fsopropyltoluene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	125	10	2/4/09 13:58	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	50	10	2/4/09 13:58	SAH	
4-Methyl-2-pentanone (MIBK)	ND	μg/L	125	10	2/4/09 13:58	SAH	
Naphthalene	ND	μg/L	50	10	2/4/09 13:58	SAH	
n-Propy Ibenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Styrene	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,1,1,2-Tetrachloroethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,122-Tetrachloroethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
Tetrachloroethene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Toluene	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,2,3-Trichlorobenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
1.2.4-Trichlorobenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
I,I,I-Trichloroethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,12-Trichlomethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
Trichloroethene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Trichlorofluoromethane	ND	μg/L	50	10	2/4/09 13:58	SAH	
1,2,3-Trichloropropane	ND	μg/L	50	10	2/4/09 13:58	SAH	
1.2.4-Trimethylbenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
1.3.5-Trimethylbenzene	ND	μg/L	50	10	2/4/09 13:58	SAH	
Vinyl acetate	ND	μg/L	50	10	2/4/09 13:58	SAH	
Vinyl ehloride	58.9	μg/L	20	10	2/4/09 13:58	SAH	
Kylenes, Total	ND	μg/L	150	10	2/4/09 13:58	SAH	
4-Bromofluorobenzene (surr)	93.0	%	70-130	10	2/4/09 13:58	SAH	
Dibromofluoromethane (surr)	108	%	70-130	10	2/4/09 13:58	SAH	
Toluene-d8 (surr)	98.2	%	70-130	10	2/4/09 13:58	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SME09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0100 Matrix: water Date Collected: 2/4/09
Client Sample ID: SB-2 (24') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
CMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	13	l	2/4/09 14:38	SAH	
Acrylonitrile	ND	μg/L	5	1	2/4/09 14:38	SAH	
Benzene	ND	μg/L	5	l	2/4/09 14:38	SAH	
Bromobenzene	ND	μg/L	5	I	2/4/09 14:38	SAH	
Bromochloromethane	ND	μg/L	5	I	2/4/09 14:38	SAH	
Bromodichloromethane	ND	μg/L	5	l	2/4/09 14:38	SAH	
Bromoform	ND	μg/L	5	l	2/4/09 14:38	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	5	l	2/4/09 14:38	SAH	
n-Butylbenzene	ND	μg/L	5	l	2/4/09 14:38	SAH	
sec-Butylbenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
tert-Butylbenzene	ND	μg/L	5	l	2/4/09 14:38	SAH	
Carbon disulfide	ND	μg/L	5	l	2/4/09 14:38	SAH	
Carbon tetrachloride	ND	μg/L	5	l	2/4/09 14:38	SAH	
Chlorobenzene	ND	μg/L	5	l	2/4/09 14:38	SAH	
Chlorodibromomethane	ND	μg/L	5	I	2/4/09 14:38	SAH	
Chloroethane	ND	μg/L	5	ı	2/4/09 14:38	SAH	
Chloroform	ND	μg/L	5	l	2/4/09 14:38	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	5	l	2/4/09 14:38	SAH	
2-Chlorotoluene	ND	μg/L	5	l	2/4/09 14:38	SAH	
4-Chlorotoluene	ND	μg/L	5	I	2/4/09 14:38	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5	I	2/4/09 14:38	SAH	
1,2-Dibromo-3-chloropropane	ND	μg/L	5	l	2/4/09 14:38	SAH	
1.2-Dibromoethane	ND	μg/L	5	l	2/4/09 14:38	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	ı	2/4/09 14:38	SAH	
1.2-Dichlorobenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
L3-Dichlorobenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
A-Dichlorobenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
Dichlorodifluoromethane	ND	μg/L	5	l	2/4/09 14:38	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	I	2/4/09 14:38	SAH	
I,I-Dichloroethane	ND	μg/L	5	ı	2/4/09 14:38	SAH	
1.2-Dichloroethane	ND	μg/L	5	ı	2/4/09 14:38	SAH	
I,I-Dichloroethene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
cis-1,2-Dichloroethene	68.8	μg/L	5	l	2/4/09 14:38	SAH	
trans-1,2-Dichloroethene	8.77	μg/L	5	l	2/4/09 14:38	SAH	
2-Dichloropropane	ND	μg/L	5	l	2/4/09 14:38	SAH	
3-Dichloropropane	ND	μg/L	5	I	2/4/09 14:38	SAH	
2.2-Dichloropropane	ND	μg/L	5	I	2/4/09 14:38	SAH	
I,I-Dichloropropene	ND	μg/L	5	I	2/4/09 14:38	SAH	
ris-1,3-Diehloropropene	ND	μg/L	5	l	2/4/09 14:38	SAH	
rans-1,3-Dichloropropene	ND	μg/L	5	l	2/4/09 14:38	SAH	
Ethy Ibenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
Ethyl methacrylate	ND	μg/L	5	i	2/4/09 14:38	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0100 Matrix: water Date Collected: 2/4/09
Client Sample ID: SB-2 (24') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	1.3	l	2/4/09 14:38	SAH	
Hexachlorobutadiene	ND	μg/L	5	- 1	2/4/09 14:38	SAH	
Iodomethane	ND	μg/L	5	I	2/4/09 14:38	SAH	
Isopropylbenzene	ND	μg/L	5	1	2/4/09 14:38	SAH	
p-fsopropyltoluene	ND	μg/L	5	I	2/4/09 14:38	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	ı	2/4/09 14:38	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	l	2/4/09 14:38	SAH	
I-Methyl-2-pentanone (MIBK)	ND	μg/L	1.3	ı	2/4/09 14:38	SAH	
Naphthalene	ND	μg/L	5	- 1	2/4/09 14:38	SAH	
n-Propy Ibenzene	ND	μg/L	5	ı	2/4/09 4:38	SAH	
Styrene	ND	μg/L	5	I	2/4/09 14:38	SAH	
,1,1,2-Tetrachloroethane	ND	μg/L	5	- 1	2/4/09 14:38	SAH	
1,1,2,2-Tetrachloroethane	ND	μg/L	5	l	2/4/09 14:38	SAH	
Tetrachloroethene	ND	μg/L	5	ı	2/4/09 4:38	SAH	
Foluene	ND	μg/L	5	1	2/4/09 14:38	SAH	
1.2.3-Trichlorobenzene	ND	μg/L	5	- 1	2/4/09 14:38	SAH	
1.2.4-Trichlorobenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
I,I,I-Trichloroethane	ND	μg/L	5	1	2/4/09 14:38	SAH	
1,12-Trichloroethane	ND	μg/L	5	ı	2/4/09 14:38	SAH	
Trichloroethene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
Frichlorofluoromethane	ND	μg/L	5	1	2/4/09 14:38	SAH	
1.2.3-Trichloropropane	ND	μg/L	5	ı	2/4/09 14:38	SAH	
1.2.4-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
1,3,5-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 14:38	SAH	
/inyl acetate	ND	μg/L	5	ı	2/4/09 14:38	SAH	
/inyl ehloride	10.3	μg/L	2	i	2/4/09 14:38	SAH	
(ylenes, Total	ND	μg/L	15	i	2/4/09 14:38	SAH	
I-Bromotluorobenzene (surr)	97.2	%	70-130	Ī	2/4/09 14:38	SAH	
Dibromofluoromethane (surr)	117	%	70-130	ı	2/4/09 14:38	SAH	
Foluene-d8 (surr)	105	%	70-130	i	2/4/09 14:38	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0101 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-1 6-7 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
CMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/4/09 22:14	SAH	
Acrylonitrile	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
Benzene	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
Bromobenzene	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
Bromoehloromethane	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
Bromodichloromethane	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
Втотобот	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
n-Butylbenzene	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	i	2/4/09 22:14	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
Carbon disulfide	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
Chlorobenzene	ND	mg/kg	0.005	1	2/4/09 22:14	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
Chloroethane	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
Chloroform	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
I.A-Dichlorobenzene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	L	2/4/09 22:14	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
Ethy lbenzene	ND	mg/kg	0.005	1	2/4/09 22:14	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0101 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-1 6-7 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	I	2/4/09 22:14	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/4/09 22:14	SAH	
Iodomethane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
Isopropylbenzene	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	I	2/4/09 22:14	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 22:14	SAH	
Naphthalene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
n-Propylbenzene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
Styrene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
Tetrachloroethene	0.010	mg/kg	0.005	l	2/4/09 22:14	SAH	
Toluene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
1,2,3-Trichlorobenzene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	l	2/4/09 22:14	SAH	
Trichlorochene	ND	mg/kg	0.005	I	2/4/09 22:14	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
Vinylacetate	ND	mg/kg	0.005	ı	2/4/09 22:14	SAH	
Vinyl chloride	ND	mg/kg	0.002	I	2/4/09 22:14	SAH	
Xylenes, Total	ND	mg/kg	0.015	I	2/4/09 22:14	SAH	
4-Bromotluorobenzene (surr)	95.0	%	70-130	ı	2/4/09 22:14	SAH	
Dibromofluoromethane (surr)	136	%	70-130	ı	2/4/09 22:14	SAH	ı
Toluene-dB (surr)	104	%	70-130	I	2/4/09 22:14	SAH	
Fotal Solids by EPA 1684							
Total Solids	86.6	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0102 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-2 7-8 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
TARE STATE IN ED A OZENDJENJE							
CMS VOCs by EPA 8260B/5035 Acetone	ND	mg/kg	0.025	ı	2/4/09 22:44	SAH	
Acrylonitrile	ND	mg/kg	0.025	i	2/4/09 22:44	SAH	
Benzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Bromobenzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Bromoehloromethane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Bromodichloromethane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Bromoform	ND	mg/kg	0.005	ŀ	2/4/09 22:44	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
n-Butylbenzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Carbon disulfide	ND		0.005	i	2/4/09 22:44	SAH	
Carbon distillede Carbon tetrachloride	ND	mg/kg mg/kg	0.005	ı	2/4/09 22:44	SAH	
Chlorobenzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Chloroethane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Chloroform	ND		0.005	l	2/4/09 22:44	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg mg/kg	0.005	ı	2/4/09 22:44	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
	ND	-	0.005	i	2/4/09 22:44	SAH	
I ,2-Dibromo-3-chloropropane I ,2-Dibromoethane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	ŀ	2/4/09 22:44	SAH	
1.2-Dichlorobenzene	ND	mg/kg mg/kg	0.005	i	2/4/09 22:44	SAH	
L3-Dichlorobenzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
LA-Dichlorobenzene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
Dichlorodifluoromethane	ND		0.005	ı	2/4/09 22:44	SAH	
trans-1.4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/4/09 22:44	SAH	
L.IDichloroethane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
L2-Dichloroethane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
L.IDichloroethene	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
ris-1.2-Dichloroethene	ND ND	mg/kg mg/kg	0.005	ı I	2/4/09 22:44	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	ı I	2/4/09 22:44	SAH	
	ND		0.005	i	2/4/09 22:44	SAH	
I 2-Dichloropropane	ND	mg/kg	0.005	i	2/4/09 22:44	SAH	
I 3-Dichloropropane	ND	mg/kg mg/kg	0.005	i I	2/4/09 22:44	SAH	
2,2-Dichloropropane	ND	~ ~	0.005	ı I	2/4/09 22:44	SAH	
I,I-Dichloropropene	ND ND	mg/kg	0.005	ı I	2/4/09 22:44	SAH	
ris-1,3-Dichloropropene		mg/kg		ı	2/4/09 22:44	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	•	2/4/09 22:44 2/4/09 22:44	SAH	
Ethy Ibenzene	ND	mg/kg	0.005	l I	2/4/09 22:44	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sieпamobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0102 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-2 7-8 Date Received: 2/4/09

A marketing of	D *	# t - t	Reporting	D.C.	Date & Time	A	01
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	l	2/4/09 22:44	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	- 1	2/4/09 22:44	SAH	
Iodomethane	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
Isopropylbenzene	ND	mg/kg	0.005	1	2/4/09 22:44	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	l	2/4/09 22:44	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	l	2/4/09 22:44	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	l	2/4/09 22:44	SAH	
Naphthalene	ND	mg/kg	0.005	- 1	2/4/09 22:44	SAH	
n-Propylbenzene	ND	mg/kg	0.005	ı	2/4/09 22:44	SAH	
Styrene	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	1	2/4/09 22:44	SAH	
1,1,2,2-Tetrach loroethane	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
Tetrachloroethene	ND	mg/kg	0.005	l	2/4/09 22:44	SAH	
Toluene	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
1,2,3-Trichlorobenzene	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
1.2,4-Trichlorobenzene	ND	mg/kg	0.005	l	2/4/09 22:44	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	ı	2/4/09 22:44	SAH	
Trichloroethene	ND	mg/kg	0.005	ı	2/4/09 22:44	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	I	2/4/09 22:44	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 22:44	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/4/09 22:44	SAH	
Vinylacetate	ND	mg/kg	0.005	ı	2/4/09 22:44	SAH	
Vinyl ehloride	ND	mg/kg	0.002	I	2/4/09 22:44	SAH	
Xylenes, Total	ND	mg/kg	0.015	I	2/4/09 22:44	SAH	
4-Bromofluorobenzene (surr)	97.5	%	70-130	I	2/4/09 22:44	SAH	
Dibromofluoromethane (surr)	132	%	70-130	ı	2/4/09 22:44	SAH	I
Tolucne-d8 (surr)	108	%	70-130	l	2/4/09 22:44	SAH	
Fotal Solids by EPA 1684							
Total Solids	83.4	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0103 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-2 11-12 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	l	2/5/09 7:37	SAH	
Acrylonitrile	ND	mg/kg	0.005	1	2/5/09 7:37	SAH	
Benzene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Bromobenzene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Bromoehloromethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Bromodichloromethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Bromoform	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
n-Butylbenzene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
Chloroethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Chloroform	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
l A-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
1,1-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
l,l-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Ethylbenzene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0103 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-2 11-12 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
2CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	l	2/5/09 7:37	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/5/09 7:37	SAH	
Iodomethane	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
Isopropylbenzene	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	1	2/5/09 7:37	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	I	2/5/09 7:37	SAH	
Methyl(tert) butyl other (MTBE)	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/5/09 7:37	SAH	
Naphthalene	ND	mg/kg	0.005	1	2/5/09 7:37	SAH	
n-Propylbenzene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
Styrene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	1	2/5/09 7:37	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Tetrachloroethene	0.006	mg/kg	0.005	ı	2/5/09 7:37	SAH	
Toluene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	- 1	2/5/09 7:37	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	l	2/5/09 7:37	SAH	
Trichloroethene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	I	2/5/09 7:37	SAH	
1.3.5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
Vinylacetate	ND	mg/kg	0.005	ı	2/5/09 7:37	SAH	
Vinyl chloride	ND	mg/kg	0.002	Ī	2/5/09 7:37	SAH	
Xylenes, Total	ND	mg/kg	0.015	I	2/5/09 7:37	SAH	
4-Bromofluorobenzene (surr)	82.8	%	70-130	ı	2/5/09 7:37	SAH	
Dibromofluoromethane (surr)	134	%	70-130	ı	2/5/09 7:37	SAH	ı
Toluene-d8 (surr)	95.5	%	70-130	I	2/5/09 7:37	SAH	
Fotal Solids by EPA 1684							
Total Solids	96.0	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0104 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-2 15-16 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/4/09 23:43	SAH	
Acrylonitrile	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
Benzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Bromobenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Bromoehloromethane	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
B romodichlo romethane	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
Bromoform	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
n-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
ert-Butylbenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Chlorobenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Chloroethane	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
Chloroform	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
I-Chlorotoluene	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1,4-Dichlorobenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
l 2-Dichloropropane	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
3-Dichloropropane	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
Ethy lbenzene	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	l	2/4/09 23:43	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0104 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-2 15-16 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	I	2/4/09 23:43	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
Iodomethane	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
Isopropylbenzene	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	I	2/4/09 23:43	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/4/09 23:43	SAH	
Naphthalene	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
n-Propylbenzene	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
Styrene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
Tetrachloroethene	0.017	mg/kg	0.005	1	2/4/09 23:43	SAH	
Toluene	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
Trichloroethene	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	I	2/4/09 23:43	SAH	
1.3.5-Trimethylbenzene	ND	mg/kg	0.005	1	2/4/09 23:43	SAH	
Vinyl acetate	ND	mg/kg	0.005	ı	2/4/09 23:43	SAH	
Vinyl chloride	ND	mg/kg	0.002	ı	2/4/09 23:43	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/4/09 23:43	SAH	
4-Bromofluorobenzene (surr)	81.9	%	70-130	I	2/4/09 23:43	SAH	
Dibromofluoromethane (surr)	139	%	70-130	I	2/4/09 23:43	SAH	ı
Tolucne-d8 (surr)	98.0	%	70-130	1	2/4/09 23:43	SAH	
Fotal Solids by EPA 1684							
Total Solids	96.1	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0105 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-3 2-3 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/5/09 0:41	SAH	
Acrylonitrile	ND	mg/kg	0.005	1	2/5/09 0:41	SAH	
Benzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Bromobenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Bromoehloromethane	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
Bromodichloromethane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Bromoform	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
n-Butylbenzene	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Chloroethane	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
Chloroform	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
I 2-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
I.4-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Ethy lbenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0105 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-3 2-3 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quah
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	l	2/5/09 0:41	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/5/09 0:41	SAH	
Iodomethane	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Isopropylbenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	l	2/5/09 0:41	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	l	2/5/09 0:41	SAH	
Naphthalene	ND	mg/kg	0.005	1	2/5/09 0:41	SAH	
n-Propy Ibenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Styrene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
Tetrachloroethene	0.071	mg/kg	0.005	l	2/5/09 0:41	SAH	
Toluene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1.2,4-Trichlorobenzene	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Trichlorochene	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	I	2/5/09 0:41	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	l	2/5/09 0:41	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
Vinyl acetate	ND	mg/kg	0.005	ı	2/5/09 0:41	SAH	
Vinyl chloride	ND	mg/kg	0.002	I	2/5/09 0:41	SAH	
Xylenes, Total	ND	mg/kg	0.015	I	2/5/09 0:41	SAH	
4-Bromotluorobenzene (surr)	87.5	%	70-130	I	2/5/09 0:41	SAH	
Dibromofluoromethane (surr)	137	%	70-130	l	2/5/09 0:41	SAH	ı
Toluene-d8 (surr)	99.1	%	70-130	l	2/5/09 0:41	SAH	
Fotal Solids by EPA 1684							
Total Solids	87.8	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0106 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-4-6-7 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/5/09 1:10	SAH	
Acrylonitrile	ND	mg/kg	0.005	1	2/5/09 1:10	SAH	
Benzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Bromobenzene	ND	mg/kg	0.005	1	2/5/09 1:10	SAH	
Bromoehloromethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Bromodichloromethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Bromoform	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
n-Butylbenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	- 1	2/5/09 1:10	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Carbon disulfide	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
Chlorobenzene	ND	mg/kg	0.005	1	2/5/09 1:10	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Chloroethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Chloroform	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
2-Ch lorotoluene	ND	mg/kg	0.005	- 1	2/5/09 1:10	SAH	
4-Ch lorotoluene	ND	mg/kg	0.005	1	2/5/09 1:10	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	1	2/5/09 1:10	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	1	2/5/09 1:10	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
l A-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	- 1	2/5/09 1:10	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1,1-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
l,l-Dichloropropene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
Ethylbenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0106 Matrix: soil Date Collected: 2/3/09
Client Sample ID: SB-4-6-7 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quak
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	l	2/5/09 1:10	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
Iodomethane	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Isopro pylbenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	I	2/5/09 1:10	SAH	
Methyl(tert) butyl ether (MTBE)	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/5/09 1:10	SAH	
Naphthalene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
n-Propylbenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Styrene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
Tetrachloroethene	0.061	mg/kg	0.005	ı	2/5/09 1:10	SAH	
Toluene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1.1.1-Trichloroethane	ND	mg/kg	0.005	l	2/5/09 1:10	SAH	
1,1.2-Trichloroethane	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
Trichloroethene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
1,2,3-Trichloropropane	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
1.2.A-Trimethylbenzene	ND	mg/kg	0.005	I	2/5/09 1:10	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
Vinylacetate	ND	mg/kg	0.005	ı	2/5/09 1:10	SAH	
Vinyl chloride	ND	mg/kg	0.002	I	2/5/09 1:10	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/5/09 1:10	SAH	
4-Bromofluorobenzene (surr)	86.2	%	70-130	I	2/5/09 1:10	SAH	
Dibromofluoromethane (surr)	127	%	70-130	ı	2/5/09 1:10	SAH	
Toluene-d8 (surr)	91.2	%	70-130	1	2/5/09 1:10	SAH	
Fotal Solids by EPA 1684							
Total Solids	89.3	%	0.1	I	2/5/09 7:35	SAH	

611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Sierra Mobile Labs, Inc.

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: MOI 046 / Michigan Plaza

2/4/09 Lab Sample Number: 09-0107 Matrix: water Date Collected: Client Sample ID: SB-7 (23') Date Received: 2/4/09

			Reporting	B. 41	Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	13	ı	2/4/09 20:15	SAH	
Acrylonitrile	ND	μg/L	5	- 1	2/4/09/20:15	SAH	
Benzene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Bromobenzene	ND	μg/L	5	I	2/4/09 20:15	SAH	
Bromochloromethane	ND	μg/L	5	I	2/4/09 20:15	SAH	
Bromodichloromethane	ND	μg/L	5	I	2/4/09 20:15	SAH	
Bromoform	ND	μg/L	5	I	2/4/09 20:15	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	5	- 1	2/4/09 20:15	SAH	
n-Butylbenzene	ND	μg/L	5	- 1	2/4/09 20:15	SAH	
sec-Butylbenzene	ND	μg/L	5	l	2/4/09 20:15	SAH	
tert-Butylbenzene	ND	μg/L	5	l	2/4/09 20:15	SAH	
Carbon disulfide	ND	μg/L	5	l	2/4/09 20:15	SAH	
Carbon tetrachloride	ND	μg/L	5	l	2/4/09 20:15	SAH	
Chlorobenzene	ND	μg/L	5	l	2/4/09 20:15	SAH	
Chlorodibromomethane	ND	μg/L	5	I	2/4/09 20:15	SAH	
Chloroethane	ND	μg/L	5	I	2/4/09 20:15	SAH	
Chloroform	ND	μg/L	5	1	2/4/09 20:15	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	5	l	2/4/09 20:15	SAH	
2-Chlorotoluene	ND	μg/L	5	l	2/4/09 20:15	SAH	
4-Chlorotoluene	ND	μg/L	5	l	2/4/09/20:15	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5	I	2/4/09 20:15	SAH	
1,2-Dibromo-3-chloropropane	ND	μg/L	5	l	2/4/09 20:15	SAH	
1,2-Dibromoethane	ND	μg/L	5	1	2/4/09 20:15	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	- 1	2/4/09 20:15	SAH	
1.2-Dichlorobenzene	ND	μg/L	5	I	2/4/09 20:15	SAH	
1,3-Dichlorobenzene	ND	μg/L	5	I	2/4/09 20:15	SAH	
l A-Dichlorobenzene	ND	μg/L	5	l	2/4/09 20:15	SAH	
Dichlorodifluoromethane	ND	μg/L	5	l	2/4/09 20:15	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	l	2/4/09 20:15	SAH	
l,l-Dichloroethane	ND	μg/L	5	- 1	2/4/09 20:15	SAH	
1.2-Dichloroethane	ND	μg/L	5	- I	2/4/09 20:15	SAH	
l,l-Dichloroethene	ND	μg/L	5	I	2/4/09 20:15	SAH	
cis-1,2-Dichloroethene	350	μg/L	50	10	2/5/09 8:06	SAH	
trans-1,2-Dichloroethene	24.3	μg/L	5	- 1	2/4/09 20:15	SAH	
1,2-Dichloropropane	ND	μg/L	5	l	2/4/09 20:15	SAH	
1.3-Dichloropropane	ND	μg/L	5	l	2/4/09 20:15	SAH	
2,2-Dichloropropane	ND	μg/L	5	I	2/4/09 20:15	SAH	
l,l-Dichloropropene	ND	μg/L	5	l	2/4/09 20:15	SAH	
eis-1,3-Diehloropropene	ND	μg/L	5	l	2/4/09 20:15	SAH	
trans-1,3-Dichloropropene	ND	μg/L	5	l	2/4/09 20:15	SAH	
Ethylbenzene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Ethyl methacrylate	ND	μg/L	5	I	2/4/09 20:15	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0107 Matrix: water Date Collected: 2/4/09
Client Sample ID: SB-7 (23') Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	1.3	l	2/4/09 20:15	SAH	
Hexachlorobutadiene	ND	μg/L	5	I	2/4/09 20:15	SAH	
lodomethane	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Isopropylbenzene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
p-fsopropyltoluene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	l	2/4/09 20:15	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	l	2/4/09 20:15	SAH	
4-Methyl-2-pentanone (MIBK)	ND	μg/L	13	l	2/4/09 20:15	SAH	
Naphthalene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
n-Propylbenzene	ND	μg/L	5	1	2/4/09 20:15	SAH	
Styrene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
1,1,1,2-Tetrachloroethane	ND	μg/L	5	l	2/4/09 20:15	SAH	
1,122-Tetrachloroethane	ND	μg/L	5	l	2/4/09 20:15	SAH	
l'etraehloroethene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Foluene	ND	μg/L	5	1	2/4/09 20:15	SAH	
1.2.3-Trichlorobenzene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
1.2,4-Trichlorobenzene	ND	μg/L	5	l	2/4/09 20:15	SAH	
I,I,I-Trichloroethane	ND	μg/L	5	l	2/4/09 20:15	SAH	
1,1.2-Trichloroethane	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Trichloroethene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Frichlorofluoromethane	ND	μg/L	5	1	2/4/09 20:15	SAH	
1.2.3-Trichloropropane	ND	μg/L	5	ı	2/4/09 20:15	SAH	
1.2,4-Trimethylbenzene	ND	μg/L	5	l	2/4/09 20:15	SAH	
1,3,5-Trimethylbenzene	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Vinyl acetate	ND	μg/L	5	ı	2/4/09 20:15	SAH	
Vinyl ehloride	52.3	μg/L	2	ı	2/4/09 20:15	SAH	
Xylenes, Total	ND	μg/L	15	1	2/4/09 20:15	SAH	
1-Bromofluorobenzene (surr)	103	%	70-130	l	2/4/09 20:15	SAH	
Dibromofluoromethane (surr)	125	%	70-130	I	2/4/09 20:15	SAH	
Toluene-d8 (surr)	102	%	70-130	l	2/4/09 20:15	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0108 Matrix: soil Date Collected: 2/4/09
Client Sample ID: SB-7 3-4 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
CMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/5/09 1:40	SAH	
Acrylonitrile	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
Benzene	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
Bromobenzene	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
Bromoehloromethane	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
Bromodichloromethane	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
Bromoform	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
n-Butylbenzene	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	i	2/5/09 1:40	SAH	
Chloroethane	ND	mg/kg	0.005	ī	2/5/09 1:40	SAH	
Chloroform	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
I A-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
eis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
Ethy lbenzene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Ethyl methacrylate	ИD	mg/kg	0.005	I	2/5/09 1:40	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0108 Matrix: soil Date Collected: 2/4/09
Client Sample ID: SB-7 3-4 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
CMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	ı	2/5/09 1:40	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
Iodomethane	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Isopro pylbenzene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
p-{sopropyltoluene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	l	2/5/09 1:40	SAH	
Methyl(tert) butyl other (MTBE)	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/5/09 1:40	SAH	
Naphthalene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
n-Propylbenzene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
Styrene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
Tetrachloroethene	0.009	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Toluene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
1,2,3-Trichlorobenzene	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/5/09 1:40	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Trichloroethene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	I	2/5/09 1:40	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Vinyl acetate	ND	mg/kg	0.005	ı	2/5/09 1:40	SAH	
Vinyl ehloride	ND	mg/kg	0.002	I	2/5/09 1:40	SAH	
Xylenes, Total	ND	mg/kg	0.015	I	2/5/09 1:40	SAH	
4-Bromofluorobenzene (surr)	85.8	%	70-130	I	2/5/09 1:40	SAH	
Dibromofluoromethane (suπ)	134	%	70-130	l	2/5/09 1:40	SAH	l
Toluene-d8 (surr)	96.1	%	70-130	l	2/5/09 1:40	SAH	
Fotal Solids by EPA 1684							
Total Solids	89.1	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc.
Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0109 Matrix: soil Date Collected: 2/4/09
Client Sample ID: SB-7 10-11 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	ı	2/5/09 6:39	SAH	
Actylonitrile	ND	mg/kg	0.005	i	2/5/09 6:39	SAH	
Benzene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
Bromobenzene	ND	mg/kg	0.005	i	2/5/09 6:39	SAH	
Bromoehloromethane	ND	mg/kg	0.005	i	2/5/09 6:39	SAH	
B romodichloromethane	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Bromoform	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	i	2/5/09 6:39	SAH	
n-Butylbenzene	ND	mg/kg	0.005	i	2/5/09 6:39	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	i	2/5/09 6:39	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
Carbon disulfide	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Chloroethane	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
Chloroform	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
1,2-Dibromoethane	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
1,2-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
I.A-Dichlorobenzene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
1.3-Dichloropropane	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
I,I-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
Ethy lbenzene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
Ethyl methacrylate	ИD	mg/kg	0.005	I	2/5/09 6:39	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0109 Matrix: soil Date Collected: 2/4/09
Client Sample ID: SB-7 10-11 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	l	2/5/09 6:39	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	- 1	2/5/09 6:39	SAH	
Iodomethane	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Isopro pylben zene	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
p-{sopropyltoluene	ND	mg/kg	0.005	- 1	2/5/09 6:39	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	l	2/5/09 6:39	SAH	
Methyl(tert) butyl other (MTBE)	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	- 1	2/5/09 6:39	SAH	
Naphthalene	ND	mg/kg	0.005	- 1	2/5/09 6:39	SAH	
n-Propy lbenzene	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Styrene	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
1,1,2-Tetrachloroethane	ND	mg/kg	0.005	- 1	2/5/09 6:39	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	L	2/5/09 6:39	SAH	
Tetrachloroethene	0.010	mg/kg	0.005	- 1	2/5/09 6:39	SAH	
Toluene	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
1,2,3-Trichlorobenzene	ND	mg/kg	0.005	- 1	2/5/09 6:39	SAH	
1.2,4-Trichlorobenzene	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	l	2/5/09 6:39	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Trichloroethene	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	l.	2/5/09 6:39	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 6:39	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	I	2/5/09 6:39	SAH	
Vinylacetate	ND	mg/kg	0.005	- 1	2/5/09 6:39	SAH	
Vinyl chloride	ND	mg/kg	0.002	ı	2/5/09 6:39	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/5/09 6:39	SAH	
4-Bromotluorobenzene (surr)	82.7	%	70-130	l	2/5/09 6:39	SAH	
Dibromofluoromethane (surr)	125	%	70-130	l	2/5/09 6:39	SAH	
Toluene-d8 (surr)	94.5	%	70-130	l	2/5/09 6:39	SAH	
Fotal Solids by EPA 1684							
Total Solids	95.7	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0110 Matrix: soil Date Collected: 2/4/09
Client Sample ID: SB-7 15-16 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	mg/kg	0.025	I.	2/5/09 7:08	SAH	
Acrylonitrile	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
Benzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Bromobenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Bromoehloromethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Bromodichloromethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Втотоботи	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Bromomethane (Methyl Bromide)	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
n-Butylbenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
sec-Butylbenzene	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
tert-Butylbenzene	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	
Carbon disulfide	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	
Carbon tetrachloride	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Chlorobenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Chlorodibromomethane	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Chloroethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Chloroform	ND	mg/kg	0.005	I.	2/5/09 7:08	SAH	
Chloromethane (Methyl Chloride)	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
2-Chlorotoluene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
4-Chlorotoluene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
2-Chloroethyl vinyl ether	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.005	I.	2/5/09 7:08	SAH	
1.2-Dibromoethane	ND	mg/kg	0.005	L	2/5/09 7:08	SAH	
Dibromomethane (Methylene Bromide)	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
1.2-Dichlorobenzene	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	
1,3-Dichlorobenzene	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	
I A-Dichlorobenzene	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Dichlorodifluoromethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
I,I-Dichloroethane	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
1,2-Dichloroethane	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
I,I-Dichloroethene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
cis-1,2-Dichloroethene	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
trans-1,2-Dichloroethene	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	
1,2-Dichloropropane	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	
1,3-Dichloropropane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
2,2-Dichloropropane	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
I ,I -Dichloropropene	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
cis-1,3-Dichloropropene	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
trans-1,3-Dichloropropene	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	
Ethy benzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Ethyl methacrylate	ND	mg/kg	0.005	l	2/5/09 7:08	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0110 Matrix: soil Date Collected: 2/4/09
Client Sample ID: SB-7 15-16 Date Received: 2/4/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	mg/kg	0.013	I	2/5/09 7:08	SAH	
Hexachlorobutadiene	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
Iodomethane	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Isopropylbenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
p-fsopropyltoluene	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	mg/kg	0.013	I	2/5/09 7:08	SAH	
Methyl(tert) butyl other (MTBE)	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.013	ı	2/5/09 7:08	SAH	
Naphthalene	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
n-Propylbenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Styrene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Tetrachloroethene	0.010	mg/kg	0.005	1	2/5/09 7:08	SAH	
Toluene	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
1.2.3-Trichlorobenzene	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
1.2.4-Trichlorobenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
1,1,1-Trichloroethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
1,1,2-Trichloroethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
Trichloroethene	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
Trichlorofluoromethane	ND	mg/kg	0.005	I	2/5/09 7:08	SAH	
1.2.3-Trichloropropane	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
1.2.4-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
1,3,5-Trimethylbenzene	ND	mg/kg	0.005	ı	2/5/09 7:08	SAH	
Vinyl acetate	ND	mg/kg	0.005	1	2/5/09 7:08	SAH	
Vinyl chloride	ND	mg/kg	0.002	ı	2/5/09 7:08	SAH	
Xylenes, Total	ND	mg/kg	0.015	ı	2/5/09 7:08	SAH	
4-Bromofluorobenzene (surr)	80.5	%	70-130	ı	2/5/09 7:08	SAH	
Dibromofluoromethane (surr)	134	%	70-130	l	2/5/09 7:08	SAH	l
Toluene-d8 (surr)	93.5	%	70-130	I	2/5/09 7:08	SAH	
Fotal Solids by EPA 1684							
Total Solids	96.4	%	0.1	ı	2/5/09 7:35	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0132 Matrix: water Date Collected: 2/5/09
Client Sample ID: SB-6 (23') Date Received: 2/5/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	13	ı	2/9/09 11:52	SAH	
Acrylonitrile	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
Benzene	ND	μg/L	5	l	2/9/09 11:52	SAH	
Bromobenzene	ND	μg/L	5	I	2/9/09 11:52	SAH	
Bromochloromethane	ND	μg/L	5	I	2/9/09 11:52	SAH	
Bromodichloromethane	ND	μg/L	5	I	2/9/09 11:52	SAH	
Bromoform	ND	μg/L	5	I	2/9/09 11:52	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
n-Butylbenzene	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
sec-Butylbenzene	ND	μg/L	5	l	2/9/09 11:52	SAH	
tert-Butylbenzene	ND	μg/L	5	l	2/9/09 11:52	SAH	
Carbon disulfide	ND	μg/L	5	l	2/9/09 11:52	SAH	
Carbon tetrachloride	ND	μg/L	5	l	2/9/09 11:52	SAH	
Chlorobenzene	ND	μg/L	5	I	2/9/09 11:52	SAH	
Chlorodibromomethane	ND	μg/L	5	I	2/9/09 11:52	SAH	
Chloroethane	ND	μg/L	5	I	2/9/09 11:52	SAH	
Chloroform	ND	μg/L	5	1	2/9/09 11:52	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	5	l	2/9/09 11:52	SAH	
2-Chlorotoluene	ND	μg/L	5	l	2/9/09 11:52	SAH	
4-Chlorotoluene	ND	μg/L	5	I	2/9/09 11:52	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5	I	2/9/09 11:52	SAH	
1,2-Dibromo-3-chloropropane	ND	μg/L	5	1	2/9/09 11:52	SAH	
1,2-Dibromoethane	ND	μg/L	5	1	2/9/09 11:52	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
1,2-Dichlorobenzene	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
1,3-Dichlorobenzene	ND	μg/L	5	1	2/9/09 11:52	SAH	
l A-Dichlorobenzene	ND	μg/L	5	l	2/9/09 11:52	SAH	
Dichlorodifluoromethane	ND	μg/L	5	1	2/9/09 11:52	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
1,1-Dichloroethane	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
1,2-Dichloroethane	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
1,1-Dichloroethene	ND	μg/L	5	I	2/9/09 11:52	SAH	
cis-1,2-Dichloroethene	10.6	μg/L	5	I	2/9/09 11:52	SAH	
trans-1,2-Dichloroethene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
1.2-Dichloropropane	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
1,3-Dichloropropane	ND	μg/L	5	- I	2/9/09 11:52	SAH	
2.2-Dichloropropane	ND	μg/L	5	I	2/9/09 11:52	SAH	
I,I-Dichloropropene	ND	μg/L	5	I	2/9/09 11:52	SAH	
eis-1,3-Diehloropropene	ND	μg/L	5	l	2/9/09 11:52	SAH	
trans-1,3-Dichloropropene	ND	μg/L	5	I	2/9/09 11:52	SAH	
Ethylbenzene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
Ethyl methacrylate	ND	μg/L	5	ı	2/9/09 11:52	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc.
Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0132 Matrix: water Date Collected: 2/5/09
Client Sample ID: SB-6 (23') Date Received: 2/5/09

			Reporting	P5.01	Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	1.3	l	2/9/09 11:52	SAH	
Hexachlorobutadiene	ND	μg/L	5	I	2/9/09 11:52	SAH	
Iodomethane	ND	μg/L	5	- 1	2/9/09 11:52	SAH	
l sopro pylbenzene	ND	μg/L	5	1	2/9/09 11:52	SAH	
p-fsopropyltoluene	ND	μg/L	5	I	2/9/09 11:52	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	ı	2/9/09 11:52	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	l	2/9/09 11:52	SAH	
4-Methyl-2-pentanone (MIBK)	ND	μg/L	1.3	- 1	2/9/09 11:52	SAH	
Naphthalene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
n-Propylbenzene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
Styrene	ND	μg/L	5	l	2/9/09 11:52	SAH	
1,1,1,2-Tetrachloroethane	ND	μg/L	5	l	2/9/09 11:52	SAH	
1,122-Tetrachloroethane	ND	μg/L	5	l	2/9/09 11:52	SAH	
Tetrachloroethene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
Toluene	ND	μg/L	5	1	2/9/09 11:52	SAH	
1,2,3-Trichlorobenzene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
1.2.4-Trichlorobenzene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
I,I,I-Trichloroethane	ND	μg/L	5	1	2/9/09 11:52	SAH	
1,12-Trichlomethane	ND	μg/L	5	ı	2/9/09 11:52	SAH	
Trichloroethene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
Trichlorofluoromethane	ND	μg/L	5	1	2/9/09 11:52	SAH	
1,2,3-Trichloropropane	ND	μg/L	5	ı	2/9/09 11:52	SAH	
1,2,4-Trimethylbenzene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
1,3,5-Trimethylbenzene	ND	μg/L	5	ı	2/9/09 11:52	SAH	
Vinylacetate	ND	μg/L	5	ı	2/9/09 11:52	SAH	
Vinyl ehloride	ND	μg/L	2	ı	2/9/09 11:52	SAH	
Xylenes, Total	ND	μg/L	15	Ī	2/9/09 11:52	SAH	
4-Bromofluorobenzene (surr)	110	%	70-130	ı	2/9/09 11:52	SAH	
Dibromofluoromethane (surr)	148	%	70-130	ı	2/9/09 11:52	SAH	ı
Toluene-d8 (surr)	114	%	70-130	ı	2/9/09 11:52	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741

www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0140 Matrix: water Date Collected: 2/5/09
Client Sample ID: SB-5 (23') Date Received: 2/6/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Qual
GCMS VOCs by EPA 8260B/5035							
Acetone	ND	μg/L	13	ı	2/9/09 2:23	SAH	
Acrylonitrile	ND	μg/L	5	i	2/9/09 2:23	SAH	
Benzene	ND	μg/L	5	l	2/9/09 12:23	SAH	
Bromobenzene	ND	μg/L	5	ı	2/9/09 12:23	SAH	
Bromochloromethane	ND	μg/L	5	I	2/9/09 12:23	SAH	
Bromodichloromethane	ND	μg/L	5	ı	2/9/09 12:23	SAH	
Bromoform	ND	μg/L	5	ı	2/9/09 12:23	SAH	
Bromomethane (Methyl Bromide)	ND	μg/L	5	ı	2/9/09 12:23	SAH	
n-Butylbenzene	ND	μg/L	5	ı	2/9/09 12:23	SAH	
sec-Butylbenzene	ND	μg/L	5	I	2/9/09 12:23	SAH	
tert-Butylbenzene	ND	μg/L	5	I	2/9/09 12:23	SAH	
Carbon disulfide	ND	μg/L	5	l	2/9/09 12:23	SAH	
Carbon tetrachloride	ND	μg/L	5	l	2/9/09 12:23	SAH	
Chlorobenzene	ND	μg/L	5	l	2/9/09 12:23	SAH	
Chlorodibromomethane	ND	μg/L	5	I	2/9/09 12:23	SAH	
Chloroethane	ND	μg/L	5	I	2/9/09 12:23	SAH	
Chloroform	ND	μg/L	5	l	2/9/09 12:23	SAH	
Chloromethane (Methyl Chloride)	ND	μg/L	5	I	2/9/09 12:23	SAH	
2-Chlorotoluene	ND	μg/L	5	I	2/9/09 12:23	SAH	
4-Ch lorotoluene	ND	μg/L	5	I	2/9/09 12:23	SAH	
2-Chloroethyl vinyl ether	ND	μg/L	5	I	2/9/09 12:23	SAH	
1.2-Dibromo-3-chloropropane	ND	μg/L	5	I	2/9/09 12:23	SAH	
1,2-Dibromoethane	ND	μg/L	5	I	2/9/09 12:23	SAH	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	I	2/9/09 12:23	SAH	
1,2-Dichlorobenzene	ND	μg/L	5	I	2/9/09 12:23	SAH	
1,3-Dichlorobenzene	ND	μg/L	5	I	2/9/09 12:23	SAH	
l A-Dichlorobenzene	ND	μg/L	5	l	2/9/09 12:23	SAH	
Dichlorodifluoromethane	ПN	μg/L	5	l	2/9/09 12:23	SAH	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	l	2/9/09 12:23	SAH	
I,I-Dichloroethane	ND	μg/L	5	I	2/9/09 12:23	SAH	
1.2-Dichloroethane	ND	μg/L	5	I	2/9/09 12:23	SAH	
l,l-Dichloroethene	ND	μg/L	5	I	2/9/09 12:23	SAH	
cis-1,2-Dichloroethene	74.0	μg/L	5	l	2/9/09 12:23	SAH	
trans-1,2-Dichloroethene	17.8	μg/L	5	l	2/9/09 12:23	SAH	
1.2-Dichloropropane	ND	μg/L	5	l	2/9/09 12:23	SAH	
1,3-Dichloropropane	ND	μg/L	5	l	2/9/09 12:23	SAH	
2,2-Dichloropropane	ND	μg/L	5	I	2/9/09 12:23	SAH	
l,l-Dichloropropene	ND	μg/L	5	I	2/9/09 12:23	SAH	
eis-1,3-Diehloropropene	ND	μg/L	5	l	2/9/09 12:23	SAH	
trans-1,3-Dichloropropene	ND	μg/L	5	l	2/9/09 12:23	SAH	
Ethylbenzene	ND	μg/L	5	I	2/9/09 12:23	SAH	
Ethyl methacrylate	ND	μg/L	5	I	2/9/09 12:23	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140

Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

Lab Sample Number: 09-0140 Matrix: water Date Collected: 2/5/09
Client Sample ID: SB-5 (23') Date Received: 2/6/09

			Reporting		Date & Time		
Analyses	Result	Units	Limit	DF	Analyzed	Analyst	Quals
GCMS VOCs by EPA 8260B/5035							
2-Hexanone	ND	μg/L	1.3	l	2/9/09 12:23	SAH	
Hexachlorobutadiene	ND	μg/L	5	- 1	2/9/09 2:23	SAH	
Iodomethane	ND	μg/L	5	I	2/9/09 2:23	SAH	
l sopro pylbenzene	ND	μg/L	5	1	2/9/09 12:23	SAH	
p-fsopropyltoluene	ND	μg/L	5	I	2/9/09 2:23	SAH	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	ı	2/9/09 12:23	SAH	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	l	2/9/09 2:23	SAH	
4-Methyl-2-pentanone (MIBK)	ND	μg/L	1.3	- 1	2/9/09 12:23	SAH	
Naphthalene	ND	μg/L	5	- 1	2/9/09 12:23	SAH	
n-Propylbenzene	ND	μg/L	5	I	2/9/09 2:23	SAH	
Styrene	ND	μg/L	5	I	2/9/09 12:23	SAH	
1,1,2-Tetrachloroethane	ND	μg/L	5	- 1	2/9/09 2:23	SAH	
1,122-Tetrachloroethane	ND	μg/L	5	l	2/9/09 12:23	SAH	
Tetrachloroethene	ND	μg/L	5	ı	2/9/09 2:23	SAH	
Toluene	ND	μg/L	5	ı	2/9/09 12:23	SAH	
1,2,3-Trichlorobenzene	ND	μg/L	5	- 1	2/9/09 12:23	SAH	
1.2.4-Trichlorobenzene	ND	μg/L	5	ı	2/9/09 12:23	SAH	
I,I,I-Trichloroethane	ND	μg/L	5	1	2/9/09 12:23	SAH	
1,1,2-Trichloroethane	ND	μg/L	5	ı	2/9/09 12:23	SAH	
Trichloroethene	ND	μg/L	5	ı	2/9/09 12:23	SAH	
Trichlorofluoromethane	ND	μg/L	5	1	2/9/09 12:23	SAH	
1,2,3-Trichloropropane	ND	μg/L	5	ı	2/9/09 12:23	SAH	
1.2.4-Trimethylbenzene	ND	μg/L	5	ı	2/9/09 12:23	SAH	
1,3,5-Trimethylbenzene	ND	μg/L	5	ı	2/9/09 12:23	SAH	
Vinyl acetate	ND	μg/L	5	ı	2/9/09 12:23	SAH	
Vinyl chloride	ND	μg/L	2	ı	2/9/09 12:23	SAH	
Xylenes, Total	ND	μg/L	15	Ī	2/9/09 12:23	SAH	
4-Bromotluorobenzene (surr)	112	%	70-130	ı	2/9/09 12:23	SAH	
Dibromofluoromethane (surr)	140	%	70-130	ı	2/9/09 12:23	SAH	ı
Toluene-d8 (surr)	114	%	70-130	ı	2/9/09 12:23	SAH	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

FOOTNOTES

The dilution factors shown represents the factors applied to the reported result and reporting limit due to changes in sample preparation, dilution of the extract, or moisture content.

ND Not detected at or above the reporting limit

J Estimated concetration above the method detection limit and below the reporting limit

MDL Method detection limit

(surr) Surrogate

E The reported value exceeds the calibration range of the instrument. The results is qualified as estimated.

{1} The surrogate recovery lies outside the established control range.

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Quality Control Data

Method Blank

			Reporting	
Analytes	Result	Units	Limit	Quals
				•
GCMS VOCs by EPA 8260B/5035				
Acetone	ND	μg/L	25	
Acrylonitrile	ND	μg/L	5	
Benzene	ND	μg/L	5	
Bromobenzene	ND	μg/L	5	
Bromochloromethane	ND	μg/L	5	
Bromodichloromethane	ND	μg/L	5	
Bromoform	ND	μg/L	5	
Bromomethane (Methyl Bromide)	ND	μg/L	5	
n-Butylbenzene	ND	μg/L	5	
sec-Butylbenzene	ND	μg/L	5	
tert-Butylbenzene	ND	μg/L	5	
Carbon disulfide	ND	μg/L	5	
Carbon tetrachloride	ND	μg/L	5	
Chlorobenzene	ND	μg/L	5	
Chlorodibromomethane	ND	μg/L	5	
Chloroethane	ND	μg/L	5	
Chloroform	ND	μg/L	5	
Chloromethane (Methyl Chloride)	ND	μg/L	5	
2-Chlorotoluene	ND	μg/L	5	
4-Chlorotoluene	ND	μg/L	5	
2-Chloroethyl vinyl ether	ND	μg/L	5	
1.2-Dibromo-3-chloropropane	ND	μg/L	5	
1,2-Dibromoethane	ND	μg/L	5	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	
1,2-Dichlorobenzene	ND	μg/L	5	
1,3-Dichlorobenzene	ИD	μg/L	5	
1.4-Dichlorobenzene	ND	μg/L	5	
Dichlorodifluoromethane	ND	μg/L	5	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	
1,1-Dichloroethane	ND	μg/L	5	
1,2-Dichloroethane	ND	μg/L	5	
1.1-Dichloroethene	ND	μg/L	5	
cis-1,2-Dichloroethene	ND	μg/L	5	
trans-1,2-Dichloroethene	ND	μg/L	5	
1,2-Dichloropropane	ND	μg/L	5	
1,3-Dichloropropane	ND	μg/L	5	
2,2-Dichloropropane	ND	μg/L	5	
1,1-Dichloropropene	ND	μg/L	5	
cis-1,3-Dichloropropene	ND	μg/L	5	
trans-1,3-Dichloropropene	ND	μg/L	5	
Ethylbenzene	ND	μg/L	5	
Ethyl methacrylate	ND	μg/L	5	
	1762	h-D, =	-	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Quality Control Data

Method Blank

			Reporting	
Analytes	Result	Units	Limit	
GCMS VOCs by EPA 8260B/5035				
2-Hexanone	ND	μg/L	13	
Hexachlorobutadiene	ND	μg/L	5	
lodomethane	ND	μg/L	5	
Isopropylbenzene	ND	μg/L	5	
p-Isopropyltoluene	ND	μg/L	5	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	
4-Methyl-2-pentanone (MIBK)	ND	μg/L	13	
Naphfialene	ND	μg/L	5	
n-Propy Ibenzene	ND	μg/L	5	
Styrene	ND	μg/L μg/L	5	
1.1.1.2-Tetrachloroethane	ND	μg/L μg/L	5	
1.1.2.2-Tetrachloroethane	ND	μg/L	5	
Tetrachloroethene	ND	μg/L	5	
Toluene	ND	μg/L	5	
1.2.3-Trichlorobenzene	ND	μg/L	5	
1.2.4-Trichlorobenzene	ND	μg/L μg/L	5	
1.1.1-Trichloroethane	ND ND	μg/L μg/L	5	
1.1.2-Trichloroethane	ND	μg/L	5	
Trichloroethene	ND	μg/L μg/L	5	
Trich lorofluoromethane	ND	μg/L	5	
1,2,3-Trichloropropane	ND	μg/L μg/L	5	
1.2.4-Trimethylbenzene	ND ND	μ g/∟ μg/∟	5	
1,3,5-Trimethylbenzene	ND	μg/L μg/L	5	
Vinyl acetate	ND	μg/L μg/L	10	
Vinyl chloride	ND	μg/L	2	
Xylenes, Total	ND	μg/L μg/L	15	
4-Bromofluorobenzene (surr)	104	μg/L %	70-130	
Dibromofluoromethane (surr)	126	%	70-130	
Toluene-d8 (surr)	126	%	70-130 70-130	
1 Olucio-ag (SM1)	100	70	70-130	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Quality Control Data

Method Blank

			Reporting	
Analytes	Result	Units	Limit	Quals
GCMS VOCs by EPA 8260B/5035				
Acetone	ND	μg/L	13	
Acrylonitrile	ND	μg/L	5	
Benzene	ND	μg/L	5	
Bromobenzene	ND	μg/L	5	
Bromochloromethane	ND	μg/L	5	
Bromodichloromethane	ND	μg/L	5	
Bromoform	ND	μg/L	5	
Bromomethane (Methyl Bromide)	ND	μg/L	5	
n-Butylbenzene	ND	μg/L	5	
sec-Butylbenzene	ND	μg/L	5	
tert-Butylbenzene	ND	μg/L	5	
Carbon disulfide	ND	μg/L	5	
Carbon tetrachloride	ND	μg/L	5	
Chlorobenzene	ND	μg/L	5	
Chlorodibromomethane	ND	μg/L	5	
Chloroethane	ND	μg/L	5	
Chloroform	ND	μg/L	5	
Chloromethane (Methyl Chloride)	ND	μg/L	5	
2-Chlorotoluene	ND	μg/L	5	
4-Chlorotoluene	ND	μg/L	5	
2-Chloroethyl vinyl ether	ND	μg/L	5	
1,2-Dibromo-3-chloropropane	ND	μg/L	5	
1,2-Dibromoethane	ND	μg/L	5	
Dibromomethane (Methylene Bromide)	ND	μg/L	5	
1,2-Dichlorobenzene	ND	μg/L	5	
1.3-Dichlorobenzene	ND	μg/L	5	
l A-Dichlorobenzene	ND	μg/L	5	
Dichlorodifluoromethane	ND	μg/L	5	
trans-1,4-Dichloro-2-butene	ND	μg/L	5	
I,I-Dichloroethane	ND	μg/L	5	
1,2-Dichloroethane	ND	μg/L	5	
L,I-Dichloroethene	ND	μg/L	5	
cis-1,2-Dichloroethene	ND	μg/L	5	
trans-1,2-Dichloroethene	ND	μg/L	5	
1.2-Dichloropropane	ND	μg/L	5	
1.3-Dichloropropane	ND	μg/L	5	
2,2-Dichloropropane	ND	μg/L	5	
l,l-Dichloropropene	ND	μg/L	5	
cis-1,3-Dichloropropene	ND	μg/L	5	
trans-1,3-Dichloropropene	ND	μg/L	5	
Ethylbenzene	ND	μg/L	5	
Ethyl methacrylate	ND	μg/L	5	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Quality Control Data

Method Blank

			Reporting	
Analytes	Result	Units	Limit	Quals
GCMS VOCs by EPA 8260B/5035				
2-Hexanone	ND	μg/L	13	
Hexachlorobutadiene	ND	μg/L	5	
Iodomethane	ND	μg/L	5	
Isopropylbenzene	ND	μg/L	5	
p-Isopropyltoluene	ND	μg/L	5	
Methyl Ethyl Ketone (2-Butanone)	ND	μg/L	13	
Methyl(tert) butyl ether (MTBE)	ND	μg/L	5	
4-Methyl-2-pentanone (MfBK)	ND	μg/L	13	
Naphthalene	ND	μg/L	5	
n-Propy Ibenzene	ND	μg/L	5	
Styrene	ND	μg/L	5	
1,1,1,2-Tetrachloroethane	ND	μg/L	5	
1,1.2.2-Tetrachloroethane	ND	μg/L	5	
Tetrachloroethene	ND	μg/L	5	
Toluene	ND	μg/L	5	
1,2,3-Trichlorobenzene	ND	μg/L	5	
1,2,4-Trichlorobenzene	ND	μg/L	5	
1,1,1-Trichloroethane	ND	μg/L	5	
1,1,2-Trichloroethane	ND	μg/L	5	
Trichloroethene	ND	μg/L	5	
Trichlorofluoromethane	ND	μg/L	5	
1.2,3-Trichloropropane	ND	μg/L	5	
1.2.4-Trimethylbenzene	ND	μg/L	5	
1,3,5-Trimethylbenzene	ND	μg/L	5	
Vinyl acetate	ND	μg/L	5	
Vinyl chloride	ND	μg/L	2	
Xylenes, Total	ND	μg/L	15	
4-Bromofluorobenzene (surr)	108	%	70-130	
Dibromofluoromethane (suπ)	150	%	70-130	1
Toluene-d8 (surr)	103	%	70-130	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Quality Control Data

Laboratory Control Sample

Analytes	LCS Result	Units	Spike Conc.	LCS % Recovery	% Recovery Limits	Quals
GCMS VOCs by EPA 8260B/5035						
Benzene	46.6	μg/L	50	93%	70-130	
Chlorobenzene	47.8	μg/L	50	96%	70-130	
1,1-Dichloroethene	55.9	μg/L	50	112%	70-130	
Toluene	46.0	μg/L	50	92%	70-130	
Trichloroethene	54.2	μg/L	50	108%	70-130	
4-Bromofluorobenzene (surr)	110	%			70-130	
Dibromotluoromethane (surr)	112	%			70-130	
Toluene-d8 (surr)	106	%			70-130	

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Quality Control Data

Laboratory Control Sample

Analytes	LCS Result	Units	Spike Conc.	LCS % Recovery	% Recovery Limits	Quals	
GCMS VOCs by EPA 8260B/5035							
Benzene	49.0	μg/L	50	98%	70-130		
Chlorobenzene	47.6	μg/L	50	95%	70-130		
L,L-Dichloroethene	93.9	μg/L	50	188%	70-130	2	
Toluene	46.5	μg/L	50	93%	70-130		
Trichloroethene	59.6	μg/L	50	119%	70-130		
4-Bromofluorobenzene (surr)	110	%			70-130		
Dibromotluoromethane (surr)	125	%			70-130		
Toluene-d8 (surr)	101	%			70-130		

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Quality Control Data

Spiked Sample: 09-0107

Matrix Spike/Matrix Spike Duplicate Results

Analytes	Sample Result	Units	Spike Conc.	MS Result	MSD Result	MS %Rec	MSD %Rec	%Rec Limits	RPD	RPD Limit	Ouals
· Bottony o to	711.5431		Conci	1107401	14.5411	707111	70141	/ BITCE ESHILLES	11117		- Q-1-13
GCMS VOCs by EPA 8260B/5035											
Benzene	ND	μg/L	50	46.8	48.8	94	98	70-130	4.2	0-20	
Chlorobenzene	ND	μg/L	50	47.2	48.9	94	98	70-130	3.5	0-20	
1,1-Dichloroethene	ND	μg/L	50	63.9	62.2	128	124	70-130	2.6	0-20	
Toluene	ND	μg/L	50	46.6	46.6	93	93	70-130	0.0	0-20	
Trichloroethene	ND	μg/L	50	55.2	54.3	110	109	70-130	1.6	0-20	
4-Bromofluorobenzene (surr)	103	%		108	105			70-130			
Dibromotluoromethane (surr)	125	%		112	114			70-130			
Toluene-d8 (surr)	102	%		104	104			70-130			

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone:317-509-8140 Fax: 317-894-9741 www.sierramobilelabs.com

Lab Project Number: SML09-003

Client: Mundell & Associates, Inc. Client Project ID: M01046 / Michigan Plaza

QUALITY CONTROL DATA FOOTNOTES

Consistent with EPA guidelines, unrounded concentrations are displayed and have been used to calculate %Rec and RPD

values

LCS(D) Laboratory control sample (duplicate)

MS(D) Matrix spike (duplicate)
DUP Sample Duplicate

ND Not detected above the reporting limit

Estimated concentration above the method detection limit and below the reporting limit

MDL Method detection limit
RPD Relative percent difference
(surr) Surrogate

{1} The surrogate recovery lies outside the established control range.

{2} The LCS recovery for this compound is outside the established control range.

Chain of Custody Record

611 Washington Cove Way

Indianapolis, IN 46229 Phone 317-509-8140

Sierra Mobile Labs, Inc.

Pro	Pr	lame:	2			Location		of Sampling Site			Analysis	Analysis and Method Requested	Shipment Seal No.	
Z	MOIONE Mie	chiga	Michigan Mazo	50						ро	U,			
Sar	Sampler (Signature)						Purcha	Purchase Order NO	C.	Meth	77.3			
S S	No. Sample Field I.D.	Date	Time	duc	qe.	Маттіх	No of	Type	Preserve	Jer	5701		Lab ID No.	
	NO.			2	el		COLL			ıΑ	1		Filled in by lab	2/4/1
-	1 58-1 11-12				>	>	7	402	MCH P		>		06-0020	0852
2	2 58-1 14-19					>	7	× ×-	-		>		3	
က	3 58.3 11-12					V	7				7		230	_
4	4 518.3 15-16					5	7				7		693	_
3	5 513.4 10-11					V	7				7		hb0	
9	6 SB-4 16-17					~	2	→	>		\ \		580	
_	7 50-1			Ĩ		3	2	40m1	1761		>		960	R
80	8 50-3 (23')					3	3				>		697	kef
00	958-1(23)					3	3	>	\rightarrow		/		360	[e,
10	10 58.2 (33.34")				>	3	3	->	7		>	or criry sample	560	130

Date/Time 2. Received by: (Sig.) Client ID Number: 2. Relinquished by: (Signature) Phone No.: 1700 Date/Time 3/1/09 Date/Time Received for Laboratory by: (Sig.) Date/Time 1. Received by: (Signature) Report Results to: 2 Yes 3. Relinquished by: (Signature) 1. Relinquished by: (Signature) Seal intact at lab? THE THE

Reference 26

801 601

NON

20%

Remarks/Special Instructions (Detection Limit, Rush results Requested, etc.)

10 50-7 10-11 958-7 3-4

W

Page 2 of

Chain of Custody Record

611 Washington Cove Way Sieпа Mobile Labs, Inc.

Indianapolis, IN 46229 Phone 317-509-8140

Michigan Plaza Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Date Time & Matrix No. of Type Preserve of Cont. Container Ali.D. Ali.D. Ali.D. Ali. Ali. Ali. Ali. Ali. Ali. Ali. Ali	4	Project No. Project Name:	Project No	ame:				Location	of Samp	Location of Sampling Site		×	nalysi	s and 1	Metho	Nd Re	Analysis and Method Requested		Shipment Seal No.
D. Date Time mp Cont. Container Preserve is Cont. Container Container Container Cont. Container Cont. Container Cont. Container Cont. Cont	_	sholov	Mich	11gan	Pla	24							.		-			+	
11.D. Date Time B Matrix No. of Type Preserve Cont. Container Preserve A Matrix No. of Type Preserve Cont. Container A Mont HCI V price its searable V V V V V V V V V V V V V V V V V V V	Sa	mpler (Signa	ature)						Purchas	e Order NO			1978						
S \tilde{G} Cont. Container $\tilde{A} > 0$ \tilde{G} Cont. Container $\tilde{A} > 0$ \tilde{G}	Ž	Sample F		Date	Time	dw	ds	Matrix	No. of	Type	Preserve	.lei	570						Lab ID No.
2 2 3 40ml HC1 V phice ity semple 097: 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 7 6 6 6 7 7 7 7		Ž	o.			၁၁	าอ			Container		-	n		-			-	Filled in by lab
2 1 402 none 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	`	1 58-2 (5	24')				>	3	3	40ml	HCI		>	pri	011	Ž,	2/0 m2		08-010
2		2 Sir-1 6	-7				>	3	-	402	non l		\						101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 5B 127	a				\						>						102
6 58 3 2-3 7 58-4 6-7 8 50-7 (23') 9 40ml HCl J precity somple	٠	1 58-4" 11	1-12				>						>						103
) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	5 58-1 15	-16				>						2						104
) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3 58 3 2	-3				1						>		\dashv				501
1) J w 3 40ml HCI J precity somble		5 4-85 T	-7				>	→	->	>	→		>						106
		8 50-7 (23')				>	3	3	40m1	HCI		>	pre	Y IS	Som	1/0		107

2/4/09

Date/Time 2. Received by: (Sig.) 2. Relinquished by: (Signature) Date/Time 1. Received by: (Signature) 1. Relinquished by: (Signature) Morra

Date/Time 2/4/09 3. Relinquished by: (Signature) Date/Time Received for Laboratory by: (Sig.)

Client ID Number:

Phone No.:

300

Sierra Mobile Labs, Inc. 611 Washington Cove Way Indianapolis, IN 46229 Phone 317-509-8140

Chain of Custody Record

Page 5 of 5.

Time © © Matrix No. of Type Preserve © Ont. Container of A None of Type Preserve of A None of Type Preserve of A None of Type None of A	P 5	Project No.	Project Name:	ame:				ocation	of Sam	Location of Sampling Site			Analys	Analysis and Method Requested	ethod	Redues	ted	Shipment Seal No.
Time B Matrix No. of Type Preserve 2 0.00 Time B Matrix No. of Type Preserve 2 0.00 Ty	<	101046	Mic	nigan		2a										F	-	
Time E Matrix No. of Type Preserve E S 1 10 10 10 10 10 10 10 10 10 10 10 10 1	Sai	mpler (Signat	(arre)						Purchas	se Order NO			1978					
Date/Time Received for Laboratory by: (Sig.) Date/Time Proor Results to: No Report Results to:	9	1	eld I.D.	Date	Time	du	qŧ		No. of	Type	Preserve	al.	20					Lab ID No.
Date/Time Received for Laboratory by: (Sig.) Date/Time Phone No.:		No				က၁	ຣາວ		Cont.	Container		\rightarrow	2/2			1	-	Filled in by lab
Date/Time 1. Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) Accived for Laboratory by: (Sig.)	_	-	21-5				>	N	_	404	NOME		>				\dashv	0110-50
Date/Time 1. Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) Actify Q. Hunnucutt I Report Results to: No Report Results to:	2	_															+	
Date/Time 1. Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) According Received for Laboratory by: (Sig.)	ري.																\dashv	
Date/Time Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Acadly Q. Humancutt No. Report Results to: No. Report Results to:	4																\dashv	
Date/Time 1. Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) Accord Results to: No Report Results to:	(C)																	
Date/Time 1. Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Acady A. Munucum I No Report Results to: No Report Results to:	9																\exists	
Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) Acady A. Munucum in Phone No.:	1																	
Date/Time 1. Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) Acady C. Munucum I no Report Results to: No Report Results to:	00	25																
Date/Time 1. Received by: (Signature) Date/Time Received for Laboratory by: (Sig.) Acady A. Munucutt No Report Results to: No Report Results to:	(C)																\exists	
Date/Time 1. Received by: (Signature) 2. Relinquished by: (Signature) Date/Time Received for Laboratory by: (Sig.) Date/Time Client ID Number 1700 Phone No.:	2		ļ											_		\dashv		
Date/Time Received for Laboratory by: (Sig.) Date/Time Received for Laboratory by: (Sig.) Acady A. Munned M. Inc. No Report Results to:	40	marks/Speci	al Instruc	tions (De	etection	Limit,	Rush	esults F	equest	ed, etc.)								
Date/Time Received for Laboratory by: (Sig.) Date/Time	1	Relinquished H WILL	by. (Sign	ature)	Date/T		1. Rec	eived by	: (Signa	ture)	2. Relinc	quish	ed by:	(Signatu	<u>ē</u>	Date/Ti		2. Received by: (Sig.)
Yes No Report Results to:		Relinquished	by: (Sign	nature)	Date/T		Receiv	ed for L	Shorato	ry by: (Sig.)	Date 2/1/09	/Time	1	lent ID I	Aumb Mumb	Ľ.		
		Seal intac	at at lab?	Yes	No		Report	Results	to:				۵	hone No				

Chain of Custody Record

611 Washington Cove Way Indianapolis, 1N 46229 Phone 317-509-8140

Sierra Mobile Labs, Inc.

Page of

Pro	Project No. Project Name:	ame:				Location	of Sam	Location of Sampling Site		A	Analysis and Method Requested	Method	Requested		Shipment Seal No.
M	Molow Miel	Michigan	Plaza	Ö							0	F			
San	Sampler (Signature)						Purchas	Purchase Order NO		Meth	975				
2	Sample Field I.D. No.	Date	Time	comp	Grab	Matrix	No. of Cont.	Type Container	Preserve	JenA	SON				Lab ID No. Filled in by lab
-	58-6 (23')	215/09	1400		>	3	m	10:0h	HCI		7				09-0132
2					1										
3													1	1	
4												1			
5												1			
9															
7												-	1		
8									_			-	+		
6													+		4
10									. 9						
₩ <u>₩</u>	Remarks/Special Instructions (Detection Limit, Rush results Requested, etc.)	tions (D	etection	Limit	Rush	results F	equeste	ed, etc.)							
- 150	1. Relinquished by. (Signature)	nature)	Date/Time		1. Rec	eceived by: (Signature)	r. (Signa	ture)	2. Relin	quishe	2. Relinquished by: (Signature)	iture)	Date/Time		2. Received by: (Sig.)
က် Page 61 o	Relinquished by: (Signature)	nature)	Date/Time		Recei	seived for Lab	aborato	Received for Laboratory by. (Sig.)	2/5/09 2/5/09	5/09 15.00		Client ID Number.	<u>.</u>		
82	Coal intact at lah?	Yes	S.		Repor	Report Results to	to:				Phone No.:	o.			

Phone No.:

Report Results to:

Yes

Seal intact at lab?

2/6/25/2/Q

10501

Chain of Custody Record

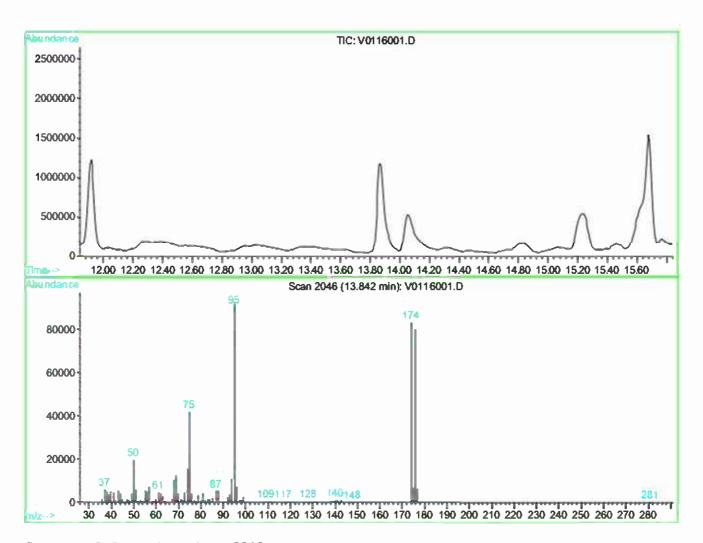
611 Washington Cove Way

Indianapolis, IN 46229 Phone 317-509-8140

Sierra Mobile Labs, Inc.

Moioub Michigan Plaza		Analysis and Method Requested Shi	Shipment Seal No.
Sampler (Signature) Purchase Order NO.	Order NO.		
No. Sample Field I.D. Date Time B & Matrix No. of Type I	Type Preserve		Lab ID No.
3) 11/6° 1500 V W 3	HCI &		04-0-80
3			
4			4-
5			
9			
7			
8			
6			
10			

Data File : C:\HPCHEM\2\DATA\V011609\V0116001.D


Acq On : 16 Jan 09 4:06 pm Operator: Stan Hunnicutt

Sample : MB Inst : GC/MS Ins Misc : VOL195 10u1 Multiplr: 1.00

MS Integration Params: events.e

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260

Spectrum Information: Scan 2046

1	Target Mass	1	Rel. to Mass	1	Lower Limit%	I	Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
-	50		95		15		40		21.3		19696		PASS	ı
	75	-	95	1	30	-	60		45.5		42016		PASS	
	95		95	-	100	-	100		100.0		92440		PASS	1
	96		95		5		9		7.5		6910		PASS	
	173		174		0.00		2		0.0		0		PASS	
	174		95		50		100		90.1		83312		PASS	
	175		174		5		9		8.2		6838		PASS	
	176		174		95		101		96.0		80000		PASS	
	177		176		5	-	9	-	7.6		6041		PASS	-
	173 174 175 176		174 95 174 174		0.00 50 5		2 100 9 101		0.0 90.1 8.2 96.0	 - - - -	0 83312 6838 80000		PASS PASS PASS PASS	

Data File : C:\HPCHEM\2\DATA\V011609\V0116002.D Vial: 2

Acq On : 16 Jan 09 4:36 pm Operator: Stan Hunnicutt

Sample : VOC std 2ug/L Misc : VOL196 lul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:57 19109 Ouant Results File: VOL.RES

Quant Method: C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits !	ev(Min)
1) FLUOROBENZENE	7.02	96	10619405	50.00	ug/l	-0.01
46) CHLOROBENZENE-d5	11.91	117	12406116	50.00	ug/1	-0.03
69) 1,4-DICHLOROBENZENE-d4	15.66	152	7885095	50.00	ug/1	-0.04
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.75	113	3167424	51.38	ug/l	-0.02
Spiked Amount 50.000			Recove	ry =	102.7	76%
35) TOLUENE-d8	9.50	98	13336221	51.44	ug/1	-0.02
Spiked Amount 50.000			Recove	-	102.8	
55) BROMOFLUOROBENZENE	13.85	95	6260761	47.28	ug/1	-0.03
Spiked Amount 50.000			Recove	ry =	94.	56%
Target Compounds						Qvalue
Dichlorodifluoromethane	1.70	85	197006	2.26	ug/l	# 43
4) Vinyl_Chloride	1.91	62	82609		ug/l	# 1
8) 1,1-Dichloroethene	2.80		39191m		ug/l	O
9) Carbon Disulfide	2.83	76	105869	2.24	ug/1	# 57
10) Iodomethane	2.95	142	65270m	2.57	ug/l	0
<pre>12) trans-1,2-Dichloroethene</pre>	3.51	96	48771m	2.25	ug/l	O
14) Methy-tert-butylether (MTBE	3.66	73	163615	2.29	ug/l	# 61
<pre>15) 1,1-Dichloroethane</pre>	4.25	63	97538m	2.37	ug/1	0
<pre>19) 2,2-Dichloropropane</pre>	5.19	77	156780m	2.08	ug/l	61
21) Chloroform	5.45	83	214785	2.25	ug/l	# 54
24) 1,1,1-Trichloroethane	5.75	97	209751	2.22	ug/1	96
27) Benzene	6.35	78	486002	2.31	ug/l	100
28) 1,2-Dichloroethane	6.70	62	195436	2.25	ug/l	# 73
29) Trichloroethene	7.27	95	187325	2.76	ug/l	85
30) Dibromomethane	7.93	93	97178	2.19	ug/1	95
31) 1,2-Dichloropropane	8.10	63	152958		ug/l	
32) Bromodichloromethane	8.21	83	230403	2.20	ug/l	# 94
33) 2-Chloroethylvinylether	9.58	63	65801m		ug/1	84
34) cis-1,3-Dichloropropene	9.21	75	302350		ug/1	95
36) Toluene	9.58	92	493623		ug/l	94
37) Tetrachloroethene	10.15	164	230436	2.07	ug/l	99
38) 4-Methyl-2-pentanone	10.25	100	78739	-36.27	ug/1	96
39) trans-1,3-Dichloropropene	10.26	75	268552	2.33	ug/l	98
40) 1,1,2-Trichloroethane	10.49	83	125001	2.29	ug/l	97
41) Ethyl_methacrylate	10.57			-2.40		# 65
42) Dibromochloromethane	10.75	129	220169	2.16	ug/l	98
43) 1,3-Dichloropropane	10.91	76	316764	2.44	ug/l	98
44) 1,2-Dibromoethane	11.09		186163		ug/l	

Data File : C:\HPCHEM\2\DATA\V011609\V0116002.D Vial: 2

Acq On : 16 Jan 09 4:36 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 2ug/L Misc : VOL196 lul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:57 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009

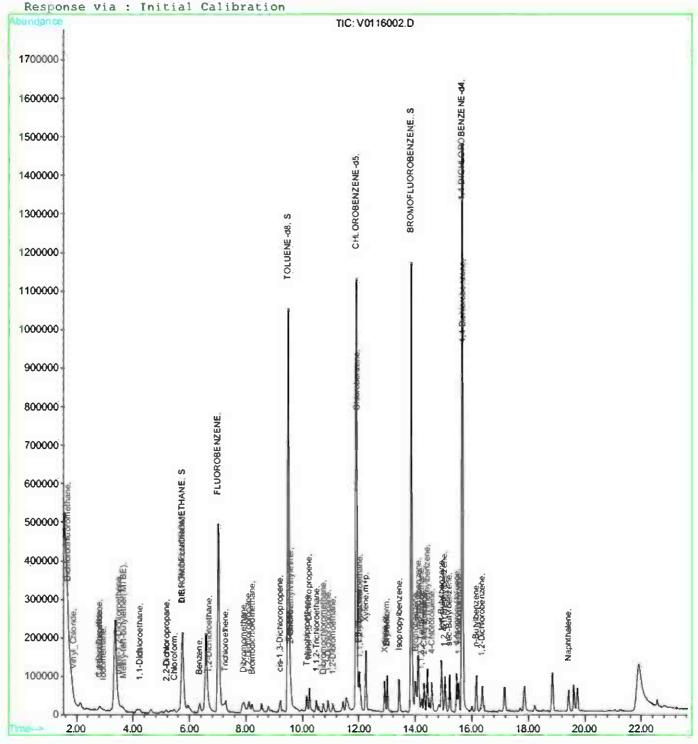
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Q٧	/alue
45)	2-Hexanone	11.55	43	469247m	-16.06 ug/l		97
47)	Chlorobenzene	11.93	112	568427	2.15 ug/1	#	84
48)	Ethylbenzene	12.01	91	955080	2.41 ug/1		98
49)	1,1,1,2-Tetrachloroethane	12.05	131	242365	2.33 ug/1	#	89
50)	Xylene, m+p	12.25	106	870361	5.48 ug/l		77
51)	Xylene, o	12.92	106	422283	2.37 ug/1		81
52)	Styrene	13.01	104	680123	2.47 ug/l	#	83
53)	Bromoform	13.01	173	164099	2.10 ug/1		99
54)	Isopropylbenzene	13.43	105	1042579	2.35 ug/1		100
56)	Bromobenzene	14.00	156	285488	2.15 ug/1		99
57)	n-Propylbenzene	14.09	91	1214931	2.55 ug/1		100
58)	1,1,2,2-Tetrachloroethane	14.22	83	233431	2.35 ug/1	#	88
59)	2-Chlorotoluene	14.31	91	665387	2.39 ug/1		97
60)	1,3,5-Trimethylbenzene	14.43	105	819017	2.50 ug/1		93
62)	trans-1,4-Dichloro-2-buten	14.51	53	68426	-5.91 ug/1	#	68
63)	4-Chlorotoluene	14.59	91	701559	2.48 ug/l		96
64)	tert-Butylbenzene	14.93	119	981081	2.68 ug/l	#	86
65)	1,2,4-Trimethylbenzene	15.05	105	868886	2.55 ug/l		93
66)	sec-Butylbenzene	15.22	105	1257605	2.58 ug/l		97
67)	4-Isopropyltoluene	15.47	119	1046441	2.49 ug/l	#	95
68)	1,3-Dichlorobenzene	15.53	146	579123	2.48 ug/l		97
70)	1,4-Dichlorobenzene	15.68	146	568357m	2.18 ug/1		97
71)	n-Butylbenzene	16.16	91	828984	2.06 ug/1		98
72)	1,2-Dichlorobenzene	16.37	146	521312	2.05 ug/1		98
76)	Naphthalene	19.43	128	855889	4.57 ug/1		100

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116002,D

Acq On : 16 Jan 09 4:36 pm Operator: Stan Hunnicutt
Sample : VOC std 2ug/L Inst : GC/MS Ins


Misc : VOL196 lul Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Jan 17 22:57 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemistation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 23:14:11 2009

Data File : C:\HPCHEM\2\DATA\V011609\V0116003.D Vial: 3

Acq On : 16 Jan 09 5:06 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 5ug/L Misc : VOL196 2.5ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:51 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits!	Dev (Min)
1) FLUOROBENZENE	7.03	96	10851879	50.00	ug/1		0.00
46) CHLOROBENZENE-d5	11.91	117	12326198	50.00	ug/l	_	0.03
69) 1,4-DICHLOROBENZENE-d4	15.67	152	7930749	50.00	ug/1	-	0.03
System Monitoring Compounds							
23) DIBROMOFLUOROMETHANE	5.75	113	3198526	50.93	ug/l	-	0.02
Spiked Amount 50.000			Recove	ry =	101.	86%	
35) TOLUENE-d8	9.50	98	13311994	50.30	ug/l	_	0.02
Spiked Amount 50.000			Recove				
55) BROMOFLUOROBENZENE	13.86	95	6342646	47.86	ug/1	-	0.03
Spiked Amount 50.000			Recove	ry =	95.	72%	
Target Compounds						Qva	lue
Dichlorodifluoromethane	1.70	85	463689	5.25	ug/l		97
Chloromethane	1.87			12.54			43
4) Viny1_Chloride		62		4.98			1
5) Bromomethane	2.16	94	87177m	5.23	ug/l		90
6) Chloroethane	2.23	64	62083m	5.43	ug/l		44
7) Trichlorofluoromethane	2.35	101	114524m				41
1,1-Dichloroethene	2.80	96	90101	6.25	ug/1	#	76
9) Carbon Disulfide	2.83			6.48	ug/l	#	57
10) Iodomethane		142		6.68	ug/l	#	28
<pre>12) trans-1,2-Dichloroethene</pre>		96		5.44	ug/l	#	71
13) n-Hexane	3.59	57 73	176907m		_		48
14) Methy-tert-butylether (MTBE				5.29	-		91
<pre>15) 1,1-Dichloroethane</pre>		63			ug/l	#	50
16) Acrylonitrile	4.37	53	51358m		_		24
<pre>17) Viny1_Acetate</pre>		43		6.68	-		100
18) cis-1,2-Dichloroethene		96					61
<pre>19) 2,2-Dichloropropane</pre>		77		4.80			61
20) Bromochloromethane		128		4.85			80
21) Chloroform		83		4.41	ug/l		86
<pre>22) Carbon_Tetrachloride</pre>			426182		-		80
24) 1,1,1-Trichloroethane	5.76	97	499735	5.22			98
25) 2-Butanone			99997				54
26) 1,1-Dichloropropene			441678	5.46	ug/l		99
27) Benzene	6.36	78	1165461	5.52			100
28) 1,2-Dichloroethane			480260	5.49			73
29) Trichloroethene			405387		-		88
30) Dibromomethane	7.93	93	226894	5.01	_		93
31) 1,2-Dichloropropane		63	357447		ug/l		71

Data File : C:\HPCHEM\2\DATA\V011609\V0116003.D Vial: 3

Acq On : 16 Jan 09 5:06 pm Operator: Stan Hunnicutt

Sample : VOC std 5ug/L Misc : VOL196 2.5ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:51 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

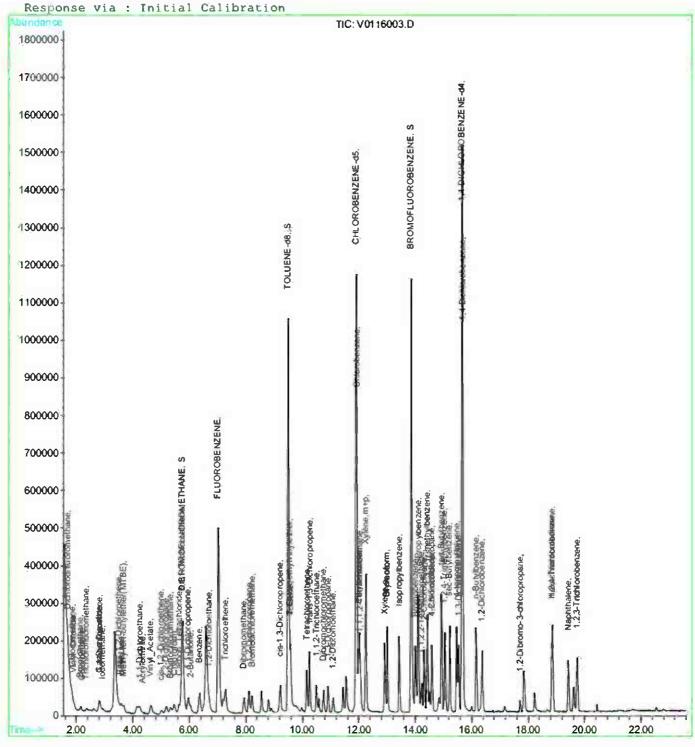
Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc U	nit	Qv	alue
321	Bromodichloromethane	8.22	 83	558626	5.28	ug/1	#	94
*	2-Chloroethylvinylether	9.58	63	138184		ug/1		91
	cis-1,3-Dichloropropene	9.22	75	722312		ug/1		96
	Toluene	9.58	92	1135784	6.04	ug/l		95
37)	Tetrachloroethene	10.16	164	575927		ug/l		98
38)	4-Methyl-2-pentanone	10.25	100	226091	-33.79			87
	trans-1,3-Dichloropropene	10.26	75	662178	5.76	ug/l		97
40)	1,1,2-Trichloroethane	10.50	83	325913	6.05	ug/1		96
42)	Dibromochloromethane	10.75	129	574181	5.64	ug/1		99
43)	1,3-Dichloropropane	10.91	76	779047	6.09	ug/1		98
44)	1,2-Dibromoethane	11.09	107	478787	5.75	ug/1	#	96
45)	2-Hexanone	11.56	43	1050072	-10.23	ug/l		94
47)	Chlorobenzene	11.94	112	1393898	5.39	ug/l		95
48)	Ethylbenzene	12.01	91	2252473	5.89	ug/l		97
49)	1,1,1,2-Tetrachloroethane	12.05	131	565149	5.57	ug/l	#	90
50)	Xylene, m+p	12.25	106	1997172	13.35	ug/l		77
51)	Xylene, o	12.92	106	987601	5.72	ug/l		90
52)	Styrene	13.01	104	1591765	6.01	ug/l	#	85
53)	Bromoform	13.01	173	452844		ug/l		98
54)	Isopropylbenzene	13.43	105	2506410	5.85	ug/1		98
	Bromobenzene	14.00	156	718841	5.54	ug/l		97
	n-Propylbenzene	14.10	91	2854602		ug/l		99
58)	1,1,2,2-Tetrachloroethane	14.23	83	598603	6.33	ug/l		100
	2-Chlorotoluene	14.32	91	1587676		ug/1		96
*	1,3,5-Trimethylbenzene	14.43	105	1991668		ug/1		92
	1,2,3-Trichloropropane	14.59	75	72518m		ug/l		100
	trans-1,4-Dichloro-2-buten	14.51	53	167117	-4.23	_		86
	4-Chlorotoluene	14.59	91	1626997		ug/1		96
	tert-Butylbenzene	14.93		2242545		ug/1	#	88
	1,2,4-Trimethylbenzene	15.05		2058026		ug/1		96
	sec-Butylbenzene	15.22	105	2948054		ug/1		98
	4-Isopropyltoluene	15.47		2501790		ug/1		96
	1,3-Dichlorobenzene	15.54	146	1390775		ug/1		98
	1,4-Dichlorobenzene	15.69	146	1376380m		ug/1		99
*	n-Butylbenzene	16.16	91	2049356		ug/1		100
	1,2-Dichlorobenzene	16.37		1307922		ug/1		98
	1,2-Dibromo-3-chloropropan	17.71	75	104689		ug/1		95
	Hexachlorobutadiene	18.84	225	496371		ug/1		98
*	1,2,4-Trichlorobenzene	18.87		1042728		ug/1		99
	Naphthalene	19.43		2218365		ug/1		100
	1,2,3-Trichlorobenzene	19.74	180 	961683	4.64	ug/1 		99

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116003,D

Acq On : 16 Jan 09 5:06 pm Operator: Stan Hunnicutt
Sample : VOC std 5ug/L Inst : GC/MS Ins


fisc : VOL196 2.5ul Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Jan 17 22:51 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 23:14:11 2009

Data File : C:\HPCHEM\2\DATA\V011609\V0116004.D Vial: 4

Acq On : 16 Jan 09 5:36 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 10ug/L Misc : VOL196 5ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:48 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev (Min)
1) FLUOROBENZENE	7.03	96	10998837	50.00	ug/l	0.00
46) CHLOROBENZENE-d5	11.92	117	12458574	50.00	ug/1	-0.02
69) 1,4-DICHLOROBENZENE-d4	15.67	152	7818290	50.00	ug/1	-0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.76	113	3351601	53.36	ug/1	-0.01
Spiked Amount 50.000			Recover	cy =	106.7	2%
35) TOLUENE-d8	9.51	98	13495064	50.39	ug/l	-0.01
Spiked Amount 50.000			Recover	cy =	100.7	88
55) BROMOFLUOROBENZENE	13.86	95	6412307	47.37	ug/l	-0.03
Spiked Amount 50.000			Recovei	c y =	94.7	48
Target Compounds						Qvalue
Dichlorodifluoromethane	1.69	85	942574	10.66	_	98
Chloromethane	1.86	50	494074	19.19		95
4) Viny1_Chloride		62	374307	9.08	~	
5) Bromomethane	2.15		126699	7.29	_	98
6) Chloroethane		64	82356	9.19	ug/l	# 44
7) Trichlorofluoromethane		101	266506	21.37	ug/l	# 85
1,1-Dichloroethene	2.79		176196	12.73	_	91
Carbon Disulfide		76	498712	10.88		
10) Iodomethane		142	314734	13.51		
12) trans-1,2-Dichloroethene	3.52			11.07	-	
13) n-Hexane	3.60	-	333204	12.30	_	
14) Methy-tert-butylether (MTBE		73		10.72	_	
15) 1,1-Dichloroethane		63		9.62	_	
16) Acrylonitrile		53	101269m	14.34	-	67
17) Vinyl_Acetate		43		13.64	_	
18) cis-1,2-Dichloroethene	5.04			8.87	_	
19) 2,2-Dichloropropane	5.20		758351	9.57	_	
20) Bromochloromethane	5.35		303966	10.81	_	
21) Chloroform	5.48		1024537	10.20		
<pre>22) Carbon_Tetrachloride</pre>		117	863451	10.12	_	
24) 1,1,1-Trichloroethane		97	1055665	11.13		96
25) 2-Butanone	6.05		150944m		_	1
26) 1,1-Dichloropropene	5.97		870919	10.80	_	99
27) Benzene	6.37			10.30	_	
28) 1,2-Dichloroethane		62	948663		_	
29) Trichloroethene	7.29		759809	11.55		97
30) Dibromomethane			483030	10.67	_	99
31) 1,2-Dichloropropane	8.12	63	714695	11.51	ug/l	99

Data File : C:\HPCHEM\2\DATA\V011609\V0116004.D Vial: 4

Acq On : 16 Jan 09 5:36 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 10ug/L Misc : VOL196 5ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:48 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

: GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009

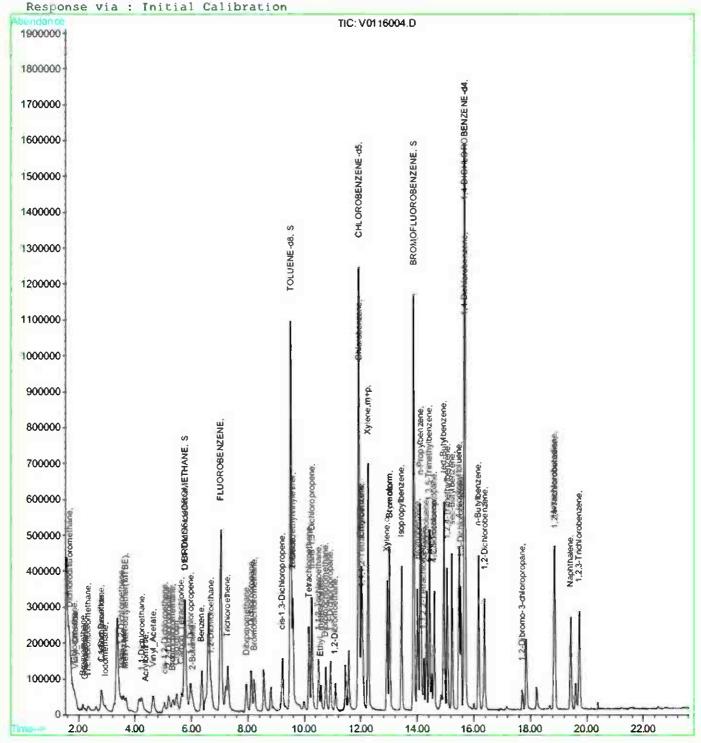
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc U	nit	Qva	lue
321	Bromodichloromethane	8.23	 83	1158489	11.01	ug/1		99
33)	2-Chloroethylvinylether	9.59	63	310260	11.94	_	#	98
34)		9.23	75	1343391	10.50			94
36)		9.59	92	2117970	11.44	_		95
37)	Tetrachloroethene	10.16		1176884	10.28	_		96
38)	4-Methyl-2-pentanone	10.26	100	436427	-33.34	ug/1		87
39)	trans-1,3-Dichloropropene	10.27	75	1386604	12.50	ug/1		95
40)	1,1,2-Trichloroethane	10.51	83	641200	12.27	ug/1		99
41)	Ethyl_methacrylate	10.59	69	568236	3.85	ug/1		96
42)	Dibromochloromethane	10.75	129	1127677	11.19	ug/1		98
43)	1,3-Dichloropropane	10.92	76	1457129	11.59	ug/1		98
44)	1,2-Dibromoethane	11.10	107	951045	11.64	ug/l		98
47)	Chlorobenzene	11.94	112	2701024	10.41	ug/l		98
48)	Ethylbenzene	12.02	91	4359725	11.65	ug/l		97
49)	1,1,1,2-Tetrachloroethane	12.06	131	1128717	11.30	ug/l		95
50)	Xylene, m+p	12.26	106	3814437	27.00	_		77
51)	Xylene, o	12.93	106	1933840	11.39	ug/l		89
52)	Styrene	13.02	104	3184945	12.49	ug/l	#	83
53)	Bromoform	13.02	173	854268	11.60	ug/l		98
54)	Isopropylbenzene	13.44	105	4818344	11.44	ug/1		99
	Bromobenzene	14.01	156	1423065	11.09	ug/l		99
57)	n-Propylbenzene	14.10	91	5518783	12.67	ug/l		100
58)	1,1,2,2-Tetrachloroethane	14.23	83	1127163	12.34			100
	2-Chlorotoluene	14.32	91	3132466	12.01	-		97
	1,3,5-Trimethylbenzene	14.44		3769915	12.65	-		91
61)	1,2,3-Trichloropropane	14.60	75	110629	11.45			100
63)		14.60	91	3218852	12.18			97
	tert-Butylbenzene	14.94		4351924	13.24	_		89
	1,2,4-Trimethylbenzene	15.06		3917231	12.55	_		97
66)	and the state of t	15.23		5744959	12.98	_		98
67)		15.48	119	4861917	12.62	-		96
68)	· · · · · · · · · · · · · · · · · · ·	15.54	146	2663122	12.43	_		98
	1,4-Dichlorobenzene	15.70		2657366	10.46	-		97
71)	-	16.16	91	3978569	10.02			98
	1,2-Dichlorobenzene	16.38	146	2523653	10.05	-		98
	1,2-Dibromo-3-chloropropan	17.72	75	194848		ug/1		99
*	Hexachlorobutadiene	18.84	225	985096		ug/1		99
*	1,2,4-Trichlorobenzene	18.87		2045416		ug/1		99
	Naphthalene	19.43	128	4145076	14.02	_		100
77)	1,2,3-Trichlorobenzene	19.74	180	1854288	8.88	ug/1		99

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116004,D

Acq On : 16 Jan 09 5:36 pm Operator: Stan Hunnicutt
Sample : VOC std 10ug/L Inst : GC/MS Ins


Misc : VOL196 5ul Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Jan 17 22:48 19109 Quant Results File: VOL,RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Sat Jan 17 23:14:11 2009

Data File : C:\HPCHEM\2\DATA\V011609\V0116005.D

Acq On : 16 Jan 09 6:06 pm Operator: Stan Hunnicutt

Sample : VOC std 25ug/L Inst : GC/MS Ins Misc : VOL196 12.5ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:45 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Sat Jan 17 22:43:29 2009
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits !	Dev (Min)
1) FLUOROBENZENE	7.04	96	10793636	50.00	ug/1		0.00
46) CHLOROBENZENE-d5	11.92	117	11577844	50.00	ug/l	-	0.01
69) 1,4-DICHLOROBENZENE-d4	15.68	152	7051381	50.00	ug/l	-	0.02
System Monitoring Compounds							
23) DIBROMOFLUOROMETHANE	5.77	113	3360670	56.22	ug/1		0.00
Spiked Amount 50.000			Recove	_	112.		
35) TOLUENE-d8	9.52	98	13117822	49.88	ug/l		0.00
Spiked Amount 50.000			Recove	-			
55) BROMOFLUOROBENZENE	13.87	95	6089880	47.91	ug/1	-	0.02
Spiked Amount 50.000			Recove	ry =	95.	82%	
Target Compounds						Qva	lue
Dichlorodifluoromethane	1.70		2165021	24.94	_		99
Chloromethane	1.86		1300037	37.14			100
4) Vinyl_Chloride			932716	22.49	_		99
5) Bromomethane			325105	23.16	-		98
6) Chloroethane	2.24	64	152227	23.95			96
7) Trichlorofluoromethane	2.33	101	400229	36.45			91
8) 1,1-Dichloroethene	2.80	96	380614	29.19	ug/l		93
9) Carbon Disulfide	2.82	76	1234099	28.37	_		95
10) Iodomethane	2.93	142	664084	30.71	_	#	97
11) Acetone	3.47		72134	46.36			75
<pre>12) trans-1,2-Dichloroethene</pre>	3.52	96	552429	26.27			96
13) n-Hexane	3.59	57	645417	24.05	_		80
14) Methy-tert-butylether (MTBE	3.68	73	1837845	26.28			93
15) 1,1-Dichloroethane	4.26		1033987	24.25			97
16) Acrylonitrile	4.38	53	176045	25.53			59
<pre>17) Viny1_Acetate</pre>	4.65	43	1345779	31.25			100
18) cis-1,2-Dichloroethene	5.03	96	996098	24.55	ug/l		98
<pre>19) 2,2-Dichloropropane</pre>	5.20	77	1963524	25.32	_		99
20) Bromochloromethane	5.36		718353	26.39	-		93
21) Chloroform	5.47	83	2425994	24.47			95
<pre>22) Carbon_Tetrachloride</pre>	5.65	117	2152544	25.94			98
24) 1,1,1-Trichloroethane	5.78	97	2368074	25.61	_		97
25) 2-Butanone	6.05		431098	76.90	_		65
26) 1,1-Dichloropropene	5.97	75	2075921	26.67	_		96
27) Benzene	6.37		5808831	28.89			100
28) 1,2-Dichloroethane			2156226		-		89
29) Trichloroethene	7.29		1758175				95
30) Dibromomethane	7.95		1179108	27.11	-		98

Data File : C:\HPCHEM\2\DATA\V011609\V0116005.D Vial: 5

Acq On : 16 Jan 09 6:06 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 25ug/L Misc : VOL196 12.5ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:45 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue
311	1,2-Dichloropropane	8.12	63	1561833	25.86 ug/1		99
	Bromodichloromethane	8.23	83	2727465	26.94 ug/1		99
	2-Chloroethylvinylether	9.59	63	678512	27.19 ug/1		96
	cis-1,3-Dichloropropene	9.23	75	3360252	27.40 ug/1		97
	Toluene	9.59	92	5166501	29.79 ug/1		99
37)	Tetrachloroethene	10.17	164	2978251	27.04 ug/1		98
	4-Methyl-2-pentanone	10.26	100	981306	13.73 ug/1		95
	trans-1,3-Dichloropropene	10.27	75	3181935	30.96 ug/1		95
40)	1,1,2-Trichloroethane	10.51	83	1451732	29.62 ug/1		95
41)	Ethyl methacrylate	10.59	69	1396791	22.49 ug/1		98
	Dibromochloromethane	10.76	129	2728597	28.57 ug/1		99
43)	1,3-Dichloropropane	10.93	76	3468267	29.32 ug/1		98
44)	1,2-Dibromoethane	11.10	107	2252866	29.31 ug/1		99
45)	2-Hexanone	11.57	43	4256385	46.01 ug/1		99
47)	Chlorobenzene	11.95	112	6527945	27.84 ug/1		98
48)	Ethylbenzene	12.02	91	10090223	30.67 ug/1		97
49)	1,1,1,2-Tetrachloroethane	12.07	131	2579096	28.86 ug/1		95
50)	Xylene, m+p	12.26	106	8387529	70.40 ug/1		83
51)	Xylene, o	12.93	106	4452676	29.49 ug/1		91
52)	Styrene	13.02	104	7230222	32.93 ug/1	#	85
53)	Bromoform	13.02	173	1996746	30.91 ug/1		99
54)	Isopropylbenzene	13.44	105	11245976	30.24 ug/1		99
56)	Bromobenzene	14.02	156	3295291	28.63 ug/1		97
57)	n-Propylbenzene	14.11	91	12522651	33.59 ug/1		100
58)	1,1,2,2-Tetrachloroethane	14.24	83	2595571	33.03 ug/1		99
59)	2-Chlorotoluene	14.33	91	7103659	31.09 ug/1		97
60)	1,3,5-Trimethylbenzene	14.44	105	8638723	34.01 ug/1		93
61)	1,2,3-Trichloropropane	14.60	75	295147	36.74 ug/1		100
62)	trans-1,4-Dichloro-2-buten	14.52	53	692750	10.51 ug/l		90
63)	4-Chlorotoluene	14.60	91	7365456	32.13 ug/1		94
	tert-Butylbenzene	14.94	119	9596593	34.35 ug/1		91
	1,2,4-Trimethylbenzene	15.06	105	8801534	32.67 ug/1		96
66)	sec-Butylbenzene	15.23	105	12872813	34.18 ug/1		99
67)	4-Isopropyltoluene	15.48		10964102	33.11 ug/1		96
68)	1,3-Dichlorobenzene	15.55	146	6072912	32.92 ug/1		98
70)	1,4-Dichlorobenzene	15.70	146	5929519	26.18 ug/1		99
71)	n-Butylbenzene	16.17	91	9312895	26.37 ug/1		99
72)	1,2-Dichlorobenzene	16.38	146	5645597	24.90 ug/1		98
	1,2-Dibromo-3-chloropropan	17.72	75	451846	22.78 ug/1		99
	Hexachlorobutadiene	18.85	225	2313915	22.51 ug/1		99
75)	1,2,4-Trichlorobenzene	18.88	180	4704560	24.02 ug/1		98

Vial: 5

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116005.D

Acq On : 16 Jan 09 6:06 pm Operator: Stan Hunnicutt
Sample : VOC std 25ug/L Inst : GC/MS Ins

 Sample
 : VOC std 25ug/L
 Inst : GC/M

 Misc
 : VOL196 12.5u1
 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:45 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:43:29 2009

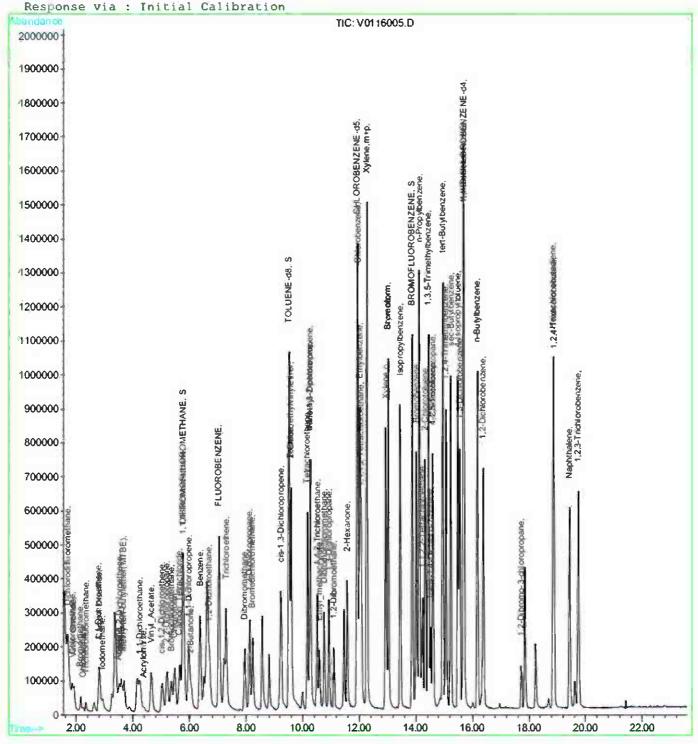
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
76)	Naphthalene	19.43	128	9446084	29.29 ug/1	100
77)	1,2,3-Trichlorobenzene	19.74	180	4391503	22.79 ug/1	99

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116005,D

Acq On : 16 Jan 09 6:06 pm Operator: Stan Hunnicutt
Sample : VOC std 25ug/L Inst : GC/MS Ins


fisc : VOL196 12.5ul Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Jan 17 22:45 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Sat Jan 17 23:14:11 2009

Data File : C:\HPCHEM\2\DATA\V011609\V0116006.D Vial: 6

Acq On : 16 Jan 09 6:35 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 50ug/L Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 18 16:59 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

: GCMS VOC Method 8260 Last Update : Sat Jan 17 23:14:11 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev(Min)
1) FLUOROBENZENE	7.05	96	11268681	50.00	ug/l	0.00
46) CHLOROBENZENE-d5	11.93	117	11637786	50.00	ug/1	0.00
69) 1,4-DICHLOROBENZENE-d4	15.68	152	6619129	50.00	ug/l	-0.02
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.78	113	3342505	49.83	ug/l	0.01
Spiked Amount 50.000			Recove	ery =	99.6	6%
35) TOLUENE-d8	9.52	98	13622228	49.36	ug/l	0.00
Spiked Amount 50.000			Recove	ery =	98.7	2%
55) BROMOFLUOROBENZENE	13.88	95	6138542	50.63	ug/l	-0.01
Spiked Amount 50.000			Recove	ery =	101.2	6%
Target Compounds						Qvalue
Dichlorodifluoromethane	1.70	85	4397287	46.93	_	96
Chloromethane	1.86	50	2445023	45.45	ug/l	98
4) Vinyl_Chloride	1.92		1957853	48.17	ug/l	100
5) Bromomethane	2.15	94	690787	48.59	ug/l	97
6) Chloroethane	2.23		290686	51.84	ug/l	97
7) Trichlorofluoromethane	2.32	101	593449	46.13	ug/l	# 95
8) 1,1-Dichloroethene	2.78	96	793693		~	89
9) Carbon Disulfide	2.80	76	2553219	48.53	ug/l	94
10) Iodomethane	2.92	142	1262868	42.72	ug/l	98
11) Acetone	3.47	58	178911	135.56	ug/l	# 26
12) trans-1,2-Dichloroethene	3.52	96	1088939	46.33	ug/l	97
13) n-Hexane	3.59	57	1414206	46.63		# 84
14) Methy-tert-butylether (MTBE	3.69	73	3566328	45.93	ug/l	99
<pre>15) 1,1-Dichloroethane</pre>	4.27	63	2261801	50.51	ug/l	96
16) Acrylonitrile	4.40	53			ug/l	# 81
<pre>17) Vinyl_Acetate</pre>	4.65	43			ug/l	100
18) cis-1,2-Dichloroethene	5.04	96	2295399	54.33	ug/l	92
19) 2,2-Dichloropropane	5.21	77	3971806	49.54	ug/l	97
20) Bromochloromethane	5.36	128	1435777	49.00	ug/l	93
21) Chloroform	5.49	83	5245952	50.86	ug/l	99
<pre>22) Carbon_Tetrachloride</pre>	5.66	117	4282297	49.09	ug/l	98
24) 1,1,1-Trichloroethane	5.78	97	4919633	47.88	ug/l	98
25) 2-Butanone	6.07	72	892433	130.32	ug/l	# 61
26) 1,1-Dichloropropene	5.98	75	4379740	50.64	ug/1	99
27) Benzene	6.38		11422129	48.69		100
28) 1,2-Dichloroethane	6.72	62	4762228	49.94	ug/l	95
29) Trichloroethene	7.30	95	3387897	49.56	ug/l	93
30) Dibromomethane	7.96	93	2343677	48.69	ug/1	97

Data File : C:\HPCHEM\2\DATA\V011609\V0116006.D Vial: 6

Acq On : 16 Jan 09 6:35 pm Operator: Stan Hunnicutt

Sample : VOC std 50ug/L Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 18 16:59 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 23:14:11 2009 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
31)	1,2-Dichloropropane	8.13	63	3391377	47.85 ug/1	99
	Bromodichloromethane	8.24	83	5424595	47.76 ug/1	
33)	2-Chloroethylvinylether	9.60	63	1366701	46.46 ug/1	# 98
34)	cis-1,3-Dichloropropene	9.24	75	6801762	47.93 ug/1	96
36)	Toluene	9.60	92	9954660	45.57 ug/1	. 99
37)	Tetrachloroethene	10.18	164	6092799	50.42 ug/1	. 99
38)	4-Methyl-2-pentanone	10.27	100	1741836	104.05 ug/1	. 95
39)	trans-1,3-Dichloropropene	10.28	75	5840695	45.01 ug/1	97
40)	1,1,2-Trichloroethane	10.52	83	2757570	45.08 ug/1	. 95
41)	Ethyl_methacrylate	10.60	69	2686581	48.41 ug/1	. 98
42)	Dibromochloromethane	10.77	129	5216019	46.81 ug/1	100
43)	1,3-Dichloropropane	10.93	76	6704332	45.62 ug/1	. 99
44)	1,2-Dibromoethane	11.11	107	4264976	46.13 ug/1	100
45)	2-Hexanone	11.58	43	7783000	97.57 ug/1	
	Chlorobenzene	11.96	112	12702279	49.61 ug/1	
48)	Ethylbenzene	12.03	91	18694721	46.82 ug/1	. 97
49)	1,1,1,2-Tetrachloroethane	12.07	131	4871091	47.30 ug/1	. 99
	Xylene, m+p	12.27	106	15029782	89.31 ug/1	. 81
	Xylene, o	12.94		8466577	47.56 ug/l	
52)	Styrene	13.03		13101712	46.36 ug/1	
	Bromoform	13.03		3620858	47.17 ug/1	. 98
54)	Isopropylbenzene	13.45	105	21157498	47.62 ug/1	
56)	Bromobenzene	14.02		6241916	48.28 ug/1	. 98
	n-Propylbenzene	14.11	91	22500087	45.64 ug/1	
	1,1,2,2-Tetrachloroethane	14.24	83	4523832	45.10 ug/1	. 99
59)	2-Chlorotoluene	14.34	91	13062883	46.58 ug/1	
	1,3,5-Trimethylbenzene	14.45		15371067	45.51 ug/1	
	1,2,3-Trichloropropane	14.61	75	510173	47.44 ug/1	
•	trans-1,4-Dichloro-2-buten	14.53	53	1258254	43.43 ug/1	
•	4-Chlorotoluene	14.61		13374975	46.33 ug/1	
	tert-Butylbenzene	14.95		17167912	44.73 ug/1	
	1,2,4-Trimethylbenzene	15.07		16061585	45.66 ug/1	
	sec-Butylbenzene	15.24		23157306	45.62 ug/1	
	4-Isopropyltoluene	15.49		20022989	46.31 ug/1	
	1,3-Dichlorobenzene	15.56		10947382	45.81 ug/1	
*	1,4-Dichlorobenzene	15.71		11049728	48.99 ug/1	
	n-Butylbenzene	16.18		17156472	50.05 ug/1	
	1,2-Dichlorobenzene	16.39		10649402	49.61 ug/1	
	1,2-Dibromo-3-chloropropan	17.73		841012	50.04 ug/1	
,	Hexachlorobutadiene	18.86		4439825	50.68 ug/1	
75)	1,2,4-Trichlorobenzene	18.88	180	8966263 	50.47 ug/1	99

Vial: 6

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116006.D

Acq On : 16 Jan 09 6:35 pm Operator: Stan Hunnicutt
Sample : VOC std 50ug/L Inst : GC/MS Ins

Sample : VOC std 50ug/L Inst : GC/M: Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 18 16:59 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

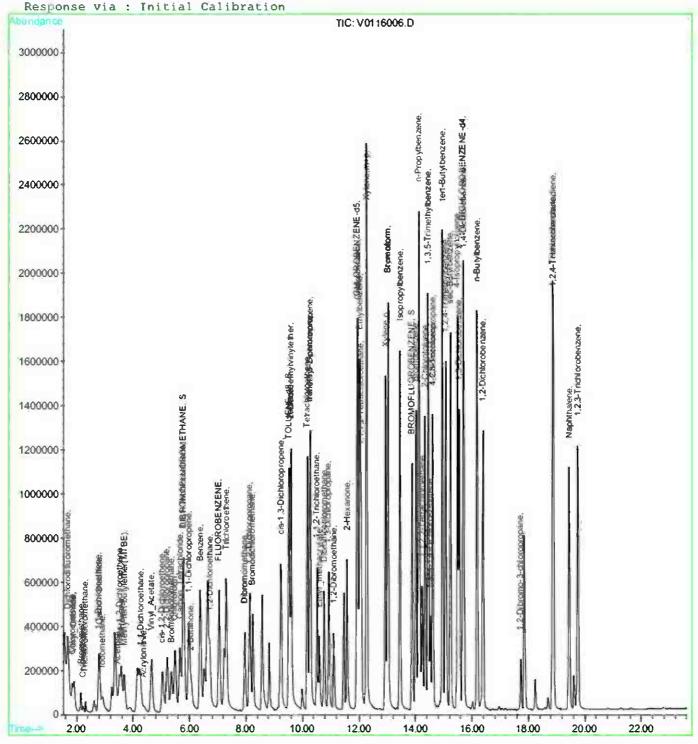
Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 23:14:11 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
76)	Naphthalene	19.44	128	17832187	49.33 ug/1	100
77)	1,2,3-Trichlorobenzene	19.75	180	8246529	50.26 ug/1	99

Data File : C:\HPCHEM\2\DATA\V011609\V0116006,D

: 16 Jan 09 6:35 pm Operator: Stan Hunnicutt : GC/MS Ins


Sample : VOC std 50ug/L Multiplr: 1,00 : VOL196 25ul

MS Integration Params: events.e

Quant Time: Jan 18 16:59 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 23:14:11 2009

Data File : C:\HPCHEM\2\DATA\V011609\V0116007.D Vial: 7

Acq On : 16 Jan 09 7:04 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 100ug/L Misc : VOL196 50ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:41 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

: GCMS VOC Method 8260 Last Update : Sat Jan 17 22:40:41 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) FLUOROBENZENE	7.04	96	10510604	50.00	ug/l	0.00
46) CHLOROBENZENE-d5	11.93	117	10367379	50.00	ug/1	0.00
69) 1,4-DICHLOROBENZENE-d4	15.69	152	5218175	50.00	ug/l	0.00
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.77	113			ug/l	0.00
Spiked Amount 50.000				ery =		
35) TOLUENE-d8	9.52	98	12758916	49.27	ug/l	0.00
Spiked Amount 50.000			Recovery = 98.54%			
55) BROMOFLUOROBENZENE	13.88	95	5576724	46.25	ug/l	0.00
Spiked Amount 50.000			Recove	ery =	92.50%	;
Target Compounds					_	alue
Dichlorodifluoromethane	1.69	85	8057468	88.53		100
Chloromethane	1.85	50	5440079	86.22		99
4) Vinyl_Chloride	1.91		3943210	87.20	~	100
5) Bromomethane	2.14	94	1176004	99.41		98
6) Chloroethane	2.21	64	485068			99
7) Trichlorofluoromethane	2.30	101	1020124	94.40		93
8) 1,1-Dichloroethene	2.73	96	1249874		~	93
9) Carbon Disulfide	2.76	76	4094088	106.33	ug/l	94
10) Iodomethane	2.89	142	2178461	122.12	ug/l	95
11) Acetone	3.48	58	310616	157.15	ug/1 #	5
12) trans-1,2-Dichloroethene	3.50	96	1958693	90.98	ug/l	99
14) Methy-tert-butylether (MTBE	3.69	73	6754464	96.18	ug/l	98
<pre>15) 1,1-Dichloroethane</pre>	4.26	63	4008573	94.85	ug/l	95
16) Acrylonitrile	4.39	53	632798	81.65	ug/1 #	88
17) Vinyl_Acetate	4.65	43	4529500	86.77	ug/l	100
18) cis-1,2-Dichloroethene	5.04	96	3875880	104.87	ug/l	96
<pre>19) 2,2-Dichloropropane</pre>	5.20	77	7600125	99.37	ug/l	100
20) Bromochloromethane	5.35	128	2681367	103.38	ug/l	96
21) Chloroform	5.48	83	9566696	99.55	ug/l	99
<pre>22) Carbon_Tetrachloride</pre>	5.65	117	7988176	96.63	ug/l	100
24) 1,1,1-Trichloroethane	5.78	97	8949409	100.66	ug/l	100
25) 2-Butanone	6.06	72	1260856	269.77	ug/1	93
26) 1,1-Dichloropropene	5.97	75	7418073	103.74	ug/1	95
27) Benzene	6.37	78	19763409	111.83	ug/1	100
28) 1,2-Dichloroethane	6.72	62	8045334	100.57	-	97
29) Trichloroethene	7.30	95	6274047	109.85	ug/1	98
30) Dibromomethane	7.96		4151253	99.30		99
31) 1,2-Dichloropropane	8.13		5927069	109.99	ng/1	99

Data File : C:\HPCHEM\2\DATA\V011609\V0116007.D Vial: 7

Acq On : 16 Jan 09 7:04 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : VOC std 100ug/L Misc : VOL196 50ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:41 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:40:41 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
321	Bromodichloromethane	8.24	 83	9529598	95.94 ug	/1 97
*	2-Chloroethylvinylether	9.60	63	2373070	100.25 ug	
	cis-1,3-Dichloropropene	9.24		11845258	104.95 ug	**
	Toluene	9.60		16888694	111.07 ug	
•	Tetrachloroethene	10.18		10858738	109.08 ug	
	4-Methyl-2-pentanone	10.27		2691959	319.20 ug	
	trans-1,3-Dichloropropene	10.28	75	9960904	108.69 ug	
	1,1,2-Trichloroethane	10.52			110.21 ug	
	Ethyl methacrylate	10.60			104.04 ug	
	Dibromochloromethane	10.77		9203437	102.69 ug	
	1,3-Dichloropropane	10.94		11528895	109.61 ug	
	1,2-Dibromoethane	11.11	107	7429591	105.11 ug	
	2-Hexanone	11.59	43	12342764	277.43 ug	
47)	Chlorobenzene	11.96		21175453	110.40 ug	
48)	Ethylbenzene	12.04		29918359	118.90 ug	
•	1,1,1,2-Tetrachloroethane	12.08	131	8107268	112.22 ug.	
	Xylene, m+p	12.28	106	21366842	269.42 ug.	
	Xylene, o	12.95	106	13777696	117.77 ug	
52)	Styrene	13.03	104	20127314	129.80 ug	/1 90
53)	Bromoform	13.04	173	5841660	115.47 ug	100
54)	Isopropylbenzene	13.46		33706244	118.26 ug.	100
56)	Bromobenzene	14.03	156	10322403	108.90 ug.	/1 99
57)	n-Propylbenzene	14.12	91	33829915	128.92 ug.	/1 99
58)	1,1,2,2-Tetrachloroethane	14.25	83	7056678	117.80 ug.	/1 99
59)	2-Chlorotoluene	14.34	91	20607084	117.80 ug.	/1 98
60)	1,3,5-Trimethylbenzene	14.46	105	23095444	130.08 ug.	/1 95
61)	1,2,3-Trichloropropane	14.62	75	683077	120.71 ug.	100
62)	trans-1,4-Dichloro-2-buten	14.54	53	2332717	126.71 ug.	/1 89
63)	4-Chlorotoluene	14.62	91	20627766	120.45 ug.	/1 97
64)	tert-Butylbenzene	14.96	119	25279220	131.84 ug.	1 94
65)	1,2,4-Trimethylbenzene	15.08	105	24352610	125.52 ug.	1 97
66)	sec-Butylbenzene	15.25	105	33990303	131.09 ug.	100
67)	4-Isopropyltoluene	15.50	119	29891213	127.86 ug	1 97
68)	1,3-Dichlorobenzene	15.57	146	16730174	125.53 ug.	1 99
70)	1,4-Dichlorobenzene	15.72	146	17053595	107.91 ug.	/1 99
71)	n-Butylbenzene	16.19	91	26567554	107.23 ug.	1 99
72)	1,2-Dichlorobenzene	16.40	146	16727759	99.47 ug.	1 99
73)	1,2-Dibromo-3-chloropropan	17.74	75	1431001	86.94 ug.	1 99
	Hexachlorobutadiene	18.86		7614347	92.84 ug.	
75)	1,2,4-Trichlorobenzene	18.89		14741557	100.96 ug.	1 99
76)	Naphthalene	19.44	128	29729564	94.30 ug.	100

Vial: 7

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116007.D

Acq On : 16 Jan 09 7:04 pm Operator: Stan Hunnicutt

Sample : VOC std 100ug/L Inst : GC/MS Ins Misc : VOL196 50ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 17 22:41 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Sat Jan 17 22:40:41 2009

Response via : Initial Calibration

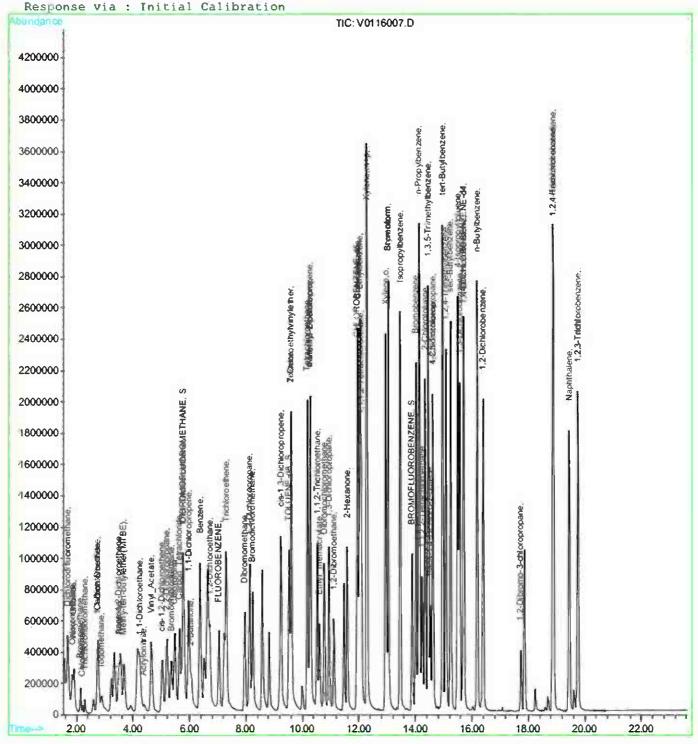
DataAcq Meth : VOL

Compound R.T. QIon Response Conc Unit Qvalue
77) 1,2,3-Trichlorobenzene 19.76 180 14048891 89.35 ug/l 99

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116007,D

Acq On : 16 Jan 09 7:04 pm Operator: Stan Hunnicutt
Sample : VOC std 100ug/L Inst : GC/MS Ins


fisc : VOL196 50ul Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Jan 17 22:41 19109 Quant Results File: VOL,RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Sat Jan 17 23:14:11 2009

Vial: 10

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116010.D

Acq On : 16 Jan 09 8:31 pm Operator: Stan Hunnicutt

Sample : MB Inst : GC/MS Ins Misc : VOL195 10u1 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Jan 16 20:55 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Oct 28 09:54:20 2008

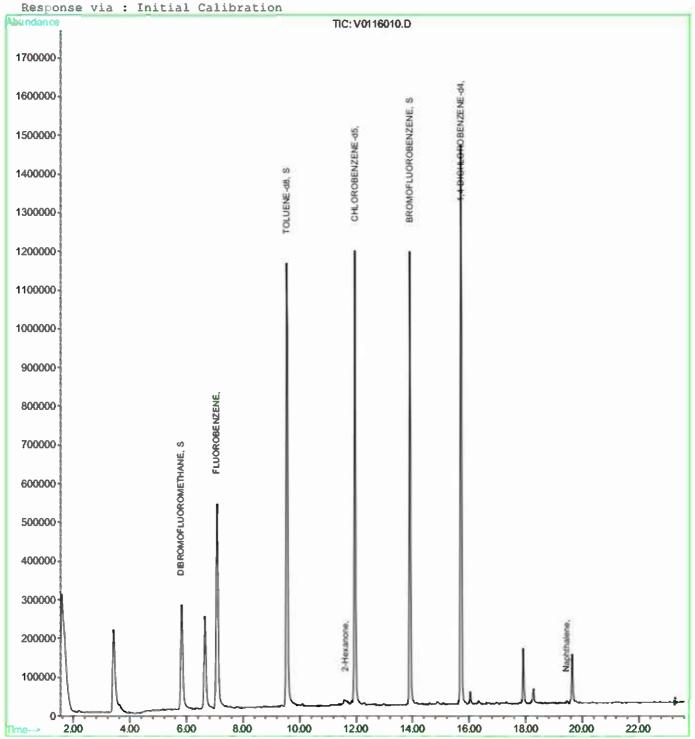
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v(Min)
1) FLUOROBENZENE	7.08	96	13336429	50.00	ug/l	0.03
45) CHLOROBENZENE-d5	11.95	117	13299809	50.00	ug/l	-0.03
68) 1,4-DICHLOROBENZENE-d4	15.70	152	7898903	50.00	ug/l	-0.04
System Monitoring Compounds						
22) DIBROMOFLUOROMETHANE	5.83	113	4144985	48.46	ug/1	0.07
Spiked Amount 50.000			Recovery =		96.92%	
34) TOLUENE-d8	9.55	98	15090182	53.64	ug/l	0.00
Spiked Amount 50.000			Recovery =		107.28%	
54) BROMOFLUOROBENZENE	13.89	95	6536776	44.90	ug/l	-0.04
Spiked Amount 50.000			Recove	ry =	89.80	8
Target Compounds					Q	value
-	11.62	43	339218	115.47	ug/1 #	36
75) Naphthalene	19.46	128	106139	5.62	ug/l	100

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V011609\V0116010.D Vial: 10

Acq On : 16 Jan 09 8:31 pm Operator: Stan Hunnicutt


Sample : MB Inst : GC/MS Ins Misc : VOL195 10u1 Multiplr: 1.00

MS Integration Params: events.e

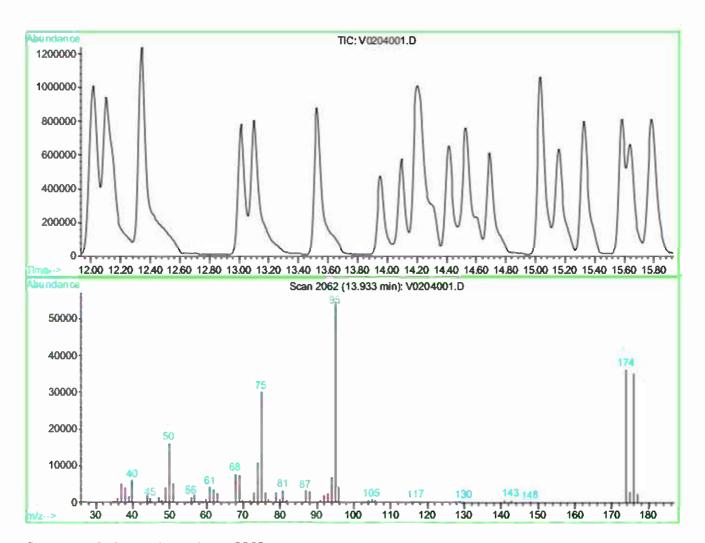
Quant Time: Jan 16 20:55 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Sat Jan 17 23:14:11 2009

Vial: 1

Data File : C:\HPCHEM\2\DATA\V020409\V0204001.D


Acq On : 4 Feb 09 12:34 pm Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Method : C:\HPCHEM\2\METHODS\GRO.M (Chemstation Integrator)

Title : GRO

Spectrum Information: Scan 2062

	Target Mass	1	Rel. to Mass	1	Lower Limit%	1	Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
ı	50		95		15		40		29.6	1	16068		PASS	
	75		95		30		60		55.2		29984		PASS	
	95		95		100		100		100.0		54280		PASS	1
	96		95		5		9		7.6		4117		PASS	
	173		174		0.00		2		0.0		0		PASS	
	174		95		50		100		66.5		36096		PASS	
	175		174		5		9		7.9		2869		PASS	
	176		174		95		101		97.2		35072		PASS	
-	177	-	176		5	-	9	1	6.4		2232		PASS	

Data File : C:\HPCHEM\2\DATA\V020409\V0204001.D Vial: 1

Acq On : 4 Feb 09 12:34 pm Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 13:47 19109 Quant Results File: VOL.RES

Quant Method: C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) FLUOROBENZENE	7.14	96	6365476	50.00	ug/l	0.10
46) CHLOROBENZENE-d5	12.00	117	6623776m	50.00	ug/l	0.06
69) 1,4-DICHLOROBENZENE-d4	15.77	152	2222828	50.00	ug/1	0.07
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.87	113	1481224	39.09	ug/l	0.10
Spiked Amount 50.000			Recove	ry =	78.18	윰
35) TOLUENE-d8	9.60	98	8396435	53.86	ug/l	80.0
Spiked Amount 50.000			Recove	-		8
55) BROMOFLUOROBENZENE	13.95	95	3257269	47.20	ug/1	0.06
Spiked Amount 50.000			Recove	ry =	94.40	8
Target Compounds					_	value
Dichlorodifluoromethane	1.69		1367288	25.84		96
Chloromethane	1.87	50	13079693	430.43		94
4) Vinyl_Chloride		62			ug/l	93
5) Bromomethane			1045491	130.18		91
6) Chloroethane	2.27	64	477124	166.34		93
Trichlorofluoromethane	2.38	101	1740572	321.15		94
8) 1,1-Dichloroethene	2.85	96	455323	47.08	ug/1 #	1
9) Carbon Disulfide	2.89	76	1444477	48.61	ug/1 #	73
10) Iodomethane	3.00	142	822207	49.24	ug/1 #	47
<pre>12) trans-1,2-Dichloroethene</pre>	3.59	96	807374	60.81	ug/1 #	64
13) n-Hexane	3.69	57	1484442	86.64	ug/l	90
14) Methy-tert-butylether (MTBE	3.74	73	1399280	31.90	ug/1 #	1
<pre>15) 1,1-Dichloroethane</pre>			2138642	84.55	ug/1	99
16) Acrylonitrile		53		61.24	ug/l	72
17) Vinyl_Acetate			1514817	48.10	ug/1	100
18) cis-1,2-Dichloroethene	5.14	96	848420	35.70	ug/1 #	45
<pre>19) 2,2-Dichloropropane</pre>	5.31	77	2431714	53.69	ug/1 #	90
20) Bromochloromethane	5.45		388727	23.48	ug/1 #	57
21) Chloroform	5.58	83	2716013	46.62	ug/1	99
<pre>22) Carbon_Tetrachloride</pre>	5.77	117	2548352	51.71	ug/l	87
24) 1,1,1-Trichloroethane	5.89	97	2761662		ug/1 #	91
25) 2-Butanone	6.11	72	233098	60.26	ug/1 #	38
26) 1,1-Dichloropropene	6.08	75	2664925	54.55	ug/1	96
27) Benzene	6.48	78	7642866	57.68	ug/1	100
28) 1,2-Dichloroethane	6.80		2567640	47.67	ug/1 #	95
29) Trichloroethene	7.40	95	2437474	63.55	ug/l	86
30) Dibromomethane	8.04	93	924842	34.02	ug/1 #	66
31) 1,2-Dichloropropane	8.21				ug/l	100

Data File : C:\HPCHEM\2\DATA\V020409\V0204001.D Vial: 1

Acq On : 4 Feb 09 12:34 pm Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 13:47 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

32) Bromodichloromethane 8.32 83 2702397 42.12 ug/l	97 92
	0.3
33) 2-Chloroethylvinylether 9.68 63 1115287 67.11 ug/l #	92
34) cis-1,3-Dichloropropene 9.32 75 3234076 40.35 ug/1	97
36) Toluene 9.68 92 6633778 53.76 ug/l	95
37) Tetrachloroethene 10.26 164 2455323m 35.97 ug/1	86
38) 4-Methyl-2-pentanone 10.34 100 186186 19.69 ug/l #	9
39) trans-1,3-Dichloropropene 10.35 75 2173362 29.65 ug/1	98
40) 1,1,2-Trichloroethane 10.59 83 1014893 29.37 ug/1	96
41) Ethyl methacrylate 10.68 69 614009 19.59 ug/l #	90
42) Dibromochloromethane 10.84 129 1569121 24.93 ug/l	98
43) 1,3-Dichloropropane 11.00 76 2446842 29.48 ug/l	98
44) 1,2-Dibromoethane 11.18 107 1257148 24.07 ug/l #	99
45) 2-Hexanone 11.65 43 1377163 30.56 ug/l #	85
47) Chlorobenzene 12.03 112 7560297 51.88 ug/l	96
48) Ethylbenzene 12.11 91 13066016 57.49 ug/1	97
49) 1,1,1,2-Tetrachloroethane 12.15 131 1662860 28.37 ug/1	94
50) Xylene,m+p 12.35 106 9455561 98.72 ug/1	95
51) Xylene,o 13.01 106 5349306 52.79 ug/1	98
52) Styrene 13.10 104 6994190 43.48 ug/1	100
53) Bromoform 13.10 173 600547 13.75 ug/1	99
54) Isopropylbenzene 13.53 105 13829374 54.68 ug/1	98
56) Bromobenzene 14.10 156 2583505 35.11 ug/l #	81
57) n-Propylbenzene 14.19 91 13943152 49.70 ug/l	95
58) 1,1,2,2-Tetrachloroethane 14.32 83 910510 15.95 ug/1	87
59) 2-Chlorotoluene 14.41 91 7273188m 45.57 ug/1	96
60) 1,3,5-Trimethylbenzene 14.53 105 7801037 40.58 ug/1	95
61) 1,2,3-Trichloropropane 14.69 75 322645m 52.72 ug/1	100
62) trans-1,4-Dichloro-2-buten 14.61 53 316442 19.19 ug/1 #	74
63) 4-Chlorotoluene 14.69 91 7854695 47.80 ug/1	93
64) tert-Butylbenzene 15.03 119 9286784 42.51 ug/1	97
65) 1,2,4-Trimethylbenzene 15.16 105 7361823 36.77 ug/l	95
66) sec-Butylbenzene 15.33 105 12382708 42.86 ug/l	94
67) 4-Isopropyltoluene 15.58 119 9869485 40.11 ug/1	97
68) 1,3-Dichlorobenzene 15.64 146 4301160m 31.62 ug/l	97
70) 1,4-Dichlorobenzene 15.79 146 4087788 53.97 ug/l #	96
71) n-Butylbenzene 16.28 91 8844960 76.84 ug/l	96
72) 1,2-Dichlorobenzene 16.48 146 3678465 51.03 ug/l #	95
73) 1,2-Dibromo-3-chloropropan 17.84 75 150665 26.69 ug/1 #	58
74) Hexachlorobutadiene 18.99 225 1491466 50.70 ug/1	100
75) 1,2,4-Trichlorobenzene 19.00 180 1781159 29.86 ug/1 #	93
76) Naphthalene 19.57 128 2172157 17.89 ug/l	100

Quantitation Report

Data File: C:\HPCHEM\2\DATA\V020409\V0204001.D Vial: 1

Acq On : 4 Feb 09 12:34 pm Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 13:47 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

DataAcq Meth : VOL

Compound R.T. QIon Response Conc Unit Qvalue
77) 1,2,3-Trichlorobenzene 19.89 180 1265741 22.97 ug/l 96

Vial: 1

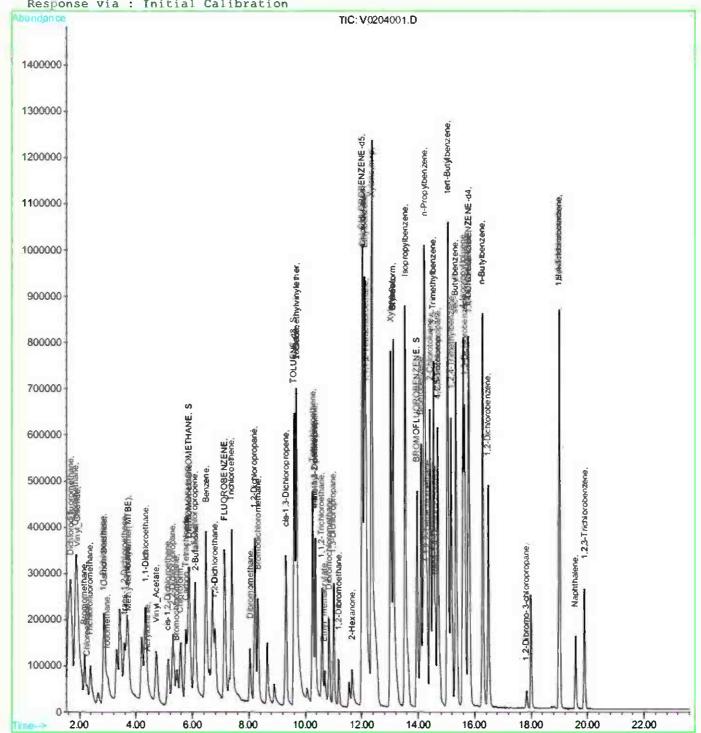
Quantitation Report

Data File: C:\HPCHEM\2\DATA\V020409\V0204001,D

Operator: Stan Hunnicutt : 4 Feb 09 12:34 pm

Sample : CCV VOC : GC/MS Ins Multiplr: 1,00 : VOL196 25ul

MS Integration Params: events.e


Quant Time: Feb 4 13:47 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\GRO,M (Chemstation Integrator)

Title : GRO

Last Update : Sun Jan 18 10:29:09 2009

Response via: Initial Calibration

Vial: 2

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204002.D

Acq On : 4 Feb 09 1:58 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 4 15:01 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

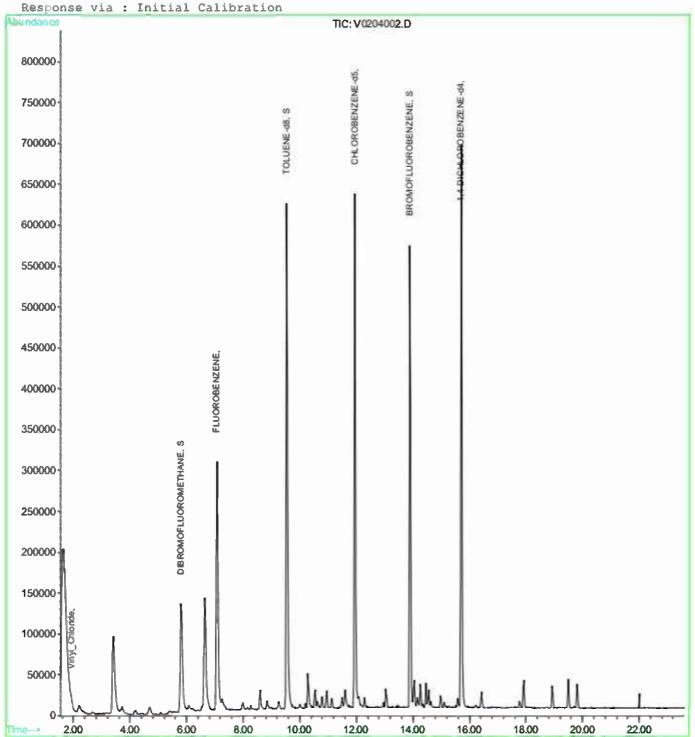
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) FLUOROBENZENE	7.08	96	5943963	50.00	ug/1	0.04
46) CHLOROBENZENE-d5	11.95	117	6395191	50.00	ug/l	0.00
69) 1,4-DICHLOROBENZENE-d4	15.71	152	3055952	50.00	ug/l	0.00
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.81	113	1904079	53.81	ug/1	0.05
Spiked Amount 50.000			Recove	ry =	107.629	5
35) TOLUENE-d8	9.54	98	7149991	49.11	ug/1	0.02
Spiked Amount 50.000			Recove	ry =	98.229	\$
55) BROMOFLUOROBENZENE	13.90	95	3097046	46.49	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	92.989	5
Target Compounds					Q.	alue
4) Vinyl Chloride	1.94	62	126168	5.89	ug/1 #	39

Vial: 2

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204002.D


Acq On : 4 Feb 09 1:58 pm Operator: Stan Hunnicutt
Sample : w09-0099 500ul/5ml H20 Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 15:01 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Quantitation Report

MS Integration Params: events.e

Quant Time: Feb 4 15:03 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

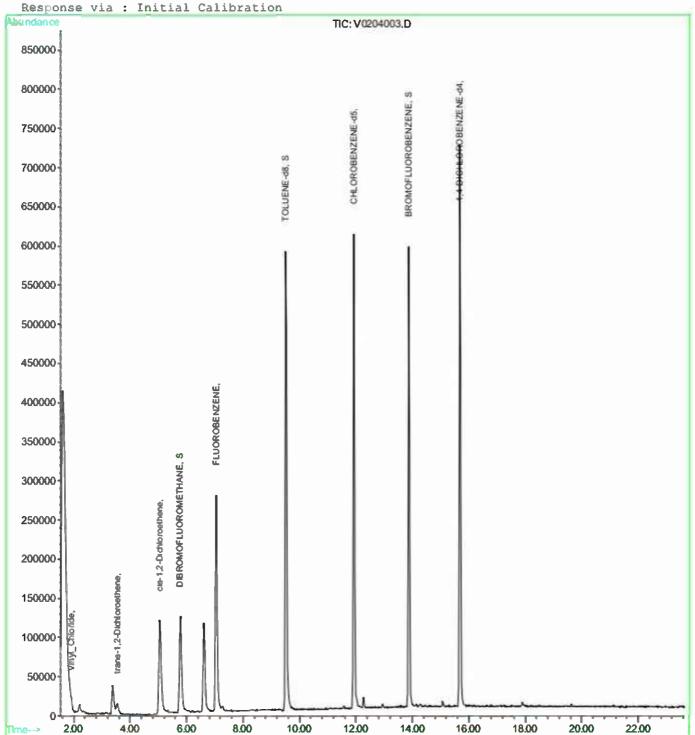
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v(Min)
1) FLUOROBENZENE	7.05	96	5314704	50.00	ug/1	0.02
46) CHLOROBENZENE-d5	11.93	117	6358865	50.00	ug/1	-0.01
69) 1,4-DICHLOROBENZENE-d4	15.68	152	3447513	50.00	ug/1	-0.02
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.78	113	1848413	58.42	ug/l	0.02
Spiked Amount 50.000			Recove	ry =	116.84	8
35) TOLUENE-d8	9.52	98	6801166	52.25	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	104.50	&
55) BROMOFLUOROBENZENE	13.87	95	3218426	48.58	ug/1	-0.02
Spiked Amount 50.000			Recove	ry =	97.16	g ₆
Target Compounds					Q	value
4) Vinyl_Chloride	1.94	62	196996	10.28	ug/1 #	39
12) trans-1,2-Dichloroethene	3.55	96	97217	8.77	ug/1 #	73
18) cis-1,2-Dichloroethene	5.06	96	1372297	68.76	ug/1	92

Vial: 3

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204003.D


Acq On : 4 Feb 09 2:38 pm Operator: Stan Hunnicutt

Sample : w09-0100 5ml Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 15:03 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Reference 26 Page 190 (QT Reviewed)

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204004.D Vial: 4

Acq On : 4 Feb 09 3:10 pm Operator: Stan Hunnicutt

Sample : w09-0096 5ml Misc : Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 16:13 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

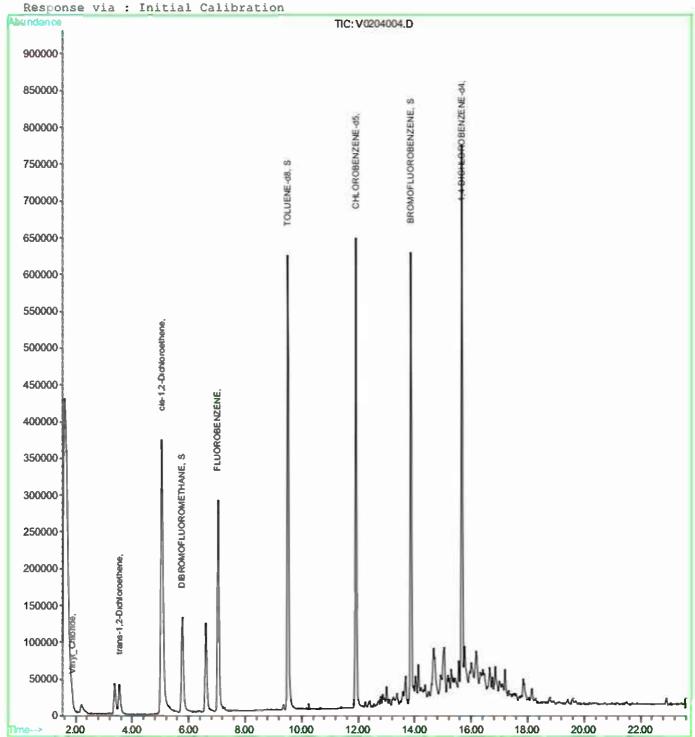
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits De	ev (Min)
1) FLUOROBENZENE	7.05	96	5468169	50.00	ug/1	0.00
46) CHLOROBENZENE-d5	11.92	117	6493011	50.00	ug/1	-0.02
69) 1,4-DICHLOROBENZENE-d4	15.66	152	3580099	50.00	ug/1	-0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.77	113	1816055	55.79	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	111.58	3%
35) TOLUENE-d8	9.51	98	7046415	52.61	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	105.22	2 %
55) BROMOFLUOROBENZENE	13.86	95	3293613	48.69	ug/1	-0.03
Spiked Amount 50.000			Recove	ry =	97.38	3 %
Target Compounds					Ç)value
4) Vinyl_Chloride	1.92	62	51058m	2.59	ug/l	O
12) trans-1,2-Dichloroethene	3.55	96	321654	28.20	ug/l	95
18) cis-1,2-Dichloroethene	5.05	96	4292912	208.17	ug/l	91

Vial: 4

Quantitation Report


Data File : C:\HPCHEM\2\DATA\V020409\V0204004.D

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 16:13 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Quantitation Report

Acq On : 4 Feb 09 3:41 pm Operator: Stan Hunnicutt Sample : w09-0097 5ml Inst : GC/MS Ins

MS Integration Params: events.e

Quant Time: Feb 4 16:15 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

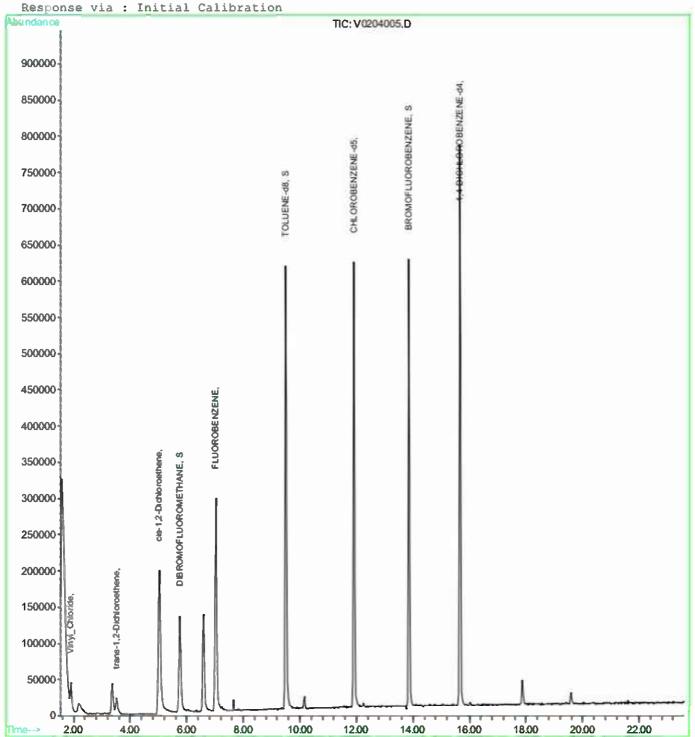
Internal Standards	R.T.	QIon	Response	Conc U	nits De	ev (Min)
1) FLUOROBENZENE	7.03	96	5200431	50.00	ug/1	0.00
46) CHLOROBENZENE-d5	11.91	117	6344491	50.00	ug/1	-0.03
69) 1,4-DICHLOROBENZENE-d4	15.66	152	3849205	50.00	ug/1	-0.04
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.76	113	1832298	59.19	ug/l	-0.01
Spiked Amount 50.000			Recove	ry =	118.38	3%
35) TOLUENE-d8	9.50	98	6989750	54.88	ug/1	-0.02
Spiked Amount 50.000			Recove	ry =	109.76	5%
55) BROMOFLUOROBENZENE	13.85	95	3397959	51.41	ug/1	-0.04
Spiked Amount 50.000			Recove	ry =	102.82	2%
Target Compounds					()value
4) Vinyl_Chloride	1.91	62	704945	37.58	ug/l	98
12) trans-1,2-Dichloroethene	3.52	96	152363	14.05	ug/1	95
18) cis-1,2-Dichloroethene	5.04	96	2036492	104.05	ug/1	84

Vial: 5

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204005.D

 Acq On
 : 4 Feb 09
 3:41 pm
 Operator: Stan Hunnicutt


 Sample
 : w09-0097
 5ml
 Inst
 : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 16:15 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 6

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204006.D

Acq On : 4 Feb O9 4:12 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 4 16:37 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

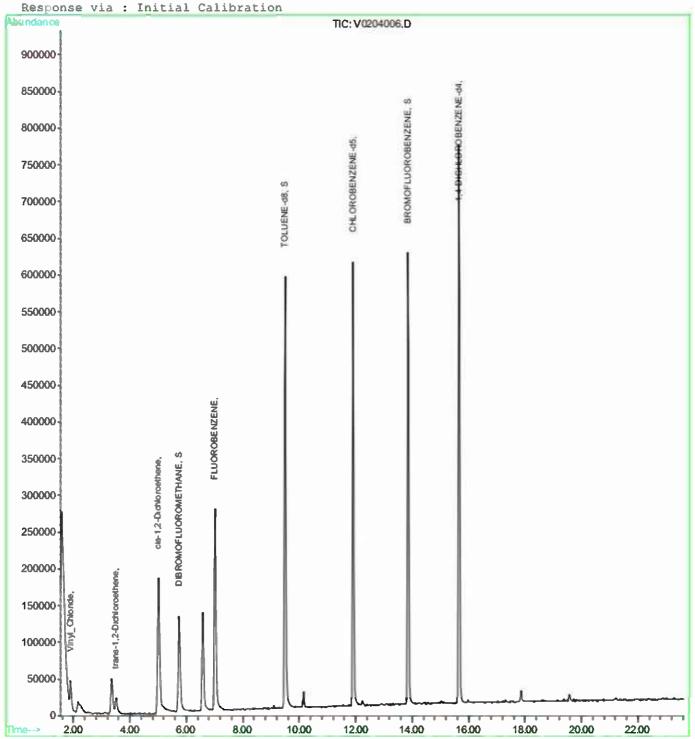
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v(Min)
1) FLUOROBENZENE	7.02	96	5128107	50.00	ug/1	-0.02
46) CHLOROBENZENE-d5	11.91	117	6140409	50.00	ug/1	-0.03
69) 1,4-DICHLOROBENZENE-d4	15.66	152	3791552	50.00	ug/l	-0.04
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.74	113	1767340	57.89	ug/1	-0.03
Spiked Amount 50.000			Recove	ry =	115.78	8
35) TOLUENE-d8	9.50	98	6571395	52.32	ug/l	-0.03
Spiked Amount 50.000			Recove	ry =	104.64	8
55) BROMOFLUOROBENZENE	13.85	95	3249427	50.80	ug/1	-0.04
Spiked Amount 50.000			Recove	ry =	101.60	es es
Target Compounds					Ç	value
4) Vinyl_Chloride	1.90	62	693893	37.52	ug/l	97
12) trans-1,2-Dichloroethene	3.51	96	163768	15.31	ug/l	94
18) cis-1,2-Dichloroethene	5.01	96	1847515	95.76	ug/1 #	82

Vial: 6

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204006.D


Acq On : 4 Feb 09 4:12 pm Operator: Stan Hunnicutt

Sample : w09-0098 5ml Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 16:37 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Data File : C:\HPCHEM\2\DATA\V020409\V0204007.D Vial: 7

Acq On : 4 Feb 09 4:43 pm Operator: Stan Hunnicutt Sample : s09-0090 5.56g/5ml H20 Inst : GC/MS Ins

Multiplr: 1.00 Misc

MS Integration Params: events.e

Quant Time: Feb 5 6:35 19109 Quant Results File: VOL.RES

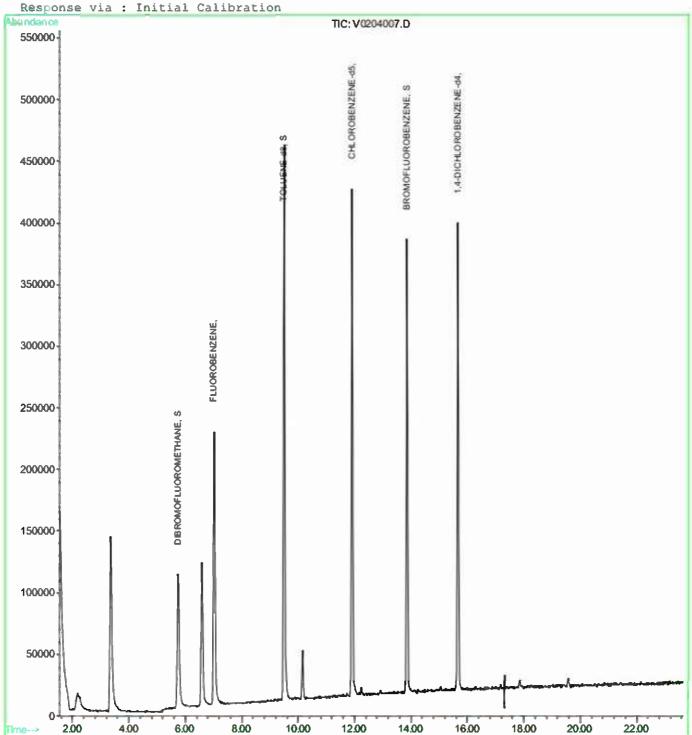
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v (Min)	
1) FLUOROBENZENE	7.03	96	4002566	50.00	ug/l	-0.01	
46) CHLOROBENZENE-d5	11.91	117	4072583	50.00	ug/1	-0.03	
69) 1,4-DICHLOROBENZENE-d4	15.66	152	1821850	50.00	ug/l	-0.04	
System Monitoring Compounds							
23) DIBROMOFLUOROMETHANE	5.75	113	1575362	66.12	ug/l	-0.02	
Spiked Amount 50.000			Recove	ry =	132.24%		
35) TOLUENE-d8	9.50	98	4986379	50.87	ug/l	-0.02	
Spiked Amount 50.000			Recove	ry =	101.74	%	
55) BROMOFLUOROBENZENE	13.85	95	1986213	46.82	ug/1	-0.03	
Spiked Amount 50.000			Recove	ry =	93.64	of the second	
Target Compounds					Q	value	

Quantitation Report


Acq On : 4 Feb 09 4:43 pm Operator: Stan Hunnicutt
Sample : s09-0090 5.56g/5ml H2O Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:35 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 8

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204008.D

Acq On : 4 Feb 09 5:14 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:36 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

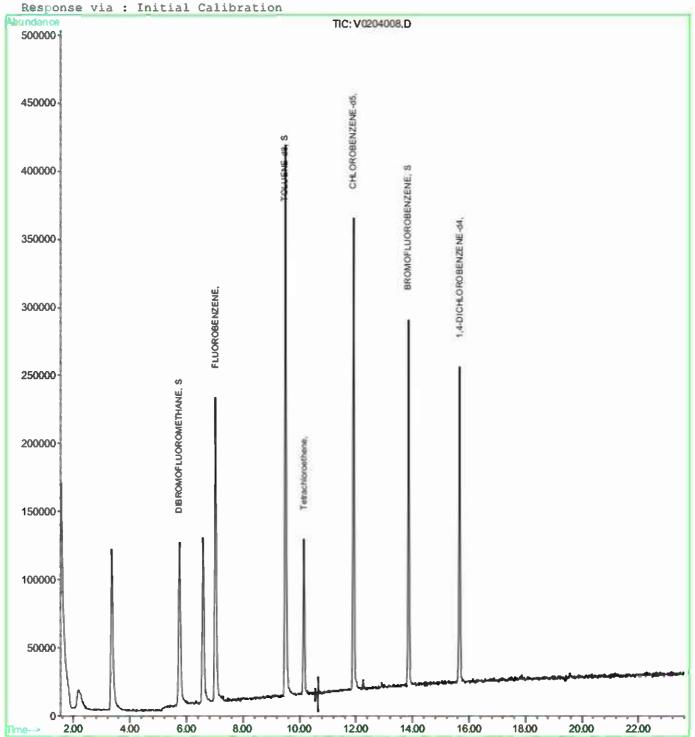
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min)
1) FLUOROBENZENE			3912243	50.00	-
46) CHLOROBENZENE-d5	11.91	117	3554542	50.00	ug/1 -0.03
69) 1,4-DICHLOROBENZENE-d4	15.66	152	1134704	50.00	ug/1 -0.04
System Monitoring Compounds					
23) DIBROMOFLUOROMETHANE	5.75	113	1593298	68.41	ug/1 -0.02
Spiked Amount 50.000			Recove	136.82%	
35) TOLUENE-d8	9.50	98	4474458	46.70	ug/1 -0.02
Spiked Amount 50.000			Recover	ry =	93.40%
55) BROMOFLUOROBENZENE	13.86	95	1481240	40.00	ug/1 -0.03
Spiked Amount 50.000			Recover	cy =	80.00%
Target Compounds					Qvalue
37) Tetrachloroethene	10.16	164	517472	12.33	ug/1 92

Vial: 8

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204008.D


Acq On : 4 Feb 09 5:14 pm Operator: Stan Hunnicutt
Sample : s09-0091 5.31g/5ml H2O Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:36 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Data File : C:\HPCHEM\2\DATA\V020409\V0204009.D Vial: 9

Acq On : 4 Feb 09 5:44 pm Operator: Stan Hunnicutt

Sample : MB020409V Misc : VOL195 10ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:37 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

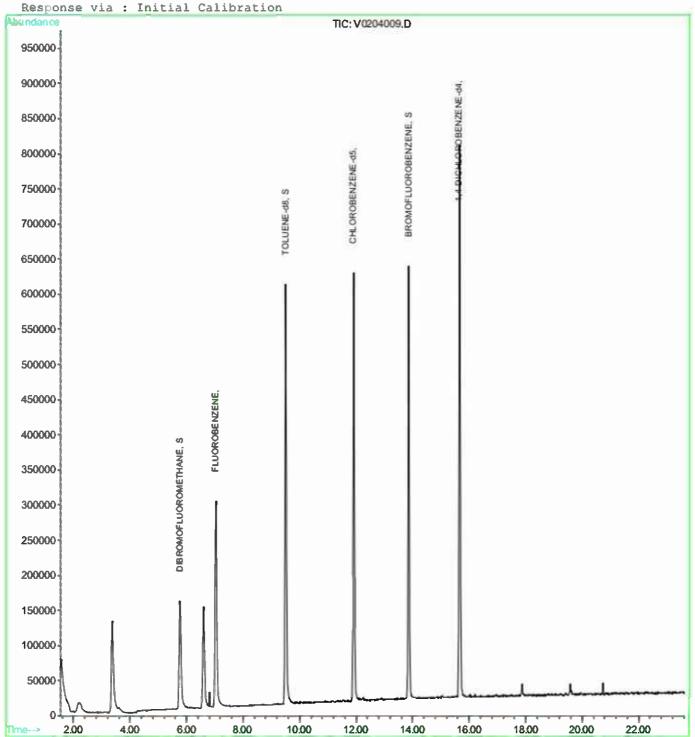
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one Ur	nits Dev	/(Min)
1) FLUOROBENZENE	7.04	96	5482747	50.00	ug/l	0.00
46) CHLOROBENZENE-d5	11.91	117	6156541	50.00	ug/1	-0.03
69) 1,4-DICHLOROBENZENE-d4	15.66	152	3834104	50.00	ug/l	-0.04
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE	5.77	113	2056913	63.02	ug/l	0.00
Spiked Amount 50.000			Recovery =		126.04%	
35) TOLUENE-d8	9.51	98	6712384	49.99	ug/1	-0.01
Spiked Amount 50.000			Recovery	=	99.98	È
55) BROMOFLUOROBENZENE	13.85	95	3345621	52.16	ug/1	-0.03
Spiked Amount 50.000			Recovery	=	104.329	È
Target Compounds					Q ₇	value

Vial: 9

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204009.D


Acq On : 4 Feb 09 5:44 pm Operator: Stan Hunnicutt

Sample : MB020409V Inst : GC/MS Ins Misc : VOL195 10u1 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:37 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Data File : C:\HPCHEM\2\DATA\V020409\V0204010.D Vial: 10

Acq On : 4 Feb 09 6:15 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : LCS020409V Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 18:38 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

: GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev(Min)
1) FLUOROBENZENE	7.02	96	4972569	50.00	ua/1	-0.02
46) CHLOROBENZENE-d5	11.91			50.00		-0.03
69) 1,4-DICHLOROBENZENE-d4	15.66			50.00		-0.04
	10.00		323,000	90.00	-9, -	
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.74	113	1652950	55.84	ug/1	-0.02
Spiked Amount 50.000			Recove:	ry =	111.6	88
35) TOLUENE-d8	9.50	98	6448592	52.95	ug/l	-0.02
Spiked Amount 50.000			Recove:	ry =	105.9	0%
55) BROMOFLUOROBENZENE	13.86	95	3249910	55.02	ug/1	-0.03
Spiked Amount 50.000			Recove:	ry =	110.0	4%
Target Compounds						Ovalue
2) Dichlorodifluoromethane	1.68	85	872917	21.11		Qvarue 100
3) Chloromethane	1.85		685422	28.87		96
4) Vinyl Chloride	1.90		630349	35.15		94
5) Bromomethane	2.13		427595	68.16		97
6) Chloroethane	2.20		171850	72.26	_	97
7) Trichlorofluoromethane	2.29		389744	78.17	_	97
8) 1,1-Dichloroethene	2.75		422025	55.86		80
9) Carbon Disulfide	2.78		1345922	57.98		
10) Iodomethane	2.90		1016208	77.91	_	88
11) Acetone	3.46		76811	131.89		80
12) trans-1,2-Dichloroethene	3.50		663676	63.99		98
13) n-Hexane	3.56		676636	50.55	_	91
14) Methy-tert-butylether (MTBE	3.67		2053903	59.94		96
15) 1,1-Dichloroethane	4.24		1294250	65.50		99
16) Acrylonitrile	4.37		243093	81.70	_	# 78
17) Vinyl Acetate	4.63		1658347	67.41		100
18) cis-1,2-Dichloroethene	5.01	96	1038646	55.70		90
19) 2,2-Dichloropropane	5.17	77	2333426	65.95		95
20) Bromochloromethane	5.33	128	743810	57.52		93
21) Chloroform	5.45	83	2722282	59.81	-	97
22) Carbon Tetrachloride	5.63	117	2757917	71.64	ug/l	99
24) 1,1,1-Trichloroethane	5.75	97	2794833	61.64	ug/1	98
25) 2-Butanone	6.04	72	264910	87.66	ug/1	66
26) 1,1-Dichloropropene	5.95	75	1934371	50.69	ug/1	99
27) Benzene	6.35	78	4819736	46.56	ug/1	100
28) 1,2-Dichloroethane	6.69	62	2789069	66.28	ug/1	97
29) Trichloroethene	7.28	95	1630126	54.18	ug/1	93
30) Dibromomethane	7.93	93	1160974	54.66	ug/l	88

Data File : C:\HPCHEM\2\DATA\V020409\V0204010.D Vial: 10

Acq On : 4 Feb 09 6:15 pm Operator: Stan Hunnicutt

Sample : LCS020409V Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 18:38 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
311	1,2-Dichloropropane	8.11	63	1518767	48.57 ug/	1 98
	Bromodichloromethane	8.22	83	2975818	59.37 ug/	
	2-Chloroethylvinylether	9.58	63	786078	60.55 ug/	
34)	4 4	9.22	75	3149570	50.30 ug/	
*	Toluene	9.58	92	4435695	46.02 ug/	
	Tetrachloroethene	10.16		2447020	45.89 ug/	
	4-Methyl-2-pentanone	10.25		772035	104.51 ug/	
	trans-1,3-Dichloropropene	10.26	75	3138470	54.81 ug/	
	1,1,2-Trichloroethane	10.50	. —	1369843	50.74 ug/	
	Ethyl methacrylate	10.58		1196273	48.85 ug/	
	Dibromochloromethane	10.75		2860614	58.18 ug/	
	1,3-Dichloropropane	10.91	76	3299568	50.89 ug/	
	1,2-Dibromoethane	11.09	107	2162935	53.02 ug/	
	2-Hexanone	11.56	43	3640106	103.42 ug/	
	Chlorobenzene	11.94		5962392	47.79 ug/	
48)	Ethylbenzene	12.01	91	9624105	49.46 ug/	
	1,1,1,2-Tetrachloroethane	12.06	131	2570875	51.23 ug/	
*	Xylene, m+p	12.25	106	7271403	88.68 ug/	
	Xylene, o	12.92	106	4178733	48.17 ug/	
	Styrene	13.01	104	6472187	47.00 ug/	
	Bromoform	13.01	173	1897016	50.72 ug/	
54)	Isopropylbenzene	13.43	105	10671392	49.29 ug/	
56)	Bromobenzene	14.00	156	2952662	46.87 ug/	1 92
57)	n-Propylbenzene	14.09	91	11960347	49.80 ug/	1 97
58)	1,1,2,2-Tetrachloroethane	14.22	83	2421291	49.54 ug/	1 99
59)	2-Chlorotoluene	14.32	91	7188897	52.61 ug/	1 98
60)	1,3,5-Trimethylbenzene	14.43	105	8478575	51.52 ug/	
61)	1,2,3-Trichloropropane	14.59	75	254610	48.60 ug/	1 100
62)	trans-1,4-Dichloro-2-buten	14.51	53	885075	62.69 ug/	1 87
63)	4-Chlorotoluene	14.59	91	7338442	52.17 ug/	1 99
64)	tert-Butylbenzene	14.93	119	9310437	49.78 ug/	1 92
65)	1,2,4-Trimethylbenzene	15.05	105	8868075	51.74 ug/	1 98
66)	sec-Butylbenzene	15.22	105	12429468	50.26 ug/	1 96
67)	4-Isopropyltoluene	15.47	119	10523936	49.96 ug/	1 97
68)	1,3-Dichlorobenzene	15.54	146	5401520	46.39 ug/	1 98
70)	1,4-Dichlorobenzene	15.69	146	5471440	48.69 ug/	1 97
71)	n-Butylbenzene	16.15	91	9405803	55.08 ug/	1 98
72)	1,2-Dichlorobenzene	16.37	146	5280124	49.37 ug/	1 98
73)	1,2-Dibromo-3-chloropropan	17.70	75	480569	57.40 ug/	1 83
74)	Hexachlorobutadiene	18.82	225	2163417	49.57 ug/	1 99
75)	1,2,4-Trichlorobenzene	18.85	180	4386525	49.57 ug/	1 100

Vial: 10

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204010.D

Acq On : 4 Feb 09 6:15 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 4 18:38 19109 Quant Results File: VOL.RES

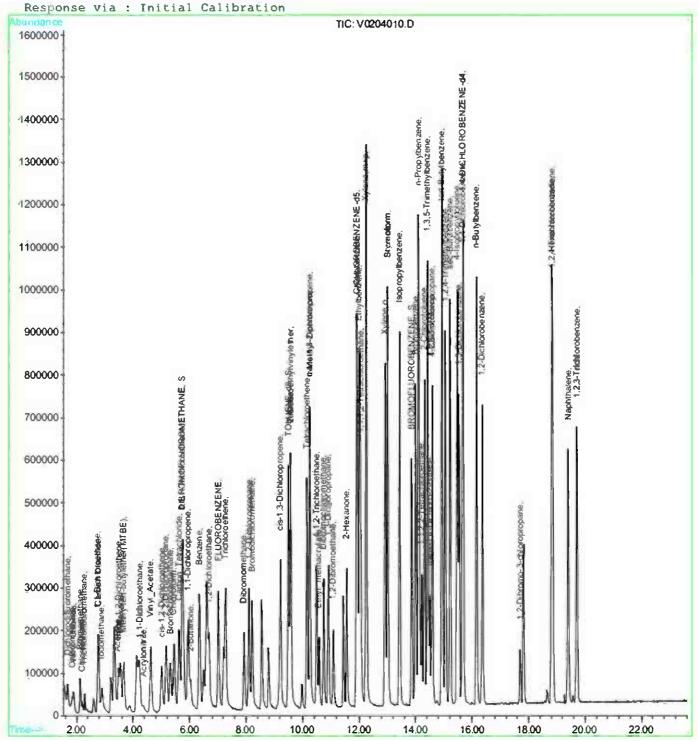
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue		
76)	Naphthalene	19.40	128	9220515	51.20 ug/1	100		
77)	1,2,3-Trichlorobenzene	19.71	180	3959302	48.44 ug/1	98		

Vial: 10


Data File: C:\HPCHEM\2\DATA\V020409\V0204010,D

Operator: Stan Hunnicutt : 4 Feb 09 6:15 pm

Sample : LCS020409V : GC/MS Ins Multiplr: 1,00 : VOL196 25ul

MS Integration Params: events.e Quant Time: Feb 4 18:38 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Vial: 11

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204011.D

Acq On : 4 Feb 09 6:45 pm Operator: Stan Hunnicutt Sample : s09-0092 5.54g/5ml H2O Inst : GC/MS Ins

MS Integration Params: events.e

Quant Time: Feb 5 6:39 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

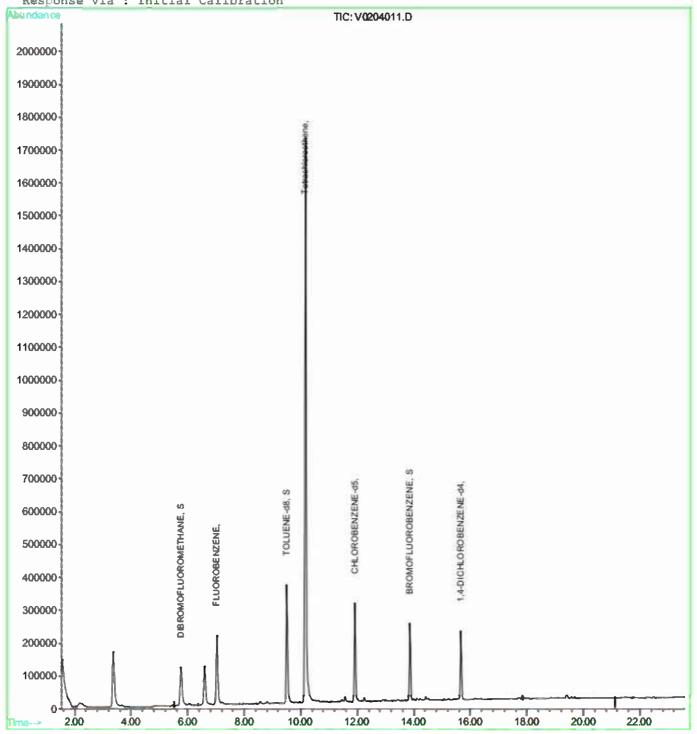
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) FLUOROBENZENE	7.04	96	3950321	50.00	ug/l	0.00
46) CHLOROBENZENE-d5	11.91	117	2999560	50.00	ug/l	-0.02
69) 1,4-DICHLOROBENZENE-d4	15.66	152	1023037	50.00	ug/l	-0.04
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.77	113	1602711	68.15	ug/l	0.00
Spiked Amount 50.000			Recover	ry =	136.30	8
35) TOLUENE-d8	9.51	98	4056587	41.93	ug/l	-0.02
Spiked Amount 50.000			Recover	ry =	83.86	ł.
55) BROMOFLUOROBENZENE	13.86	95	1286039	41.16	ug/l	-0.03
Spiked Amount 50.000			Recove	cy =	82.32	e e
Target Compounds					Ö,	value
37) Tetrachloroethene	10.16	164	8197344	193.49	ug/1	95

Data File : C:\HPCHEM\2\DATA\V020409\V0204011.D Vial: 11

Acq On : 4 Feb 09 6:45 pm Operator: Stan Hunnicutt
Sample : s09-0092 5.54g/5ml H2O Inst : GC/MS Ins


Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:39 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

Reference 26 Page 208 (QT Reviewed)

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204012.D Vial: 12

Acq On : 4 Feb 09 7:15 pm Operator: Stan Hunnicutt Sample : s09-0093 5.20g/5ml H20 Misc : Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:40 19109 Quant Results File: VOL.RES

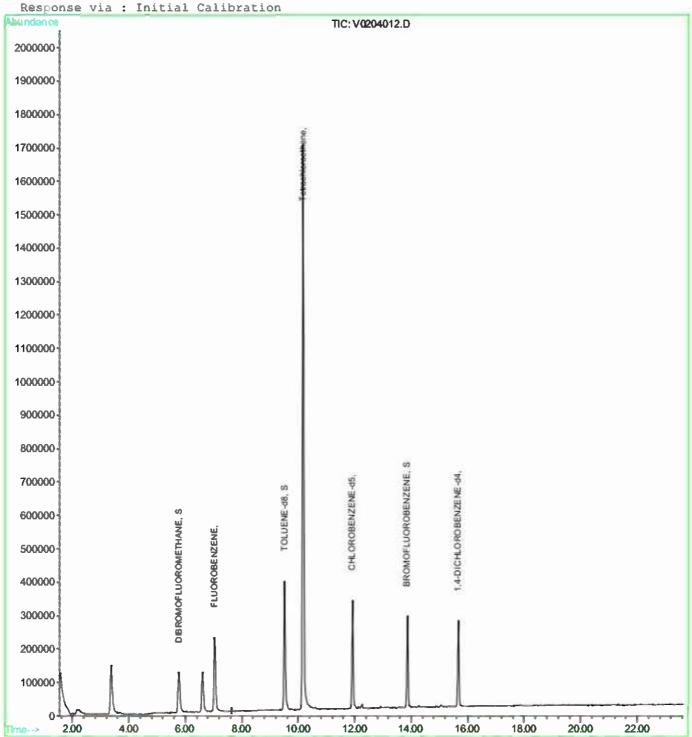
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min)
1) FLUOROBENZENE	7.04	96	4071866	50.00		0.00
46) CHLOROBENZENE-d5	11.92	117	3324950	50.00	ug/1 -	0.02
69) 1,4-DICHLOROBENZENE-d4	15.66	152	1265390	50.00	ug/1 -	0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.77	113	1743298	71.92	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	143.84%	
35) TOLUENE-d8	9.51	98	4333299	43.45	ug/1 -	0.01
Spiked Amount 50.000			Recove	ry =	86.90%	
55) BROMOFLUOROBENZENE	13.86	95	1495481	43.17	ug/1 -	0.03
Spiked Amount 50.000			Recove	ry =	86.34%	
Target Compounds					Qva	lue
37) Tetrachloroethene	10.17	164	7945666	181.96	ug/l	93

Data File: C:\HPCHEM\2\DATA\V020409\V0204012.D Vial: 12


Acq On : 4 Feb 09 7:15 pm Operator: Stan Hunnicutt
Sample : s09-0093 5.20g/5ml H2O Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:40 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 13

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204013.D

Acq On : 4 Feb O9 7:45 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:40 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

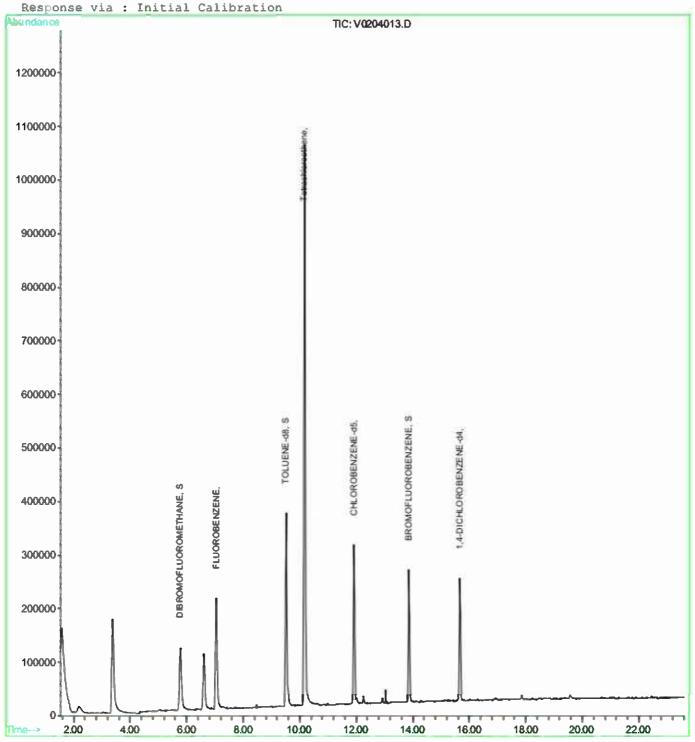
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	its Dev	(Min)
1) FLUOROBENZENE	7.05	96	3906907	50.00	ug/l	0.01
46) CHLOROBENZENE-d5	11.92	117	3006485	50.00	ug/l	-0.02
69) 1,4-DICHLOROBENZENE-d4	15.66	152	1092532	50.00	ug/l	-0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.78	113	1713374	73.67	ug/l	0.00
Spiked Amount 50.000			Recovery =		147.34%	
35) TOLUENE-d8	9.52	98	4078759	42.63	ug/l	0.00
Spiked Amount 50.000			Recovery =		85.26%	
55) BROMOFLUOROBENZENE	13.86	95	1305705	41.69	ug/1	-0.02
Spiked Amount 50.000			Recove	ry =	83.38%	
Target Compounds					Qv	alue
37) Tetrachloroethene	10.17	164	4760770	113.62	ug/l	92

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204013.D Vial: 13


Acq On : 4 Feb 09 7:45 pm Operator: Stan Hunnicutt
Sample : s09-0094 4.99g/5ml H2O Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:40 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Quantitation Report

Data File: C:\HPCHEM\2\DATA\V020409\V0204014.D Via1: 14

Acq On : 4 Feb 09 8:15 pm Operator: Stan Hunnicutt Sample : w09-0107 5ml Inst : GC/MS Ins

MS Integration Params: events.e

Quant Time: Feb 5 6:41 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

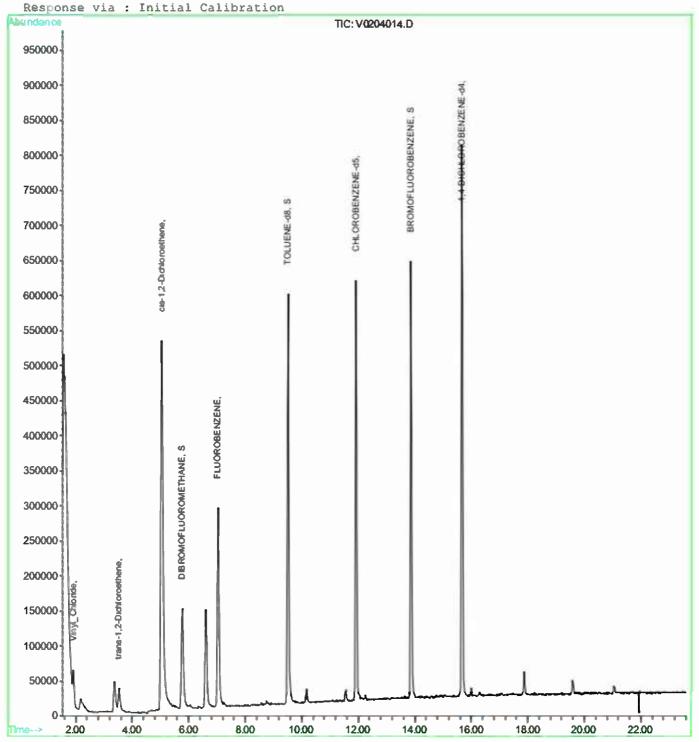
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v(Min)
1) FLUOROBENZENE	7.04	96	5280340	50.00	ug/1	0.00
46) CHLOROBENZENE-d5	11.92	117	6197219	50.00	ug/1	-0.02
69) 1,4-DICHLOROBENZENE-d4	15.67	152	3837267	50.00	ug/1	-0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.78	113	1968925	62.64	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	125.28	8
35) TOLUENE-d8	9.51	98	6583738	50.91	ug/l	0.00
Spiked Amount 50.000			Recovery = 101.82%			e E
55) BROMOFLUOROBENZENE	13.86	95	3339247	51.72	ug/1	-0.03
Spiked Amount 50.000			Recove	ery =	103.44	%
Target Compounds					Q	value
4) Vinyl_Chloride	1.92	62	996424	52.32	ug/l	91
12) trans-1,2-Dichloroethene	3.53	96	267357	24.28	ug/l	94
18) cis-1,2-Dichloroethene	5.05	96	6219293	312.09	ug/l	91

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204014.D Vial: 14

 Acq On
 : 4 Feb 09
 8:15 pm
 Operator: Stan Hunnicutt


 Sample
 : w09-0107
 5ml
 Inst
 : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:41 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Data File : C:\HPCHEM\2\DATA\V020409\V0204015.D Vial: 15

Acq On : 4 Feb 09 8:45 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : w09-0107msv 5ml Misc : V0L196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 21:09 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

: GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) FLUOROBENZENE	7.04	96	5214453	50.00	ug/l	0.00
46) CHLOROBENZENE-d5	11.92	117	6074903	50.00	ug/1	-0.02
69) 1,4-DICHLOROBENZENE-d4	15.67	152	3628044	50.00		-0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.76	113	1734728	55.89	ug/1	0.00
Spiked Amount 50.000			Recove	ry =	111.78	96
35) TOLUENE-d8	9.51	98	6624057	_	ug/1	-0.01
Spiked Amount 50.000			Recove			8
55) BROMOFLUOROBENZENE	13.87	95	3419250	54.03	ug/1	-0.02
Spiked Amount 50.000			Recove	ry =	108.06	8
Target Compounds					Ç	value
2) Dichlorodifluoromethane	1.69	85	872858	20.13	ug/1	98
Chloromethane	1.85	50	799841	32.13	ug/1	95
4) Vinyl Chloride	1.91	62	1757994	93.47	ug/1	91
5) Bromomethane	2.14	94	346368	52.65	ug/1	95
6) Chloroethane	2.21	64	185858	74.78	ug/1	97
Trichlorofluoromethane	2.30	101	456965	89.69	ug/1	96
8) 1,1-Dichloroethene	2.77	96	506062	63.88	ug/1	95
9) Carbon Disulfide	2.80	76	1359698	55.85	ug/1 #	81
10) Iodomethane	2.91	142	998021	72.97	ug/l	88
11) Acetone	3.47	58	72322	118.42	ug/l	72
<pre>12) trans-1,2-Dichloroethene</pre>	3.51		985486	90.62	ug/1	97
13) n-Hexane	3.58	57	732426	52.18	ug/1	99
14) Methy-tert-butylether(MTBE	3.68	73	2050501	57.06	ug/l	98
<pre>15) 1,1-Dichloroethane</pre>	4.26	63	1353998	65.34		94
16) Acrylonitrile	4.38	53	187727		ug/1 #	80
<pre>17) Vinyl_Acetate</pre>	4.64	43	1789384	69.36		100
18) cis-1,2-Dichloroethene	5.03	96	6859435	348.51		87
<pre>19) 2,2-Dichloropropane</pre>	5.19	77		61.93	~	97
20) Bromochloromethane	5.35		725234	53.48		86
21) Chloroform	5.47	83	2798674	58.64		96
<pre>22) Carbon_Tetrachloride</pre>	5.65	117	2894935	71.71		98
24) 1,1,1-Trichloroethane	5.77	97	2922734	61.47	~	99
25) 2-Butanone	6.05		297215		_	74
26) 1,1-Dichloropropene	5.97	75	2156643		-	97
27) Benzene	6.36		5083127	46.83		100
28) 1,2-Dichloroethane	6.71		2853441	64.66	-	95
29) Trichloroethene	7.29					94
30) Dibromomethane	7.95				ug/1 #	

Data File : C:\HPCHEM\2\DATA\V020409\V0204015.D Vial: 15

Acq On : 4 Feb 09 8:45 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : w09-0107msv 5ml Misc : V0L196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 21:09 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

		Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
32) Bromodichloromethane 8.23 8.3 3139446 59.73 ug/1 99 33) 2-Chloroethylvinylether 9.59 63 824911 60.60 ug/1 # 97 34) cis-1,3-Dichloropropene 9.23 75 3382517 51.51 ug/1 94 36) Toluene 9.59 92 4706945 46.56 ug/1 98 37) Tetrachloroethene 10.17 164 2248703 40.21 ug/1 96 38) 4-Methyl-2-pentanone 10.26 100 677679 87.48 ug/1 95 39) trans-1,3-Dichloropropene 10.27 75 3134424 52.20 ug/1 97 40) 1,1,2-Trichloroethane 10.51 83 1370115 48.40 ug/1 97 41) Ethyl methacrylate 10.59 69 1156713 45.04 ug/1 95 42) Dibromochloromethane 10.76 129 2890109 56.05 ug/1 100 43) 1,3-Dichloropropane 10.92 76 3372555 49.60 ug/1 100 43) 1,3-Dichloropropane 11.57 43 3245142 87.92 ug/1 94 47) Chlorobenzene 11.57 43 3245142 87.92 ug/1 94 48) Ethylbenzene 11.55 112 6306587 47.18 ug/1 99 48) Ethylbenzene 11.95 112 6306587 47.18 ug/1 99 48) Ethylbenzene 12.02 91 9868661 47.34 ug/1 98 49) 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/1 95 50) Xylene,m+p 12.26 106 7460386 84.93 ug/1 93 51) Xylene,o 12.93 106 4417980 47.54 ug/1 98 52) Styrene 13.02 104 6801425 50.30 ug/1 95 53) Bromoform 13.02 173 1856161 46.33 ug/1 98 54) Isopropylbenzene 14.10 91 12719413 49.43 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/1 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/1 99 50) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/1 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/1 99 64) tert-Butylbenzene 15.04 119 9827670 49.05 ug/1 97 65) 1,2,4-Trimethylbenzene 15.54 16 566539 45.84 ug/1 97 66) 1,2,5-Trimethylbenzene 15.54 16 566539 45.84 ug/1 97 67) 1,4-Dichlorobenzene 15.54 16 566539 45.84 ug/1 97 68) 1,3-Dichlorobenzene 15.54 16 566539 45.84 ug/1 97 71) 1,2-Dichomo-3-chloropropan 77,1 75 443074 43.92 ug/1 99 71) 1,2-Dichomo-3-chloropropan 77,1 75 443074 43.92 ug/1 99 71) 1,2-Dichomo-3-chloropropan 77,1 75 443074 43.92 ug/1 99	311	1.2-Dichloropropage	8.12	 63	1678701	51 19 ug/1		97
33) 2-Chloroethylvinylether 9.59 63 824911 60.60 ug/l # 97 34) cis-1,3-Dichloropropene 9.23 75 3382517 51.51 ug/l 94 87 36 36 Toluene 9.59 92 4706945 46.56 ug/l 98 37) Tetrachloroethene 10.17 164 2248703 40.21 ug/l 96 38 4-Methyl-2-pentanone 10.26 100 677679 87.48 ug/l 85 91 31 31 31 31 31 31 31 31 31 31 31 31 31						~		
34 cis-1,3-Dichloropropene 9.23 75 3382517 51.51 ug/1 94 36 Toluene 9.59 92 4706945 46.56 ug/1 98 37 Tetrachloroethene 10.17 164 2248703 40.21 ug/1 96 38 4-Methyl-2-pentanone 10.26 100 677679 87.48 ug/1 85 39 trans-1,3-Dichloropropene 10.27 75 3134424 52.20 ug/1 97 41 52 51 51 51 51 51 52 52						~	#	
36) Toluene 9.59 92 4706945 46.56 ug/l 98 37) Tetrachloroethene 10.17 164 2248703 40.21 ug/l 96 38) 4-Methyl-2-pentanone 10.26 100 677679 87.48 ug/l 85 39) trans-1,3-Dichloropropene 10.27 75 3134424 52.20 ug/l 97 40) 1,1,2-Trichloroethane 10.51 83 1370115 48.40 ug/l 97 41) Ethyl_methacrylate 10.59 69 1156713 45.04 ug/l 97 42) Dibromochloromethane 10.61 129 2890109 56.05 ug/l 100 43) 1,3-Dichloropropane 10.92 76 3372555 49.60 ug/l 100 43) 1,3-Dichloropropane 11.10 107 2149504 50.25 ug/l # 98 45) 2-Hexanone 11.57 43 3245142 87.92 ug/l # 98 47) Chlorobenzene 11.95 112 6306587 47.18 ug/l 99 48) Ethylbenzene 12.02 91 9868661 47.34 ug/l 98 49) 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/l 95 50) Xylene,m+p 12.26 106 7460386 84.93 ug/l 93 51) Xylene,o 12.93 106 4417980 47.54 ug/l 98 52) Styrene 13.02 104 6801425 46.10 ug/l 90 53) Bromoform 13.02 173 1856161 46.33 ug/l 98 54) Isopropylbenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.01 156 3055813 45.28 ug/l 91 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 759111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 90 62) trans-1,4-Dichloro-2-buten 14.50 91 7860014 52.16 ug/l 99 64) terr-Butylbenzene 14.94 119 9827670 49.05 ug/l 99 65) 1,2,4-Trimethylbenzene 15.66 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.68 105 9447329 51.45 ug/l 97 67) 1,4-Dichlorobenzene 15.54 146 5623107 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,2-Dichlorobenzene 15.54 146 5623107 49.00 ug/l 97 70) 1,4-Dichlorobenzene 15.66 105 9447329 51.45 ug/l 97 71 1,2-Dichlorobenzene 15.54 146 5623107 49.00 ug/l 97 71 1,2-Dichlorobenzene 15.54 146 5623107 49.00 ug/l 97 72 1,2-Dichlorobenzene 15.54 146 5623107 49.00 ug/l 97 73 1,2-Dichlorobenzene 15.54 146 5623107 49.00 ug/l 97 71 1,2-Dichlorobenzene 15.54 146 5666539 45.84 ug/l 97 72 1,2-Dichlorobenzene 15.59 146 5666539 45.84 u						~		
37 Tetrachloroethene								98
38 4-Methyl-2-pentanone 10.26 100 677679 87.48 ug/l 85 17ans-1,3-Dichloropropene 10.27 75 3134424 52.20 ug/l 97 400 1,1,2-Trichloroethane 10.51 83 1370115 48.40 ug/l 97 411 Ethyl_methacrylate 10.59 69 1156713 45.04 ug/l 95 42 Dibromochloromethane 10.76 129 2890109 56.05 ug/l 100 43 1,3-Dichloropropane 10.92 76 3372555 49.60 ug/l 100 43 1,2-Dibromoethane 11.10 107 2149504 50.25 ug/l 98 45 2-Hexanone 11.57 43 3245142 87.92 ug/l 94 47 Chlorobenzene 11.95 112 6306587 47.18 ug/l 99 48 Ethylbenzene 12.02 91 9868661 47.34 ug/l 98 49 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/l 95 50 Xylene,m+p 12.26 106 7460386 84.93 ug/l 93 51 Xylene,o 12.93 106 4417980 47.54 ug/l 98 52 Styrene 13.02 104 6801425 46.10 ug/l 90 53 Bromoform 13.02 104 6801425 46.10 ug/l 90 53 Bromoform 13.02 173 1856161 46.33 ug/l 98 54 Isopropylbenzene 14.10 91 12719413 49.43 ug/l 97 53 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 59 2-Chlorotoluene 14.60 91 785014 50.93 ug/l 100 62 trans-1,4-Dichloro-2-buten 14.60 91 7850014 52.16 ug/l 99 60 1,3,5-Trimethylbenzene 14.60 91 7850014 52.16 ug/l 99 63 4-Chlorotoluene 14.60 91 7850014 52.16 ug/l 99 66 sec-Butylbenzene 15.66 105 9447329 51.45 ug/l 97 66 sec-Butylbenzene 15.66 105 9447329 51.45 ug/l 97 76 1,4-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70 1,4-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70 1,2-Dichorobenzene 15.54 146 5623107 45.07 ug/l 97 70 1,2-Dichorobenzene 15.56 146 5665539 45.84 ug/l 97 77 1,2-Dichorobenzene 15.56 146 5665539 45.84 ug/l 97 77 1,2-Dichorobenzene 15.56 146 5665539 45.84 u						~		
39) trans-1,3-Dichloropropene 10.27 75 3134424 52.20 ug/1 97 40) 1,1,2-Trichloroethane 10.51 83 1370115 48.40 ug/1 97 41) Ethyl_methacrylate 10.59 69 1156713 45.04 ug/1 95 42) Dibromochloromethane 10.76 129 2890109 56.05 ug/1 100 43) 1,3-Dichloropropane 10.92 76 3372555 49.60 ug/1 100 44) 1,2-Dibromochlane 11.10 107 2149504 50.25 ug/1 ₱ 98 45) 2-Hexanone 11.57 43 3245142 87.92 ug/1 ₱ 94 47) Chlorobenzene 11.95 112 6306587 47.18 ug/1 99 48) Ethylbenzene 12.02 91 9868661 47.34 ug/1 98 49) 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/1 95 50) Xylene,m+p 12.06 131 2704025 50.30 ug/1 95 51) Xylene,m+p 12.06 131 2704025 50.30 ug/1 98 52) Styrene 13.02 104 6801425 46.10 ug/1 98 52) Styrene 13.02 104 6801425 46.10 ug/1 98 53) Bromoform 13.02 173 1856161 46.33 ug/1 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/1 98 68 Bromobenzene 14.01 156 3055813 45.28 ug/1 91 57) n-Propylbenzene 14.01 156 3055813 45.28 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/1 99 59) 2-Chlorotoluene 14.30 14.00 15.85 ug/1 99 601 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/1 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/1 99 66) 1,2,4-Trimethylbenzene 14.94 119 9827670 49.05 ug/1 99 66) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/1 99 66) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/1 97 66) sec-Butylbenzene 15.54 146 566539 45.84 ug/1 97 70 1,4-Dichlorobenzene 15.54 146 566539 45.84 ug/1 97 70 1,4-Dichlorobenzene 15.54 146 566539 45.84 ug/1 97 70 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 97 71 n-Butylbenzene 15.54 146 566539 45.84 ug/1 97 73 1,2-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 97 73 1,2-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 97 73 1,2-Dichlorobenzene 16.18 91 9756919 51.93 ug/1 97 73 1,2-Dichlorobenzene 16.18 19 9756919 51.93 ug/1 97 73 1,2-Dichlorobenzene 16.18 19 9756919 51.93 ug/1 97 73 1,2-Dichlorobenzene 17.71 75 443074 48.10 ug/1 79 74 148 transprophytoluene 15.88 ug/1 97 75 143074 48.90 ug/1	38)	4-Methyl-2-pentanone	10.26	100	677679	2		85
40) 1,1,2-Trichloroethane 41) Ethyl methacrylate 42) Dibromochloromethane 42) Dibromochloromethane 43) 1,3-Dichloropropane 44) 1,2-Dibromoethane 45) 2-Hexanone 46) 1.1.57 47) 245 2-Hexanone 47) Chlorobenzene 48) Ethylbenzene 49) 1,1,1,2-Tetrachloroethane 49) 1,1,1,2-Tetrachloroethane 49) 1,1,1,2-Tetrachloroethane 49) 1,1,1,2-Tetrachloroethane 49) 1,1,1,2-Tetrachloroethane 40) 1,1,1,2-Tetrachloroethane 41) 1,2-Dibromoethane 42) 1,1,1,2-Tetrachloroethane 43) 1,1,1,2-Tetrachloroethane 44) 1,2-Dibromoethane 45) 2-Hexanone 46) 1,1,1,2-Tetrachloroethane 47) Chlorobenzene 48) 2-Hexanone 49) 1,1,1,2-Tetrachloroethane 40) 1,1,1,2-Tetrachloroethane 41) 1,2-Dibromoethane 42) 1,1,1,2-Tetrachloroethane 43) 1,3-Dibromoethane 44) 1,2-Dibromoethane 45) 2-Hexanone 46) 1,1,1,2-Tetrachloroethane 47) 200 201 201 201 201 201 201 201 201 201				75	3134424	~		
A21 Dibromochloromethane 10.76 129 2890109 56.05 ug/l 100	40)	1,1,2-Trichloroethane	10.51	83	1370115			97
A21 Dibromochloromethane 10.76 129 2890109 56.05 ug/l 100	41)	Ethyl methacrylate	10.59	69	1156713			95
1,3-Dichloropropane 10.92 76 3372555 49.60 ug/l 100 44) 1,2-Dibromoethane 11.10 107 2149504 50.25 ug/l # 98 45) 2-Hexanone 11.57 43 3245142 87.92 ug/l 94 94 47) Chlorobenzene 11.95 112 6306587 47.18 ug/l 99 48) Ethylbenzene 12.02 91 9868661 47.34 ug/l 98 49) 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/l 95 50 Xylene,mep 12.26 106 7460386 84.93 ug/l 93 51) Xylene,o 12.93 106 4417980 47.54 ug/l 98 52) Styrene 13.02 104 6801425 46.10 ug/l 90 53) Bromoform 13.02 173 1856161 46.33 ug/l 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/l 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 59) 2-Chlorotoluene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.54 146 566539 45.84 ug/l 97 66) sec-Butylbenzene 15.54 146 5666539 45.84 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5666539 45.84 ug/l 97 70 1,4-Dichlorobenzene 15.66 146 5666539 45.84 ug/l 97 70 1,2-Dichlorobenzene 16.16 91 9756919 51.93 ug/l 97 70 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/l 97 73 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 73 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 73 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 74 75 75 75			10.76	129	2890109	56.05 ug/1		100
45) 2-Hexanone	43)	1,3-Dichloropropane	10.92	76	3372555	49.60 ug/l		100
47) Chlorobenzene 11.95 112 6306587 47.18 ug/1 99 48) Ethylbenzene 12.02 91 9868661 47.34 ug/1 98 49) 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/1 95 50) Xylene,m+p 12.26 106 7460386 84.93 ug/1 93 51) Xylene,o 12.93 106 4417980 47.54 ug/1 98 52) Styrene 13.02 104 6801425 46.10 ug/1 90 53) Bromoform 13.02 173 1856161 46.33 ug/1 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/1 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/1 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.23 91 759111 51.85 ug/1 99 59) 2-Chlorotoluene 14.32 91 759111 51.85 ug/1 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/1 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/1 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/1 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/1 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/1 97 66) sec-Butylbenzene 15.48 119 10827171 47.97 ug/1 97 66) sec-Butylbenzene 15.54 146 5623107 49.00 ug/1 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/1 97 70) 1,4-Dichlorobenzene 15.54 146 5623107 45.07 ug/1 97 71) n-Butylbenzene 16.38 146 5423966 46.10 ug/1 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/1 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/1	44)	1,2-Dibromoethane	11.10	107	2149504	50.25 ug/1	#	98
48) Ethylbenzene 12.02 91 9868661 47.34 ug/1 98 49) 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/1 95 50) Xylene,m+p 12.26 106 7460386 84.93 ug/1 93 51) Xylene,o 12.93 106 4417980 47.54 ug/1 98 52) Styrene 13.02 104 6801425 46.10 ug/1 90 53) Bromoform 13.02 173 1856161 46.33 ug/1 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/1 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/1 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/1 99 59) 2-Chlorotoluene 14.32 91 759111 51.85 ug/1 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/1 100 61) 1,2,3-Trichloropopane 14.60 75 261100 <td>45)</td> <td>2-Hexanone</td> <td>11.57</td> <td>43</td> <td>3245142</td> <td>87.92 ug/1</td> <td></td> <td>94</td>	45)	2-Hexanone	11.57	43	3245142	87.92 ug/1		94
49) 1,1,1,2-Tetrachloroethane 12.06 131 2704025 50.30 ug/l 95 50) Xylene,m+p 12.26 106 7460386 84.93 ug/l 93 51) Xylene,o 12.93 106 4417980 47.54 ug/l 98 52) Styrene 13.02 104 6801425 46.10 ug/l 90 53) Bromoform 13.02 173 1856161 46.33 ug/l 98 54) Isopropylbenzene 13.44 105 1473965 49.47 ug/l 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.60 75 261100 46.52 ug/l 100 61) 1,2,3-Trichloroporopan 14.60 75 <td>47)</td> <td>Chlorobenzene</td> <td>11.95</td> <td>112</td> <td>6306587</td> <td>47.18 ug/1</td> <td></td> <td>99</td>	47)	Chlorobenzene	11.95	112	6306587	47.18 ug/1		99
50) Xylene,m+p 12.26 106 7460386 84.93 ug/l 93 51) Xylene,o 12.93 106 4417980 47.54 ug/l 98 52) Styrene 13.02 104 6801425 46.10 ug/l 90 53) Bromoform 13.02 173 1856161 46.33 ug/l 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/l 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.23 83 2323510 44.37 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropenpane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.50 91	48)	Ethylbenzene	12.02	91	9868661	47.34 ug/1		98
51) Xylene,o 12.93 106 4417980 47.54 ug/l 98 52) Styrene 13.02 104 6801425 46.10 ug/l 90 53) Bromoform 13.02 173 1856161 46.33 ug/l 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/l 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91	49)	1,1,1,2-Tetrachloroethane	12.06	131	2704025	50.30 ug/1		95
52) Styrene 13.02 104 6801425 46.10 ug/1 90 53) Bromoform 13.02 173 1856161 46.33 ug/1 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/1 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/1 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/1 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/1 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/1 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/1 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/1 99 64) tert-Butylbenzene 15.06 105 9447329 51.45 ug/1 97 65) 1,2,4-Trimethylbenzene 15.06 105	50)	Xylene, m+p	12.26	106	7460386	84.93 ug/1		93
53) Bromoform 13.02 173 1856161 46.33 ug/l 98 54) Isopropylbenzene 13.44 105 11473965 49.47 ug/l 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 92 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.48	51)	Xylene, o	12.93	106	4417980	47.54 ug/l		98
54) Isopropylbenzene 13.44 105 11473965 49.47 ug/l 96 56) Bromobenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 99 64) tert-Butylbenzene 15.06 105 9447329 51.45 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.48	52)	Styrene	13.02	104	6801425	46.10 ug/1		90
56) Bromobenzene 14.01 156 3055813 45.28 ug/l 91 57) n-Propylbenzene 14.10 91 12719413 49.43 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlorobenzene 15.69	53)	Bromoform	13.02	173	1856161	46.33 ug/1		98
57) n-Propylbenzene 14.10 91 12719413 49.43 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/1 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/1 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/1 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/1 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/1 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/1 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/1 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/1 94 67) 4-Isopropyltoluene 15.48	54)	Isopropylbenzene	13.44	105	11473965	49.47 ug/l		96
58) 1,1,2,2-Tetrachloroethane 14.23 83 2323510 44.37 ug/l 99 59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlor	56)	Bromobenzene			3055813	45.28 ug/l		91
59) 2-Chlorotoluene 14.32 91 7591111 51.85 ug/l 99 60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/l 96 71) n-Butylbenzene </td <td>57)</td> <td>n-Propylbenzene</td> <td>14.10</td> <td>91</td> <td>12719413</td> <td>49.43 ug/l</td> <td></td> <td>97</td>	57)	n-Propylbenzene	14.10	91	12719413	49.43 ug/l		97
60) 1,3,5-Trimethylbenzene 14.44 105 8978665 50.93 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlorobenzene 15.69 146 566539 45.84 ug/l 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/l 97 72) 1,2-Dichlorobenzen	58)	1,1,2,2-Tetrachloroethane	14.23	83	2323510	44.37 ug/l		99
61) 1,2,3-Trichloropropane 14.60 75 261100 46.52 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/1 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/1 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/1 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/1 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/1 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/1 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/1 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/1 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/1 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/1 99	59)	2-Chlorotoluene	14.32	91	7591111	51.85 ug/l		99
62) trans-1,4-Dichloro-2-buten 14.52 53 745386 49.28 ug/l 92 63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/l 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/l 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/l 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/l 99	60)	1,3,5-Trimethylbenzene	14.44	105	8978665	50.93 ug/l		100
63) 4-Chlorotoluene 14.60 91 7860014 52.16 ug/1 99 64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/1 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/1 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/1 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/1 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/1 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/1 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/1 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/1 99	61)	1,2,3-Trichloropropane	14.60	75	261100	46.52 ug/l		100
64) tert-Butylbenzene 14.94 119 9827670 49.05 ug/l 91 65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/l 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/l 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/l 99	62)	trans-1,4-Dichloro-2-buten	14.52	53	745386	49.28 ug/1		
65) 1,2,4-Trimethylbenzene 15.06 105 9447329 51.45 ug/l 97 66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/l 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/l 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/l 99	63)	4-Chlorotoluene			7860014	52.16 ug/l		
66) sec-Butylbenzene 15.22 105 12982807 49.00 ug/l 94 67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/l 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/l 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/l 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/l 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/l 99		4	14.94	119		~		
67) 4-Isopropyltoluene 15.48 119 10827171 47.97 ug/1 97 68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/1 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/1 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/1 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/1 99						51.45 ug/1		
68) 1,3-Dichlorobenzene 15.54 146 5623107 45.07 ug/1 97 70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/1 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/1 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/1 99		_						
70) 1,4-Dichlorobenzene 15.69 146 5666539 45.84 ug/1 96 71) n-Butylbenzene 16.16 91 9756919 51.93 ug/1 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/1 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/1 99						~		
71) n-Butylbenzene 16.16 91 9756919 51.93 ug/l 97 72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/l 99	*							
72) 1,2-Dichlorobenzene 16.38 146 5423966 46.10 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/1 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/1 99		*						
73) 1,2-Dibromo-3-chloropropan 17.71 75 443074 48.10 ug/l 79 74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/l 99		4				~		
74) Hexachlorobutadiene 18.83 225 2108741 43.92 ug/l 99						~		
75) 1,2,4-Trichlorobenzene 18.86 180 4318615 44.35 ug/1 100	*							
	75)	1,2,4-Trichlorobenzene	18.86	180	4318615	44.35 ug/l		100

Vial: 15

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204015.D

Acq On : 4 Feb 09 8:45 pm Operator: Stan Hunnicutt Sample : w09-0107msv 5ml Inst : GC/MS Ins

 Sample
 : w09-0107msv
 5ml
 Inst
 : GC/Ms

 Misc
 : V0L196
 25ul
 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 21:09 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

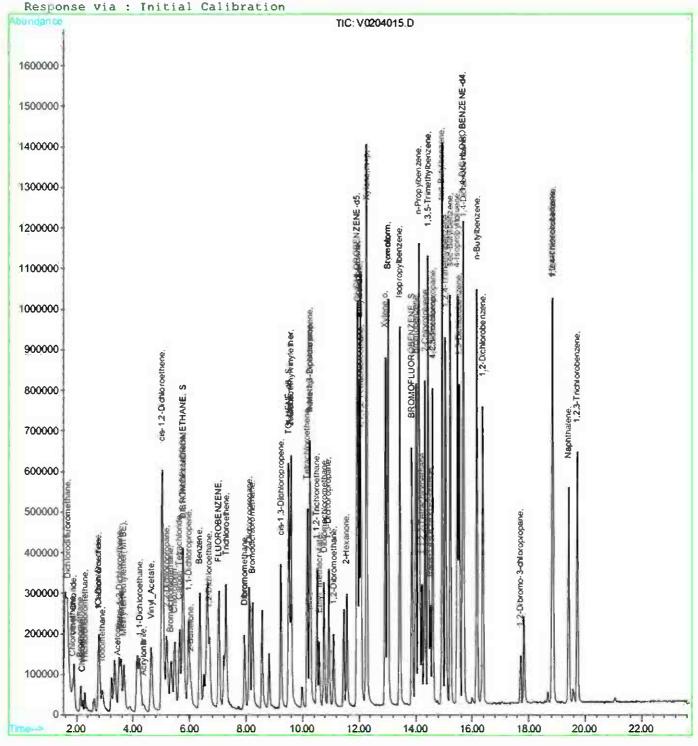
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
76)	Naphthalene	19.41	128	8195812	41.36 ug/1	100
77)	1,2,3-Trichlorobenzene	19.72	180	3721062	41.38 ug/l	98

Reference 26 Quantitation Report **Page 217**

Data File: C:\HPCHEM\2\DATA\V020409\V0204015,D Vial: 15


Operator: Stan Hunnicutt 4 Feb 09 8:45 pm Sample : w09-0107msv : GC/MS Ins

Multiplr: 1,00 : VOL196 25ul

MS Integration Params: events.e

Quant Time: Feb 4 21:09 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204016.D Vial: 16

Acq On : 4 Feb 09 9:15 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : w09-0107msdv 5ml Misc : V0L196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 21:39 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response			
1) FLUOROBENZENE	7.04	96	5318755			
46) CHLOROBENZENE-d5		117	6021513	50.00	ug/1	-0.02
69) 1,4-DICHLOROBENZENE-d4	15.67	152	3515275	50.00	ug/1	-0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.76	113	1806502	57.06	ug/1	0.00
Spiked Amount 50.000			Recover	:y =	114.1	.2%
35) TOLUENE-d8	9.51	98	6790002	52.12	ug/l	0.00
Spiked Amount 50.000			Recover	:y =	104.2	24%
55) BROMOFLUOROBENZENE	13.87	95	3279537	52.28	ug/1	-0.02
Spiked Amount 50.000			Recover	: A =	104.5	66%
Target Compounds						Qvalue
Dichlorodifluoromethane	1.69	85	855180	19.34	ug/l	98
Chloromethane	1.85	50	902170	35.53		
4) Vinyl_Chloride			1837623		ug/l	97
5) Bromomethane	2.14	94	378141 186555	56.35	ug/l	97
6) Chloroethane	2.21	64	186555	73.46	ug/l	99
7) Trichlorofluoromethane	2.30	101	455366	87.18	ug/l	97
8) 1,1-Dichloroethene	2.77	96	502789	62.22	ug/l	96
9) Carbon Disulfide	2.80	76	1345240	54.17	ug/l	# 81
10) Iodomethane	2.91	142	830816	59.55	ug/l	# 87
11) Acetone	3.47	58	71634	115.00	ug/l	66
12) trans-1,2-Dichloroethene	3.52	96		82.99		
13) n-Hexane			759734		ug/l	96
14) Methy-tert-butylether (MTBE	3.68	73	2045404	55.81	ug/l	95
<pre>15) 1,1-Dichloroethane</pre>			1331395	62.99	ug/l	99
16) Acrylonitrile			205686	63.86	ug/l	# 77
<pre>17) Vinyl_Acetate</pre>	4.64	43	2476024	94.09	ug/l	100
18) cis-1,2-Dichloroethene			7222187	359.73		
<pre>19) 2,2-Dichloropropane</pre>	5.20			63.42		
20) Bromochloromethane	5.35	128	808473			
21) Chloroform	5.48	83	2998130	61.59		
<pre>22) Carbon_Tetrachloride</pre>	5.65	117	2981860	72.42		
24) 1,1,1-Trichloroethane			3036608		ug/l	99
25) 2-Butanone	6.04	72	295813	91.52	ug/l	83
26) 1,1-Dichloropropene	5.97	75	2297303	56.28	ug/l	98
27) Benzene			5405030			
28) 1,2-Dichloroethane	6.71	62	2892767	64.27	ug/l	97
29) Trichloroethene	7.29	95	1746948	54.28	ug/l	93
30) Dibromomethane	7.95	93	1269603	55.89	ug/l	84

Quantitation Report

Agguerencerou vebore

Data File : C:\HPCHEM\2\DATA\V020409\V0204016.D Vial: 16

Acq On : 4 Feb 09 9:15 pm Operator: Stan Hunnicutt Sample : w09-0107msdv 5ml Inst : GC/MS Ins

Sample : w09-0107msdv 5ml Inst : GC/MS Misc : V0L196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 21:39 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

DataAcq Meth : VOL

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
311	1,2-Dichloropropane	8.12	63	1641209	49.07 ug/1	99
	Bromodichloromethane	8.23	83	3117813	58.16 ug/1	
*	2-Chloroethylvinylether	9.59	63	810386	58.36 ug/1	
	cis-1,3-Dichloropropene	9.23	75	3551875	53.03 ug/1	
	Toluene	9.59		4802279	46.58 ug/1	
	Tetrachloroethene	10.17		2277088	39.92 ug/1	
	4-Methyl-2-pentanone	10.26	100	720199	91.15 ug/1	
	trans-1,3-Dichloropropene	10.27	75	3196610	52.19 ug/1	
	1,1,2-Trichloroethane	10.51	83	1404025	48.63 ug/1	
	Ethyl methacrylate	10.59	69	1221022	46.61 ug/1	
	Dibromochloromethane	10.76	129	2891671	54.98 ug/1	. 98
43)	1,3-Dichloropropane	10.92	76	3536378	50.99 ug/1	
44)	1,2-Dibromoethane	11.10	107	2207678	50.59 ug/1	. 98
45)	2-Hexanone	11.57	43	3086331	81.98 ug/1	. 99
47)	Chlorobenzene	11.95	112	6473329	48.86 ug/1	100
48)	Ethylbenzene	12.02	91	10373554	50.21 ug/1	100
49)	1,1,1,2-Tetrachloroethane	12.07	131	2673378	50.17 ug/1	. 97
50)	Xylene, m+p	12.26	106	7485318	85.97 ug/1	. 95
51)	Xylene, o	12.93	106	4457712	48.39 ug/1	. 99
52)	Styrene	13.02	104	6748318	46.15 ug/1	91
53)	Bromoform	13.02	173	1838978	46.30 ug/1	100
54)	Isopropylbenzene	13.44	105	11685824	50.83 ug/1	. 97
56)	Bromobenzene	14.01	156	3091027	46.20 ug/1	91
57)	n-Propylbenzene	14.10	91	13081243	51.29 ug/1	
58)	1,1,2,2-Tetrachloroethane	14.23	83	2355593	45.39 ug/1	. 99
59)	2-Chlorotoluene	14.33	91	7634474	52.61 ug/1	. 98
60)	1,3,5-Trimethylbenzene	14.44	105	9005190	51.53 ug/1	100
61)	1,2,3-Trichloropropane	14.60	75	262550	47.19 ug/1	
62)	trans-1,4-Dichloro-2-buten	14.52	53	840008	56.03 ug/1	. 86
63)	4-Chlorotoluene	14.60	91	7955349	53.26 ug/l	100
	tert-Butylbenzene	14.94	119	10235369	51.54 ug/1	
	1,2,4-Trimethylbenzene	15.06	105	9546553	52.45 ug/1	
	sec-Butylbenzene	15.23		13463191	51.26 ug/1	
	4-Isopropyltoluene	15.48		11311433	50.56 ug/1	
	1,3-Dichlorobenzene	15.54	146	5672776	45.88 ug/1	
	1,4-Dichlorobenzene	15.70		5755801	48.05 ug/1	
	n-Butylbenzene	16.16		10177849	55.91 ug/1	
	1,2-Dichlorobenzene	16.38		5449419	47.80 ug/1	
	1,2-Dibromo-3-chloropropan	17.71	75	452702	50.72 ug/1	
	Hexachlorobutadiene	18.83		2298023	49.40 ug/1	
75)	1,2,4-Trichlorobenzene	18.86	180	4480493	47.49 ug/1	100

Reference 26 Page 220 (QT Reviewed)

Vial: 16

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204016.D

Acq On : 4 Feb 09 9:15 pm Operator: Stan Hunnicutt Sample : w09-0107msdv 5ml Misc : V0L196 25ul Inst : GC/MS Ins

Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 4 21:39 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

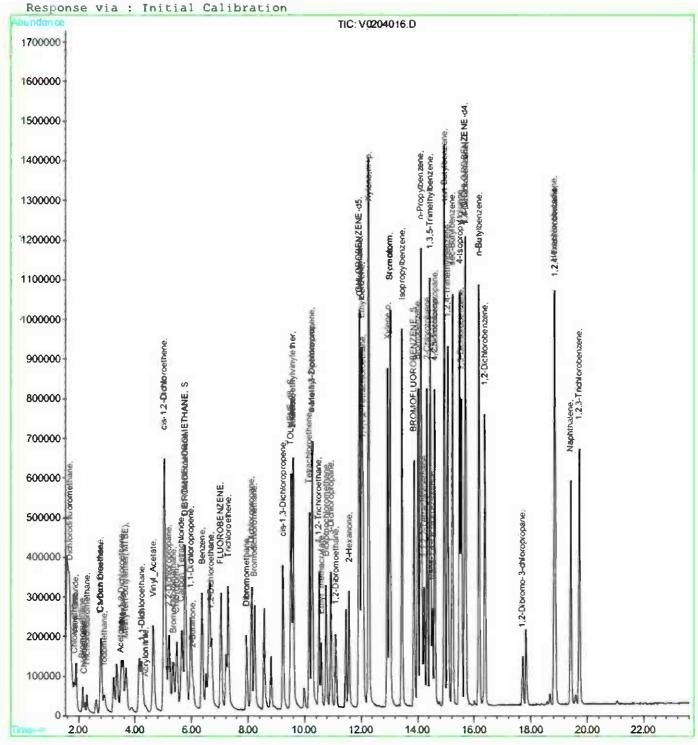
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
76)	Naphthalene	19.41	128	8437308	43.95 ug/l	100
77)	1,2,3-Trichlorobenzene	19.72	180	3975278	45.62 ug/1	99

Vial: 16

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204016,D


Acq On : 4 Feb 09 9:15 pm Operator: Stan Hunnicutt
Sample : w09-0107msdv 5ml Inst : GC/MS Ins

Misc : VOL196 25ul Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Feb 4 21:39 19109 Quant Results File: VOL,RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Vial: 1

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204017.D

Acq On : 4 Feb O9 9:45 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:44 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

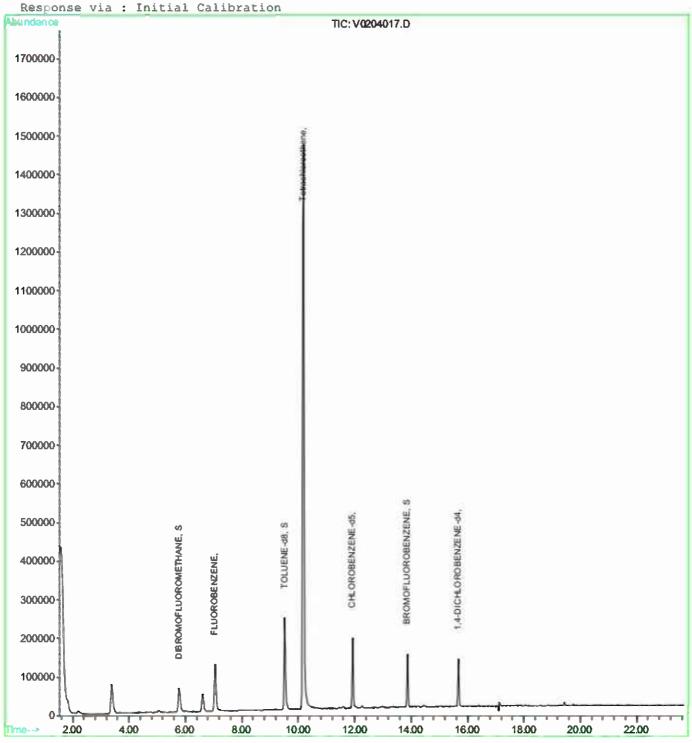
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min)
1) FLUOROBENZENE	7.06	96	2487332	50.00	-
46) CHLOROBENZENE-d5	11.93	117	1852390	50.00	ug/1 -0.01
69) 1,4-DICHLOROBENZENE-d4	15.67	152	596656	50.00	ug/1 -0.03
System Monitoring Compounds					
23) DIBROMOFLUOROMETHANE	5.79	113	979500	66.15	ug/1 0.02
Spiked Amount 50.000			Recover	ry =	132.30%
35) TOLUENE-d8	9.52	98	2748112	45.11	ug/1 0.00
Spiked Amount 50.000			Recover	ry =	90.22%
55) BROMOFLUOROBENZENE	13.87	95	774795	40.15	ug/1 -0.02
Spiked Amount 50.000			Recove	cy =	80.30%
Target Compounds					Qvalue
37) Tetrachloroethene	10.18	164	7247010	271.68	ug/1 93

Vial: 1

Quantitation Report


Data File : C:\HPCHEM\2\DATA\V020409\V0204017.D

Acq On : 4 Feb 09 9:45 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:44 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 2

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204018.D

Acq On : 4 Feb 09 10:14 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:45 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

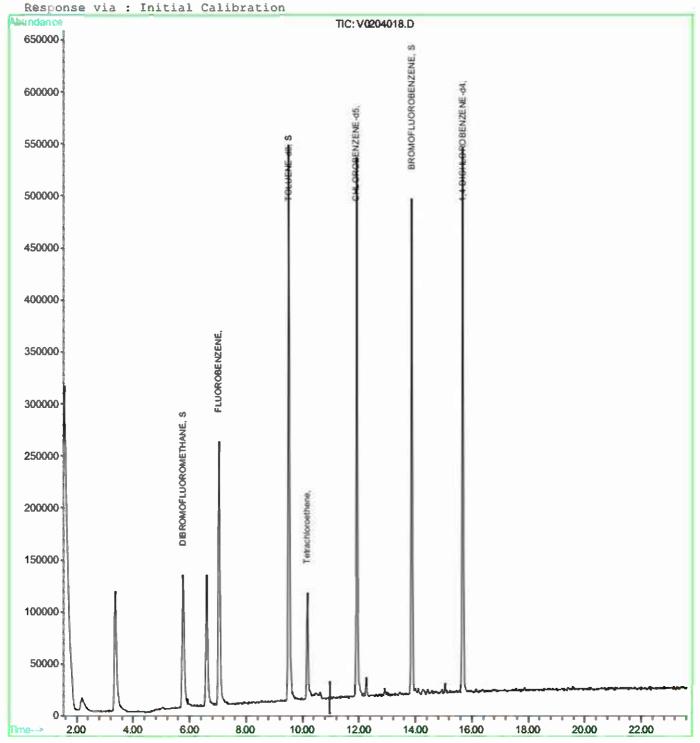
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev (Min)
1) FLUOROBENZENE		96	4805989	50.00	_	0.00
46) CHLOROBENZENE-d5	11.92	117	5153011	50.00	ug/l	-0.01
69) 1,4-DICHLOROBENZENE-d4	15.67	152	2576165	50.00	ug/1	-0.03
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.77	113	1951286	68.20	ug/1	0.00
Spiked Amount 50.000			Recove	ry =	136.4	0%
35) TOLUENE-d8	9.52	98	6124456	52.03	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	104.0	6%
55) BROMOFLUOROBENZENE	13.87	95	2550322	47.51	ug/l	-0.02
Spiked Amount 50.000			Recove	ry =	95.0	2%
Target Compounds						Qvalue
37) Tetrachloroethene	10.17	164	456080	8.85	ug/l	# 90

Vial: 2

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204018.D


Acq On : 4 Feb 09 10:14 pm Operator: Stan Hunnicutt
Sample : s09-0101 5.00g/5ml H20 Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:45 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 3

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204019.D

Acq On : 4 Feb 09 10:44 pm Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : s09-0102 5.16g/5m1 H20 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:46 19109 Ouant Results File: VOL.RES

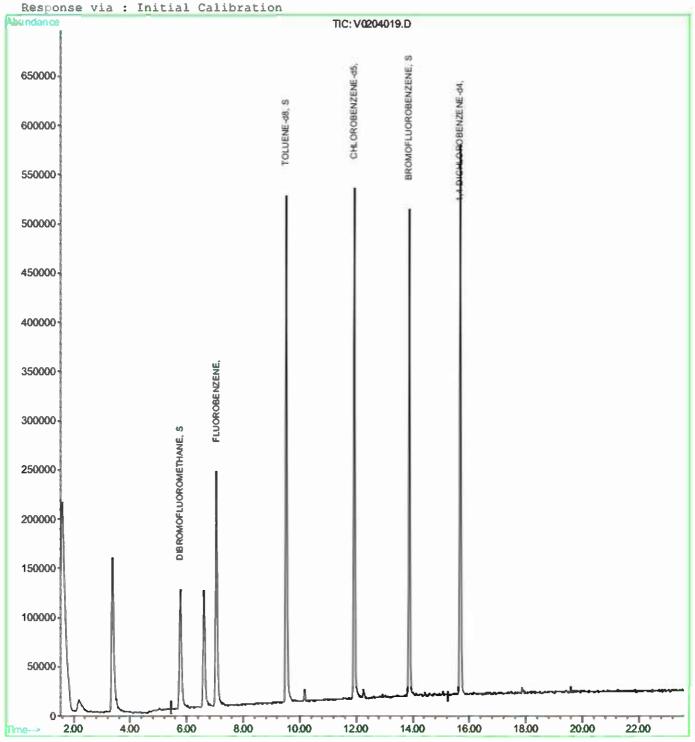
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one U	nits De	v (Min)
1) FLUOROBENZENE	7.05	96	4447450	50.00	ug/1	0.01
46) CHLOROBENZENE-d5	11.93	117	5273464	50.00	ug/1	-0.01
69) 1,4-DICHLOROBENZENE-d4	15.67	152	2752603	50.00	ug/1	-0.03
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE	5.78	113	1751430	66.15	ug/l	0.02
Spiked Amount 50.000	0.70		Recovery	_	132.30%	
35) TOLUENE-d8	9.52	98	5871632	53.90	ug/l	0.00
Spiked Amount 50.000			Recovery	=	107.80	윰
55) BROMOFLUOROBENZENE	13.87	95	2676958	48.73	ug/l	-0.02
Spiked Amount 50.000			Recovery	=	97.46	e E
Target Compounds					Q.	value

Quantitation Report


Acq On : 4 Feb 09 10:44 pm Operator: Stan Hunnicutt
Sample : s09-0102 5.16g/5ml H2O Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:46 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 5

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204021.D

Acq On : 4 Feb 09 11:43 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:50 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

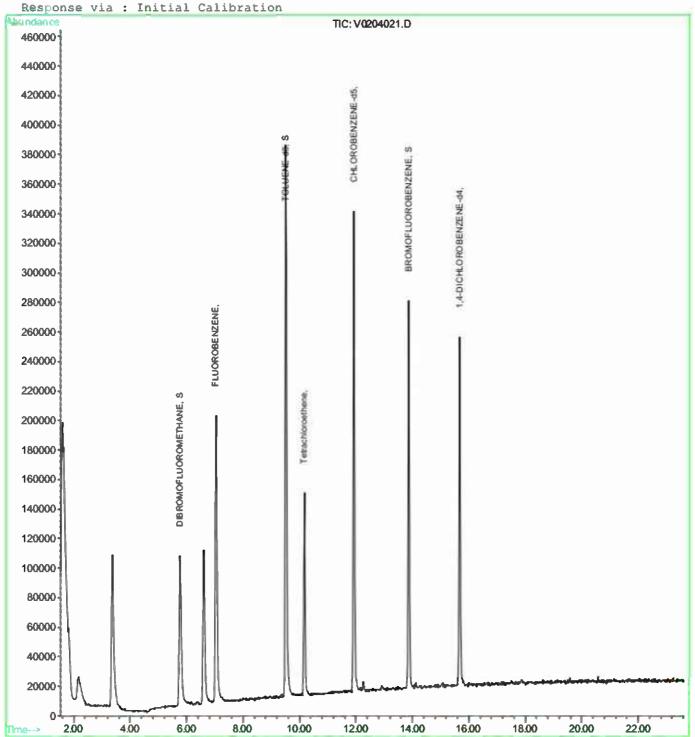
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min)
1) FLUOROBENZENE 46) CHLOROBENZENE-d5 69) 1,4-DICHLOROBENZENE-d4	7.05 11.93 15.67	96 117 152	3580997 3433833 1153494		ug/1 0.01 ug/1 -0.01 ug/1 -0.03
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE	5 79	113	1481421	69 49	ug/1 0.00
Spiked Amount 50.000	9.70	113	Recover		138.98%
35) TOLUENE-d8	9.52	98	4296802	48.99	ug/1 0.00
Spiked Amount 50.000			Recover	:y =	97.98%
55) BROMOFLUOROBENZENE	13.87	95	1465525	40.97	ug/1 -0.02
Spiked Amount 50.000			Recover	: y	81.94%
Target Compounds					Qvalue
37) Tetrachloroethene	10.17	164	634055	16.51	ug/1 97

Quantitation Report

Data File: C:\HPCHEM\2\DATA\V020409\V0204021.D Vial: 5


Acq On : 4 Feb 09 11:43 pm Operator: Stan Hunnicutt
Sample : s09-0104 5.14g/5ml H2O Inst : GC/MS Ins

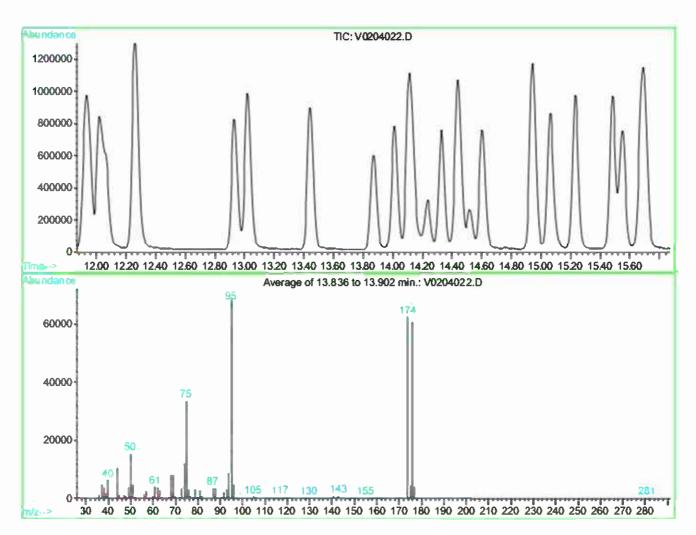
Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:50 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Data File: C:\HPCHEM\2\DATA\V020409\V0204022.D Vial: 6


Acq On : 5 Feb 09 12:12 am Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260

Spectrum Information: Average of 13.836 to 13.902 min.

	Target Mass	1	Rel. to Mass	1	Lower Limit%	I	Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
1	50		95		15		40		22.3		15362		PASS	ı
	75		95	-	30		60		48.7		33450		PASS	
	95		95	-	100	-	100		100.0		68746		PASS	1
	96		95		5		9		6.8		4684		PASS	
	173		174		0.00		2		0.0		0		PASS	
	174		95		50		100		91.0		62542		PASS	
	175		174		5		9		6.8		4227		PASS	
	176		174		95		101		96.7		60476		PASS	
	177		176		5		9	1	6.7		4070		PASS	-

Data File : C:\HPCHEM\2\DATA\V020409\V0204022.D Vial: 6

Acq On : 5 Feb 09 12:12 am Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 0:36 19109 Ouant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev(Min)
1) FLUOROBENZENE	7.04	96	4675448	50.00	ug/1	0.00
46) CHLOROBENZENE-d5	11.93	117	5790344	50.00	ug/l	-0.01
69) 1,4-DICHLOROBENZENE-d4	15.68	152	3385164	50.00	ug/1	-0.02
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.76	113	1588354	57.07	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	114.1	4%
35) TOLUENE-d8	9.52	98	6291817	54.95	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	109.9	0%
55) BROMOFLUOROBENZENE	13.87	95	3171785	52.58	ug/l	-0.02
Spiked Amount 50.000			Recove	ry =	105.1	6%
Target Compounds						Qvalue
Dichlorodifluoromethane	1.68	85	637725	16.41	ug/l	99
Chloromethane	1.85	50	710058	31.81	ug/1	99
4) Vinyl_Chloride	1.91	62	568576	33.72	ug/l	92
5) Bromomethane	2.14	94	367000	62.22	ug/1	96
6) Chloroethane	2.21	64	163068	73.00	ug/l	98
7) Trichlorofluoromethane	2.30	101	374749	80.38	ug/l	98
8) 1,1-Dichloroethene	2.77	96	406796	57.27	ug/l	96
9) Carbon Disulfide	2.80	76	1064065	48.75	ug/1	# 80
10) Iodomethane	2.92	142	899330	73.33	ug/1	92
11) Acetone	3.46	58	66257	121.00	ug/1	90
12) trans-1,2-Dichloroethene	3.51	96	565650	58.01	ug/1	98
13) n-Hexane	3.59	57	565007	44.90	ug/l	96
14) Methy-tert-butylether (MTBE	3.68	73	2008052	62.33	ug/1	97
15) 1,1-Dichloroethane	4.25	63	1162997	62.60	ug/l	98
16) Acrylonitrile	4.38	53	196921	69.88	ug/1	# 70
17) Vinyl_Acetate	4.65	43	1454338	62.87	ug/l	100
18) cis-1,2-Dichloroethene	5.03	96	1005486	57.34	ug/l	87
19) 2,2-Dichloropropane	5.20	77	1997898	60.06	ug/l	99
20) Bromochloromethane	5.35	128	685890	56.41	ug/l	89
21) Chloroform	5.48	83	2725279	63.68	ug/1	99
22) Carbon Tetrachloride	5.65	117	2565142	70.87	ug/1	99
24) 1,1,1-Trichloroethane	5.77	97	2634809	61.81	ug/1	98
25) 2-Butanone	6.05	72	274173	96.49	ug/1	92
26) 1,1-Dichloropropene	5.97	75	1815547	50.60	ug/1	97
27) Benzene	6.37	78	4482012		ug/1	100
28) 1,2-Dichloroethane	6.71	62	2740720		ug/1	# 94
29) Trichloroethene	7.30	95	1571050	55.57		90
30) Dibromomethane	7.95	93	1182618		ug/l	84

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204022.D Vial: 6

Acq On : 5 Feb 09 12:12 am Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 0:36 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

31 1,2-Dichloropropane		Compound	R.T.	QIon	Response	Conc Uni	t	Qvalue
32) Bromodichloromethane	31)	1,2-Dichloropropane	8.12	63	1587038	53.97 u	g/1	98
34) cis-1,3-Dichloropropene 9.23 75 3084951 52.40 ug/1 92 36) Toluene 9.59 92 4449757 49.09 ug/1 100 37) Tetrachloroethene 10.17 164 2823255 55.31 ug/1 93 38) 4-Methyl-2-pentanone 10.26 100 737838 106.23 ug/1 87 39) trans-1,3-Dichloropropene 10.27 75 3079565 57.20 ug/1 96 40) 1,1,2-Trichloroethane 10.51 83 1372814 54.09 ug/1 95 41) Ethyl_methacrylate 10.59 69 1227027 53.29 ug/1 96 42) Dibromochloromethane 10.76 129 2791906 60.39 ug/1 100 43) 1,3-Dichloropropane 10.93 76 3379945 55.44 ug/1 99 44) 1,2-Dibromoethane 11.11 107 2148596 56.02 ug/1 98 45) 2-Hexanone 11.57 43 3556733 107.47 ug/1 94 47) Chlorobenzene 11.95 112 6078368 47.71 ug/1 99 48) Ethylbenzene 12.02 91 9512249 47.88 ug/1 100 49) 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/1 99 50) Xylene,m*p 12.27 106 7178758 85.74 ug/1 90 51) Xylene,o 12.93 106 4167622 47.05 ug/1 98 52) Styrene 13.02 104 6466075 45.98 ug/1 90 53) Bromoform 13.02 173 1833324 48.00 ug/1 100 54) Isopropylbenzene 14.02 156 2973116 46.22 ug/1 97 55) N-Propylbenzene 14.11 91 12196111 49.73 ug/1 97 56) Bromobenzene 14.04 83 2438428 48.86 ug/1 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/1 98 61) 1,2,2-Tetrachloroethane 14.60 91 7300996 50.83 ug/1 98 62) trans-1,4-Dichloro-2-buten 14.52 53 764605 50.04 ug/1 98 63) 4-Chlorotoluene 14.60 75 257188 48.07 ug/1 98 64) tert-Butylbenzene 15.06 105 8792162 50.24 ug/1 98 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/1 98 65) 1,2,4-Trimethylbenzene 15.08 105 8792162 50.24 ug/1 98 66) 1,3-Dichlorobenzene 15.06 105 8792162 50.24 ug/1 98 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/1 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 71) n-Butylbenzene 15.50 105 8792162 50.24 ug/1 97 71) n-Butylbenzene 15.50 165 8792162 50.24 ug/1 97 71) n-Butylbenzene 15.55 146 538408 41.71 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichloroobenzene 15			8.23	83	2842535	60.32 u	g/1	97
36) Toluene 9.59 92 4449757 49.09 ug/l 100 37) Tetrachloroethene 10.17 164 2823285 56.31 ug/l 93 38) 4-Methyl-2-pentanone 10.26 100 737838 106.23 ug/l 87 39) trans-1,3-Dichloropropene 10.27 75 3079565 57.20 ug/l 96 40) 1,1,2-Trichloroethane 10.51 83 1372814 54.09 ug/l 95 41) Ethyl_methacrylate 10.59 69 1227027 53.29 ug/l 96 42) Dibromochloromethane 10.76 129 2791906 60.39 ug/l 100 43) 1,3-Dichloropropane 10.93 76 3379945 55.44 ug/l 99 44) 1,2-Dibromoethane 11.11 107 2148596 56.02 ug/l 98 45) 2-Hexanone 11.57 43 3556733 107.47 ug/l 94 47) Chlorobenzene 11.95 112 6078368 47.71 ug/l 99 48) Ethylbenzene 12.02 91 9512249 47.88 ug/l 100 49) 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/l 99 50) Xylene,m*p 12.27 106 7178758 85.74 ug/l 99 51) Xylene,m*p 13.02 104 6466075 45.98 ug/l 90 52) Styrene 13.02 107 6466075 45.98 ug/l 90 53) Bromoform 13.02 173 1833324 48.00 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 97 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.60 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 98 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) terr-Butylbenzene 15.06 105 8792162 50.24 ug/l 98 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.06 105 8792162 50.24 ug/l 97 70) 1,4-Dichlorobenzene 15.55 146 5364692 45.12 ug/l 97 71) n-Butylbenzene 15.07 146 5391603 46.74 ug/l 97 71) n-Butylbenzene 15.70 146 5391603 46.74 ug/l 97 71) n-Butylbenzene 15.70 146 5391603 47.96 ug/l 97 71) n-Butylbenzene 15.70 146 5391603 47.96 ug/l 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/l 98 72) 1,2-Dichloro-3-chloropropan 17.72 75 459428 53.45 ug/l 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/l	33)	2-Chloroethylvinylether	9.60	63	733408	60.09 u	g/1	# 100
36) Toluene 9.59 92 4449757 49.09 ug/l 100 37) Tetrachloroethene 10.17 164 2823285 56.31 ug/l 93 38) 4-Methyl-2-pentanone 10.26 100 737838 106.23 ug/l 87 39) trans-1,3-Dichloropropene 10.27 75 3079565 57.20 ug/l 96 40) 1,1,2-Trichloroethane 10.51 83 1372814 54.09 ug/l 95 41) Ethyl_methacrylate 10.59 69 1227027 53.29 ug/l 96 42) Dibromochloromethane 10.76 129 2791906 60.39 ug/l 100 43) 1,3-Dichloropropane 10.93 76 3379945 55.44 ug/l 99 44) 1,2-Dibromoethane 11.11 107 2148596 56.02 ug/l 98 45) 2-Hexanone 11.57 43 3556733 107.47 ug/l 94 47) Chlorobenzene 11.95 112 6078368 47.71 ug/l 99 48) Ethylbenzene 12.02 91 9512249 47.88 ug/l 100 49) 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/l 99 50) Xylene,m*p 12.27 106 7178758 85.74 ug/l 99 51) Xylene,m*p 13.02 104 6466075 45.98 ug/l 90 52) Styrene 13.02 107 6466075 45.98 ug/l 90 53) Bromoform 13.02 173 1833324 48.00 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 97 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.60 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 98 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) terr-Butylbenzene 15.06 105 8792162 50.24 ug/l 98 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.06 105 8792162 50.24 ug/l 97 70) 1,4-Dichlorobenzene 15.55 146 5364692 45.12 ug/l 97 71) n-Butylbenzene 15.07 146 5391603 46.74 ug/l 97 71) n-Butylbenzene 15.70 146 5391603 46.74 ug/l 97 71) n-Butylbenzene 15.70 146 5391603 47.96 ug/l 97 71) n-Butylbenzene 15.70 146 5391603 47.96 ug/l 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/l 98 72) 1,2-Dichloro-3-chloropropan 17.72 75 459428 53.45 ug/l 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/l	34)	cis-1,3-Dichloropropene	9.23	75	3084951	52.40 u	g/1	92
37 Tetrachloroethene					4449757			100
39) trans-1,3-Dichloropropene	37)	Tetrachloroethene	10.17	164	2823285		-	93
39) trans-1,3-Dichloropropene	38)	4-Methyl-2-pentanone	10.26	100	737838	106.23 u	g/1	87
Sthyl_methacrylate			10.27	75	3079565	57.20 u	g/1	96
42) Dibromochloromethane 10.76 129 2791906 60.39 ug/l 100 43) 1,3-Dichloropropane 10.93 76 3379945 55.44 ug/l 99 44) 1,2-Dibromoethane 11.11 107 2148596 56.02 ug/l 98 45) 2-Hexanone 11.57 43 3556733 107.47 ug/l 94 47) Chlorobenzene 12.02 91 9512249 47.88 ug/l 100 48) Ethylbenzene 12.02 91 9512249 47.88 ug/l 100 49) 1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/l 99 50) Xylene,m*p 12.27 106 7178758 85.74 ug/l 90 51) Xylene,o 12.93 106 4167622 47.05 ug/l 98 52) Styrene 13.02 104 6466075 45.98 ug/l 90 53) Bromoform 13.02 173 1833324 48.00 ug/l 100 54) Isopropylbenzene 14.41 15 12196111 49.73 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.	40)	1,1,2-Trichloroethane	10.51	83	1372814	54.09 u	g/1	95
1,3-Dichloropropane 10.93 76 3379945 55.44 ug/1 99 94 1,2-Dibromoethane 11.11 107 2148596 56.02 ug/1 98 94 1,2-Dibromoethane 11.57 43 3556733 107.47 ug/1 94 47 Chlorobenzene 11.95 112 6078368 47.71 ug/1 99 48 Ethylbenzene 12.02 91 9512249 47.88 ug/1 100 49 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/1 99 50 Xylene,m*p 12.27 106 7178758 85.74 ug/1 90 51 Xylene,o 12.93 106 4167622 47.05 ug/1 98 52 Styrene 13.02 104 6466075 45.98 ug/1 90 53 Bromoform 13.02 173 1833324 48.00 ug/1 100 54 Isopropylbenzene 13.44 105 10993406 49.73 ug/1 97 56 Bromobenzene 14.02 156 2973116 46.22 ug/1 90 57 n-Propylbenzene 14.11 91 12196111 49.73 ug/1 97 58 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/1 98 59 2-Chlorotoluene 14.33 91 7176647 51.43 ug/1 98 59 2-Chlorotoluene 14.44 105 8488937 50.52 ug/1 100 61 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/1 100 62 trans-1,4-Dichloro-2-buten 14.60 91 7300996 50.83 ug/1 99 64 tert-Butylbenzene 14.94 119 8970302 46.97 ug/1 98 66 sec-Butylbenzene 15.06 105 8792162 50.24 ug/1 98 66 sec-Butylbenzene 15.06 105 8792162 50.24 ug/1 98 66 sec-Butylbenzene 15.48 119 10429883 48.48 ug/1 97 70 1,4-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 71 n-Butylbenzene 16.17 91 9338132 53.27 ug/1 97 71 n-Butylbenzene 16.18 146 5264893 47.96 ug/1 97 73 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73 1,2-Dichlorobenzene 17.72 75 459428 53.45 ug/1 81 74 Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100 100 100 100 100 100 100 100 100 100 100 100 100 1	41)	Ethyl methacrylate	10.59	69	1227027	53.29 u	g/1	96
44) 1,2-Dibromoethane 45) 2-Hexanone 46) 1.57 43 3556733 107.47 ug/1 94 47) Chlorobenzene 11.57 43 3556733 107.47 ug/1 94 48) Ethylbenzene 12.02 91 9512249 47.88 ug/1 100 49) 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/1 99 50) Xylene,m*p 12.27 106 7178758 85.74 ug/1 90 51) Xylene,o 12.93 106 4167622 47.05 ug/1 98 52) Styrene 13.02 104 6466075 45.98 ug/1 90 53) Bromoform 13.02 173 1833324 48.00 ug/1 100 54) Isopropylbenzene 13.44 105 10993406 49.73 ug/1 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/1 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/1 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/1 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/1 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/1 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/1 99 64) tett-Butylbenzene 14.94 119 8970302 46.97 ug/1 95 65) 1,2,4-Trimethylbenzene 14.94 119 8970302 46.97 ug/1 95 65) 1,2,4-Trimethylbenzene 15.23 105 12441321 49.26 ug/1 98 66) scButylbenzene 15.48 119 10429883 48.48 ug/1 96 66) scButylbenzene 15.55 146 5364692 45.12 ug/1 97 70) 1,4-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene	42)	Dibromochloromethane	10.76	129	2791906	60.39 u	g/1	100
45) 2-Hexanone	43)	1,3-Dichloropropane	10.93	76	3379945	55.44 u	g/1	99
47) Chlorobenzene 11.95 112 6078368 47.71 ug/1 99 48) Ethylbenzene 12.02 91 9512249 47.88 ug/1 100 49) 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/1 99 50) Xylene,m+p 12.27 106 7178758 85.74 ug/1 90 51) Xylene,o 12.93 106 4167622 47.05 ug/1 98 52) Styrene 13.02 104 6466075 45.98 ug/1 90 53) Bromoform 13.02 173 1833324 48.00 ug/1 100 54) Isopropylbenzene 13.44 105 10993406 49.73 ug/1 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/1 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.33 91 7176647 51.43 ug/1 98 60) 1,3,5-Trimethylbenzene 14.33 91 7176647 <td>44)</td> <td>1,2-Dibromoethane</td> <td>11.11</td> <td>107</td> <td>2148596</td> <td>56.02 u</td> <td>g/1</td> <td>98</td>	44)	1,2-Dibromoethane	11.11	107	2148596	56.02 u	g/1	98
## A8 Ethylbenzene 12.02 91 9512249 47.88 ug/1 100 ## A9 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/1 99 ## S0 Xylene,m+p 12.27 106 7178758 85.74 ug/1 90 ## S1 Xylene,o 12.93 106 4167622 47.05 ug/1 98 ## S2 Styrene 13.02 104 6466075 45.98 ug/1 90 ## S3 Bromoform 13.02 173 1833324 48.00 ug/1 100 ## S4 Isopropylbenzene 13.44 105 10993406 49.73 ug/1 97 ## S6 Bromobenzene 14.02 156 2973116 46.22 ug/1 90 ## S7 n-Propylbenzene 14.11 91 12196111 49.73 ug/1 97 ## S8 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/1 98 ## S9 2-Chlorotoluene 14.33 91 7176647 51.43 ug/1 98 ## S6 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/1 100 ## S6 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/1 100 ## S6 1,2,3-Trichloropropane 14.60 91 7300996 50.83 ug/1 93 ## S6 4-Chlorotoluene 14.60 91 7300996 50.83 ug/1 99 ## S6 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/1 95 ## S6 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/1 98 ## S6 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 ## S7 1,4-Dichlorobenzene 16.17 91 9338132 53.27 ug/1 97 ## S7 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 ## S7 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 ## S7 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 ## S7 10 14000-1400-1400-1400-1400-1400-1400-140	45)	2-Hexanone	11.57	43	3556733	107.47 u	g/1	94
49) 1,1,1,2-Tetrachloroethane 12.07 131 2557466 49.91 ug/l 99 50) Xylene,m+p 12.27 106 7178758 85.74 ug/l 90 51) Xylene,o 12.93 106 4167622 47.05 ug/l 98 52) Styrene 13.02 104 6466075 45.98 ug/l 90 53) Bromoform 13.02 173 1833324 48.00 ug/l 100 54) Isopropylbenzene 13.44 105 10993406 49.73 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.60 75 257188	47)	Chlorobenzene	11.95	112	6078368	47.71 u	g/1	99
50) Xylene,m+p 12.27 106 7178758 85.74 ug/l 90 51) Xylene,o 12.93 106 4167622 47.05 ug/l 98 52) Styrene 13.02 104 6466075 45.98 ug/l 90 53) Bromoform 13.02 173 1833324 48.00 ug/l 100 54) Isopropylbenzene 13.44 105 10993406 49.73 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 <	48)	Ethylbenzene	12.02	91	9512249	47.88 u	g/1	100
51) Xylene,o 12.93 106 4167622 47.05 ug/l 98 52) Styrene 13.02 104 6466075 45.98 ug/l 90 53) Bromoform 13.02 173 1833324 48.00 ug/l 100 54) Isopropylbenzene 13.44 105 10993406 49.73 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/l 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 15.06 105 <	49)	1,1,1,2-Tetrachloroethane	12.07	131	2557466	49.91 u	g/1	99
52) Styrene 13.02 104 6466075 45.98 ug/l 90 53) Bromoform 13.02 173 1833324 48.00 ug/l 100 54) Isopropylbenzene 13.44 105 10993406 49.73 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/l 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 15.06 105 8792162 50.24 ug/l 98 65) 1,2,4-Trimethylbenzene 15.06 10	50)	Xylene, m+p	12.27	106	7178758	85.74 u	g/1	90
53) Bromoform 13.02 173 1833324 48.00 ug/l 100 54) Isopropylbenzene 13.44 105 10993406 49.73 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/l 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 15.06 105 8792162 50.24 ug/l 95 65) 1,2,4-Trimethylbenzene 15.06 105 879216	51)	Xylene, o	12.93	106	4167622	47.05 u	g/1	98
54) Isopropylbenzene 13.44 105 10993406 49.73 ug/l 97 56) Bromobenzene 14.02 156 2973116 46.22 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/l 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/l 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/l 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/l 96 68) 1,3-Dichlorobenzene 15.70 146 5391603 </td <td>52)</td> <td>Styrene</td> <td>13.02</td> <td>104</td> <td>6466075</td> <td>45.98 u</td> <td>g/1</td> <td>90</td>	52)	Styrene	13.02	104	6466075	45.98 u	g/1	90
56) Bromobenzene 14.02 156 2973116 46.22 ug/l 90 57) n-Propylbenzene 14.11 91 12196111 49.73 ug/l 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/l 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/l 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/l 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/l 96 68) 1,3-Dichlorobenzene 15			13.02	173	1833324	48.00 u	g/1	100
57) n-Propylbenzene 14.11 91 12196111 49.73 ug/1 97 58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/1 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/1 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/1 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/1 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/1 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/1 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/1 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/1 95 67) 4-Isopropyltoluene 15.48	54)	Isopropylbenzene	13.44	105	10993406	49.73 u	g/1	97
58) 1,1,2,2-Tetrachloroethane 14.24 83 2438428 48.86 ug/l 98 59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/l 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/l 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/l 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/l 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/l 97 70) 1,4-Dichlor	56)	Bromobenzene	14.02	156	2973116	46.22 u	g/1	90
59) 2-Chlorotoluene 14.33 91 7176647 51.43 ug/l 98 60) 1,3,5-Trimethylbenzene 14.44 105 8488937 50.52 ug/l 100 61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/l 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/l 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/l 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/l 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/l 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/l 97 71) n-Butylbenzene </td <td>57)</td> <td>n-Propylbenzene</td> <td>14.11</td> <td>91</td> <td>12196111</td> <td>49.73 u</td> <td>g/1</td> <td>97</td>	57)	n-Propylbenzene	14.11	91	12196111	49.73 u	g/1	97
60) 1,3,5-Trimethylbenzene14.44105848893750.52 ug/110061) 1,2,3-Trichloropropane14.607525718848.07 ug/110062) trans-1,4-Dichloro-2-buten14.525376400553.00 ug/19363) 4-Chlorotoluene14.6091730099650.83 ug/19964) tert-Butylbenzene14.94119897030246.97 ug/19565) 1,2,4-Trimethylbenzene15.06105879216250.24 ug/19866) sec-Butylbenzene15.231051244132149.26 ug/19567) 4-Isopropyltoluene15.481191042988348.48 ug/19668) 1,3-Dichlorobenzene15.55146536469245.12 ug/19770) 1,4-Dichlorobenzene15.70146539160346.74 ug/19771) n-Butylbenzene16.1791933813253.27 ug/19872) 1,2-Dichlorobenzene16.38146526489347.96 ug/19773) 1,2-Dibromo-3-chloropropan17.727545942853.45 ug/18174) Hexachlorobutadiene18.84225186843641.71 ug/1100	58)	1,1,2,2-Tetrachloroethane	14.24	83	2438428	48.86 u	g/1	98
61) 1,2,3-Trichloropropane 14.60 75 257188 48.07 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/1 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/1 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/1 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/1 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/1 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/1 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100	59)	2-Chlorotoluene	14.33	91	7176647		~	98
62) trans-1,4-Dichloro-2-buten 14.52 53 764005 53.00 ug/1 93 63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/1 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/1 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/1 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/1 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/1 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100	60)	1,3,5-Trimethylbenzene	14.44	105	8488937	50.52 u	g/1	100
63) 4-Chlorotoluene 14.60 91 7300996 50.83 ug/l 99 64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/l 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/l 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/l 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/l 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/l 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/l 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/l 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/l 100	61)	1,2,3-Trichloropropane	14.60	75	257188	48.07 u	g/1	100
64) tert-Butylbenzene 14.94 119 8970302 46.97 ug/1 95 65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/1 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/1 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/1 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100	62)	trans-1,4-Dichloro-2-buten	14.52	53	764005	53.00 u	g/1	93
65) 1,2,4-Trimethylbenzene 15.06 105 8792162 50.24 ug/l 98 66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/l 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/l 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/l 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/l 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/l 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/l 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/l 100	63)	4-Chlorotoluene	14.60	91	7300996	50.83 u	g/1	99
66) sec-Butylbenzene 15.23 105 12441321 49.26 ug/l 95 67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/l 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/l 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/l 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/l 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/l 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/l 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/l 100		-	14.94	119	8970302	46.97 u	g/1	95
67) 4-Isopropyltoluene 15.48 119 10429883 48.48 ug/1 96 68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100		<u>-</u>					~	
68) 1,3-Dichlorobenzene 15.55 146 5364692 45.12 ug/1 97 70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100		_	15.23			49.26 u	g/1	
70) 1,4-Dichlorobenzene 15.70 146 5391603 46.74 ug/1 97 71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100							-	
71) n-Butylbenzene 16.17 91 9338132 53.27 ug/1 98 72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100		•	15.55	146	5364692		_	
72) 1,2-Dichlorobenzene 16.38 146 5264893 47.96 ug/1 97 73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100		•					_	
73) 1,2-Dibromo-3-chloropropan 17.72 75 459428 53.45 ug/1 81 74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100		-			9338132		-	
74) Hexachlorobutadiene 18.84 225 1868436 41.71 ug/1 100		*	16.38	146	5264893		~	
·								
75) 1,2,4-Trichlorobenzene 18.87 180 4015816 44.20 ug/1 99	*							
	75)	1,2,4-Trichlorobenzene	18.87	180	4015816	44.20 u	g/1	99

Vial: 6

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204022.D

Acq On : 5 Feb 09 12:12 am Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25u1 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 0:36 19109 Quant Results File: VOL.RES

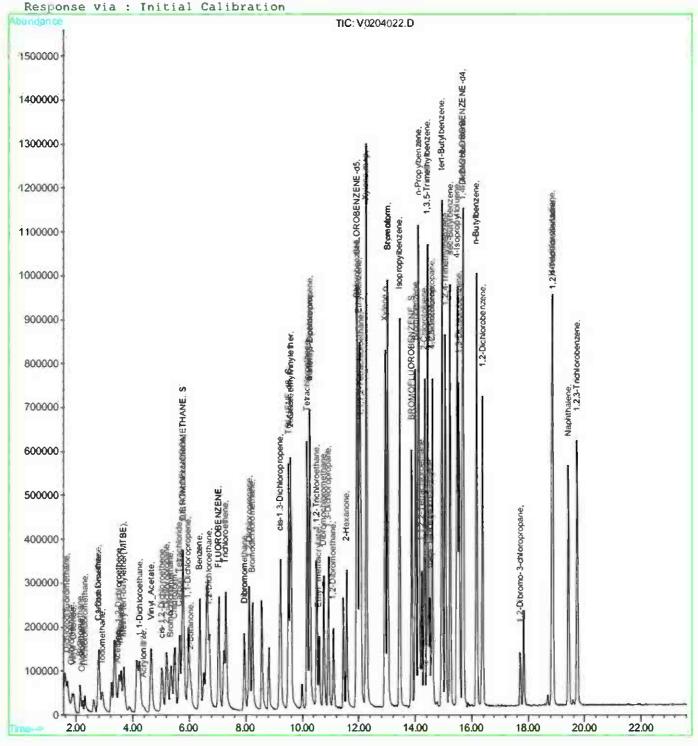
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
76)	Naphthalene	19.43	128	8337269	45.10 ug/1	100
77)	1,2,3-Trichlorobenzene	19.73	180	3673075	43.77 ug/1	99

Vial: 6

Data File: C:\HPCHEM\2\DATA\V020409\V0204022,D


5 Feb 09 12:12 am Operator: Stan Hunnicutt

Sample : CCV VOC : GC/MS Ins : VOL196 Multiplr: 1,00 25ul

MS Integration Params: events.e

Quant Time: Feb 5 0:36 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Vial: 7

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204023.D

Acq On : 5 Feb 09 12:41 am Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:52 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

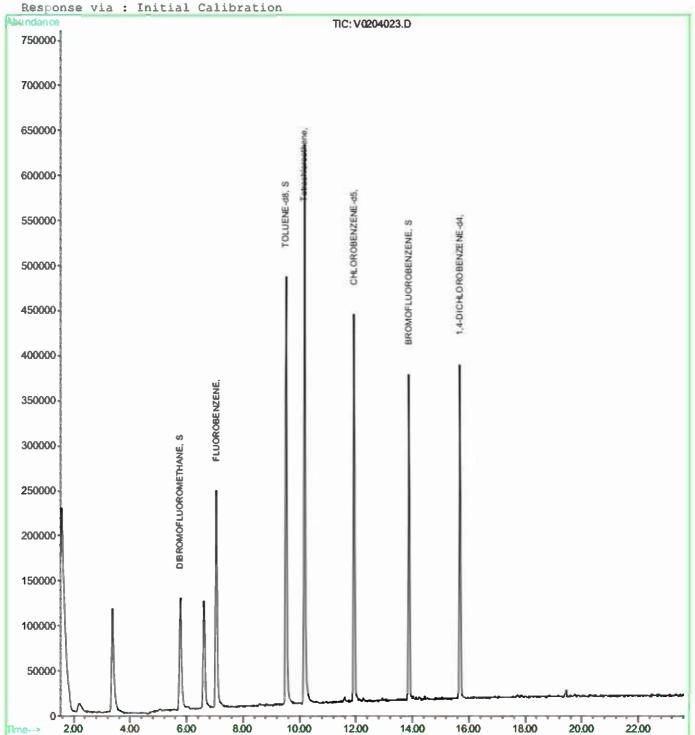
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) FLUOROBENZENE	7.05		4467745	50.00	_	0.02
46) CHLOROBENZENE-d5 69) 1,4-DICHLOROBENZENE-d4	11.93 15.68	117 152	4312810 1749297		ug/l ug/l	-0.02
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.78	113	1822013	68.51	ug/l	0.01
Spiked Amount 50.000			Recove:	ry =	137.029	5
35) TOLUENE-d8	9.52	98	5421092	49.54	ug/l	0.00
Spiked Amount 50.000			Recove:	ry =	99.089	5
55) BROMOFLUOROBENZENE	13.87	95	1966350	43.77	ug/1	-0.01
Spiked Amount 50.000			Recove	ry =	87.549	
Target Compounds					Qv	alue
37) Tetrachloroethene	10.18	164	2977266	62.14	ug/l	96

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204023.D Vial: 7

 Acq On
 : 5 Feb 09 12:41 am
 Operator: Stan Hunnicutt


 Sample
 : s09-0105 5.00g/5ml H20
 Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:52 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 8

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204024.D

Acq On : 5 Feb 09 1:10 am Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 6:52 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

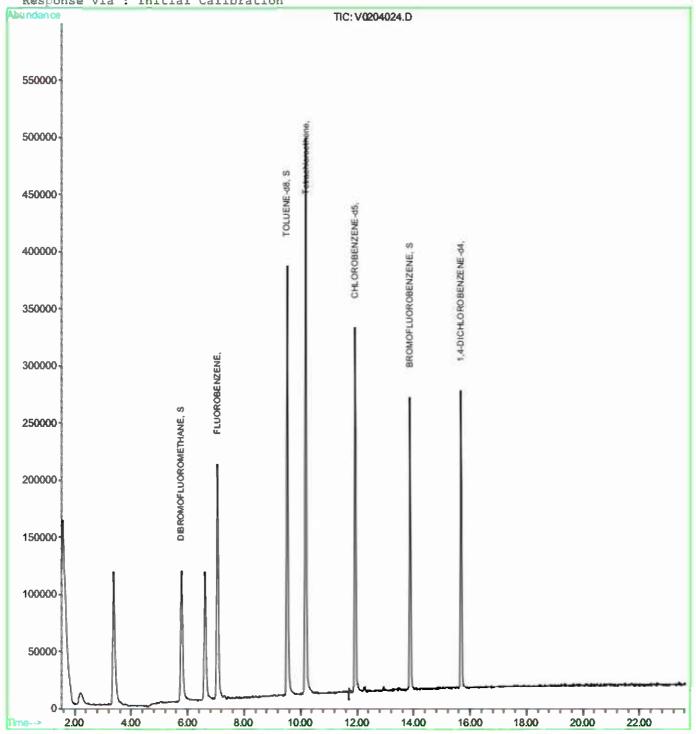
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) FLUOROBENZENE			3777107	50.00	_	0.02
46) CHLOROBENZENE-d5	11.93	117	3174619	50.00	ug/l	0.00
69) 1,4-DICHLOROBENZENE-d4	15.68	152	1254939	50.00	ug/l	-0.02
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.78	113	1427911m	63.51	ug/l	0.02
Spiked Amount 50.000			Recove	ry =	127.02	8
35) TOLUENE-d8	9.53	98	4219546	45.61	ug/1	0.00
Spiked Amount 50.000			Recove	ry =	91.22	8
55) BROMOFLUOROBENZENE	13.87	95	1425692	43.11	ug/1	-0.02
Spiked Amount 50.000			Recove	ry =	86.22	8
Target Compounds					Q	value
37) Tetrachloroethene	10.18	164	2233841	55.15	ug/l	95

Quantitation Report

Acq On : 5 Feb 09 1:10 am Operator: Stan Hunnicutt
Sample : s09-0106 5.07g/5m1 H2O Inst : GC/MS Ins


Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:52 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

Reference 26 Page 239 (QT Reviewed)

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204025.D

Vial: 9 Acq On : 5 Feb 09 1:40 am Operator: Stan Hunnicutt

Sample : s09-0108 5.14g/5ml H20 Misc : Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:53 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

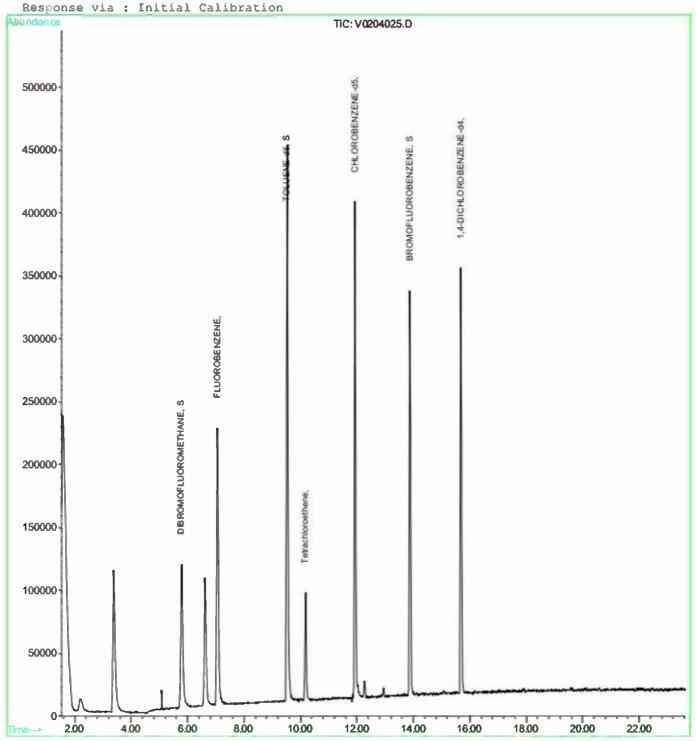
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	ev (Min)
1) FLUOROBENZENE	7.06	96	4149010	50.00	ug/l	0.02
46) CHLOROBENZENE-d5	11.93	117	3897270	50.00	ug/l	0.00
69) 1,4-DICHLOROBENZENE-d4	15.68	152	1608418	50.00	ug/l	-0.02
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.79	113	1657511	67.11	ug/l	0.03
Spiked Amount 50.000			Recove	ry =	134.22	28
35) TOLUENE-d8	9.53	98	4881288	48.04	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	96.08	3 E
55) BROMOFLUOROBENZENE	13.87	95	1742232	42.91	ug/1	-0.01
Spiked Amount 50.000			Recove	ry =	85.82	28
Target Compounds					Ç)value
37) Tetrachloroethene	10.18	164	359417	8.08	ug/1 #	84

Vial: 9

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204025.D


Acq On : 5 Feb 09 1:40 am Operator: Stan Hunnicutt
Sample : s09-0108 5.14g/5m1 H20 Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 6:53 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 10

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204026.D

Acq On : 5 Feb 09 6:39 am Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 7:17 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

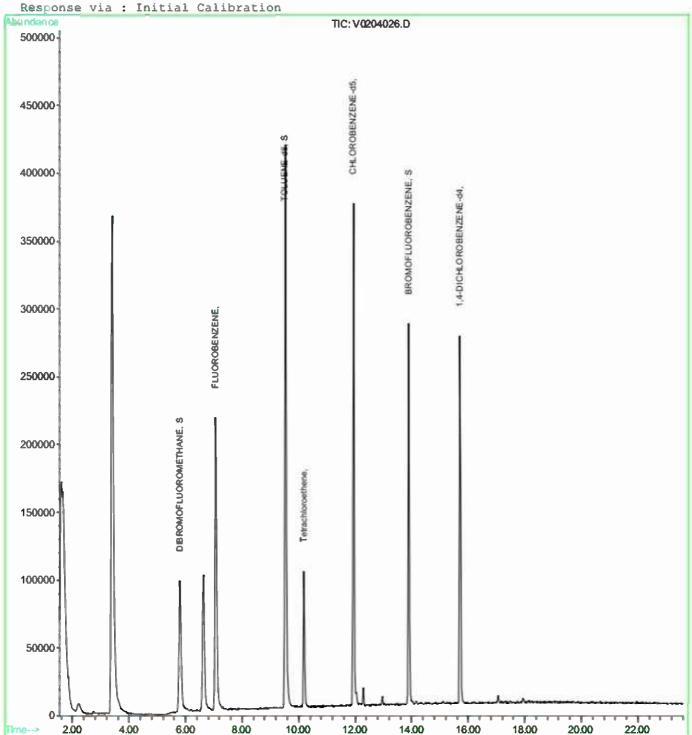
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) FLUOROBENZENE	7.07	96	3995302	50.00	ug/l	0.03
46) CHLOROBENZENE-d5	11.94	117	3659070	50.00	ug/l	0.00
69) 1,4-DICHLOROBENZENE-d4	15.70	152	1215036	50.00	ug/1	0.00
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.80	113	1492202	62.74	ug/l	0.03
Spiked Amount 50.000			Recove	ry =	125.48%	
35) TOLUENE-d8	9.53	98	4625829	47.27	ug/l	0.01
Spiked Amount 50.000			Recove	ry =	94.54%	
55) BROMOFLUOROBENZENE	13.89	95	1575479	41.33	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	82.66%	
Target Compounds					Qv	alue
37) Tetrachloroethene	10.19	164	420906	9.82	ug/l	90

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204026.D Vial: 10


Acq On : 5 Feb 09 6:39 am Operator: Stan Hunnicutt
Sample : s09-0109 5.07g/5ml H20 Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 7:17 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 11

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204027.D

Acq On : 5 Feb 09 7:08 am Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 7:36 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

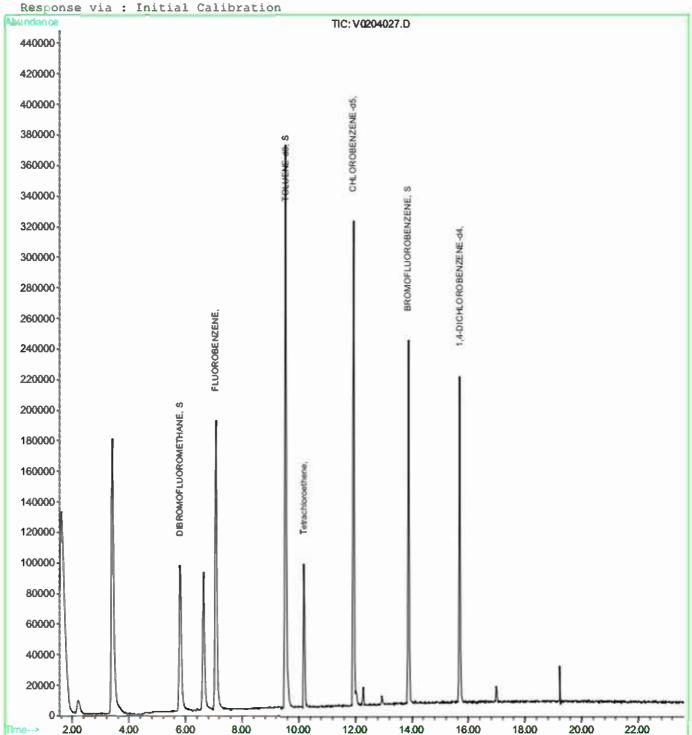
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev(Min)
1) FLUOROBENZENE	7.07	96	3686560	50.00	ug/1 0.04
46) CHLOROBENZENE-d5	11.94	117	3255557	50.00	ug/1 0.00
69) 1,4-DICHLOROBENZENE-d4	15.69	152	968307	50.00	ug/1 -0.01
System Monitoring Compounds					
23) DIBROMOFLUOROMETHANE	5.81	113	1473661	67.15	ug/1 0.04
Spiked Amount 50.000			Recover	ry =	134.30%
35) TOLUENE-d8	9.53	98	4218883	46.73	ug/1 0.01
Spiked Amount 50.000			Recover	ry =	93.46%
55) BROMOFLUOROBENZENE	13.88	95	1364646	40.24	ug/1 -0.01
Spiked Amount 50.000			Recover	ry =	80.48%
Target Compounds					Qvalue
37) Tetrachloroethene	10.19	164	394922	9.99	ug/1 90

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204027.D Vial: 11


Acq On : 5 Feb 09 7:08 am Operator: Stan Hunnicutt
Sample : s09-0110 5.10g/5m1 H20 Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 7:36 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 12

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204028.D

Acq On : 5 Feb 09 7:37 am Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 8:04 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

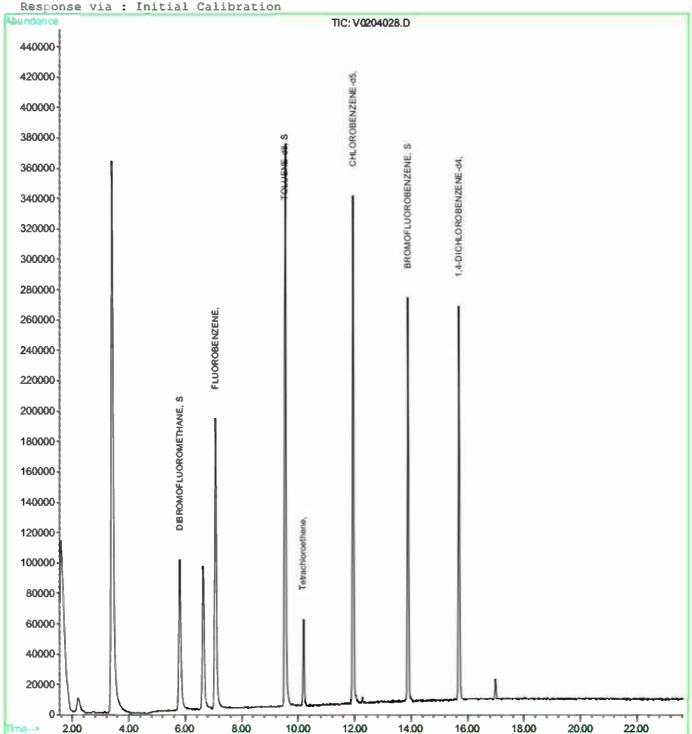
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) FLUOROBENZENE	7.07	96	3581346	50.00	ug/1	0.03
46) CHLOROBENZENE-d5	11.94	117	3338955	50.00	ug/1	0.00
69) 1,4-DICHLOROBENZENE-d4	15.68	152	1203864	50.00	ug/1	-0.01
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.80	113	1425541	66.87	ug/1	0.03
Spiked Amount 50.000			Recove	ry =	133.74%	
35) TOLUENE-d8	9.53	98	4190368	47.77	ug/1	0.00
Spiked Amount 50.000			Recove	ry =	95.54%	
55) BROMOFLUOROBENZENE	13.88	95	1439535	41.39	ug/1	0.00
Spiked Amount 50.000			Recove	ry =	82.78%	
Target Compounds					Qv	alue
37) Tetrachloroethene	10.19	164	242375	6.31	ug/l	89

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204028.D Vial: 12


Acq On : 5 Feb 09 7:37 am Operator: Stan Hunnicutt
Sample : s09-0103 5.23g/5ml H2O Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 5 8:04 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 13

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020409\V0204029.D

Acq On : 5 Feb 09 8:06 am Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 5 8:31 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

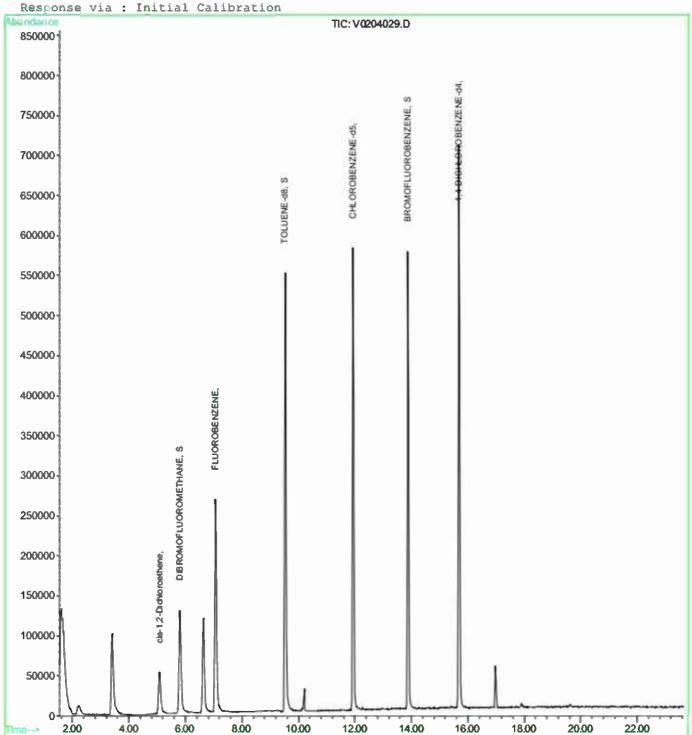
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	v(Min)
1) FLUOROBENZENE	7.07	96	4878178	50.00	ug/l	0.03
46) CHLOROBENZENE-d5	11.94	117	5758246	50.00	ug/l	0.00
69) 1,4-DICHLOROBENZENE-d4	15.68	152	3347902	50.00	ug/1	-0.01
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.81	113	1870805	64.42	ug/l	0.04
Spiked Amount 50.000			Recove	ry =	128.84	8
35) TOLUENE-d8	9.53	98	6232014	52.16	ug/l	0.01
Spiked Amount 50.000			Recove	ry =	104.32	e E
55) BROMOFLUOROBENZENE	13.88	95	3079682	51.34	ug/1	0.00
Spiked Amount 50.000			Recove	ry =	102.68	f
Target Compounds					Q.	value
18) cis-1,2-Dichloroethene	5.08	96	637803	35.03	ug/1	94

Quantitation Report

Data File: C:\HPCHEM\2\DATA\V020409\V0204029.D Vial: 13


Acq On : 5 Feb 09 8:06 am Operator: Stan Hunnicutt
Sample : w09-0107 500ul/5ml H20 Inst : GC/MS Ins

Misc : Multiplr: 1.00

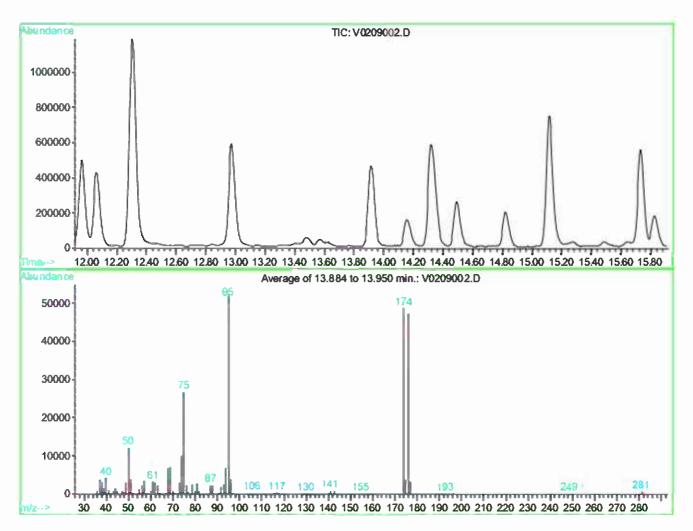
MS Integration Params: events.e

Quant Time: Feb 5 8:31 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 2

Data File : C:\HPCHEM\2\DATA\V020909\V0209002.D


Acq On : 9 Feb 09 9:17 am Operator: Stan Hunnicutt

Sample : CCV GRO Inst : GC/MS Inst : VOL149 4u1 Multiplr: 1.00

MS Integration Params: events.e

Method : C:\HPCHEM\2\METHODS\GRO.M (Chemstation Integrator)

Title : GRO

Spectrum Information: Average of 13.884 to 13.950 min.

	Target Mass	1	Rel. to Mass	1	Lower Limit%	I	Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
-	50		95	1	15		40		23.2	ı	12130		PASS	1
	75	1	95	1	30	-	60		51.3	- 1	26771		PASS	
	95		95		100	1	100	-	100.0	- 1	52190		PASS	1
	96		95		5		9		7.2		3736		PASS	
	173		174		0.00		2		0.0		0		PASS	
	174		95		50		100		93.3		48704		PASS	
	175		174		5		9		7.9		3831		PASS	
	176		174		95		101		97.2		47321		PASS	
-	177	-	176		5	-	9	1	6.6		3146	-	PASS	-

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209001.D Vial: 1

Acq On : 9 Feb 09 9:49 am Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 10:12 19109 Ouant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits !	Dev	(Min)
1) FLUOROBENZENE	7.07	96	3027704	50.00	ug/1		0.03
46) CHLOROBENZENE-d5	11.95	117	4010544	50.00	ug/l		0.02
69) 1,4-DICHLOROBENZENE-d4	15.71	152	2199618	50.00	ug/1		0.02
System Monitoring Compounds							
23) DIBROMOFLUOROMETHANE	5.79	113	1111633	61.68	ug/l		0.02
Spiked Amount 50.000			Recove:	ry =	123.	36%	
35) TOLUENE-d8	9.53	98	4309970	58.12	ug/l		0.00
Spiked Amount 50.000			Recove:	ry =	116.2	24%	
55) BROMOFLUOROBENZENE	13.90	95	2228253	53.33	ug/l		0.01
Spiked Amount 50.000			Recove	ry =	106.	56%	
Target Compounds						Qv	alue
Dichlorodifluoromethane	1.69	85	1976035	78.50	ug/l		97
Chloromethane	1.85		943826	65.30	ug/l		99
4) Viny1_Chloride				67.00	ug/1		92
5) Bromomethane	2.14	94	534014	139.80	_		97
6) Chloroethane		64	214018	156.40			98
7) Trichlorofluoromethane	2.30	101		174.97			98
8) 1,1-Dichloroethene	2.78	96	325332	70.72			77
9) Carbon Disulfide	2.81	76	1049053	74.21	ug/l	#	86
10) Iodomethane	2.93	142	730002	91.92	ug/l	#	79
11) Acetone	3.49	58	67895	191.47	ug/l		66
12) trans-1,2-Dichloroethene	3.53	96	469578	74.36	ug/l		91
13) n-Hexane	3.60	57	570053	69.95	ug/l		92
14) Methy-tert-butylether (MTBE	3.70	73	1515302	72.63	ug/l		98
<pre>15) 1,1-Dichloroethane</pre>	4.27	63	961591	79.92	ug/l		100
16) Acrylonitrile	4.40	53	75409	39.83	ug/l	#	25
<pre>17) Vinyl_Acetate</pre>	4.67	43	1531034	102.21	ug/l		100
18) cis-1,2-Dichloroethene	5.05	96	647832	57.05	ug/l	#	77
19) 2,2-Dichloropropane	5.23	77	1749647	81.22	ug/l		97
20) Bromochloromethane	5.38	128	419615	53.29	ug/l	#	78
21) Chloroform	5.50	83	1832575	66.13	ug/l		99
22) Carbon Tetrachloride	5.68	117	2112124	90.11	ug/1		99
24) 1,1,1-Trichloroethane	5.81	97	2181038	79.01	ug/1		94
25) 2-Butanone	6.08	72	170694	92.77	ug/1		94
26) 1,1-Dichloropropene	6.00	75	1298848	55.89	ug/1		96
27) Benzene	6.39	78	2775386	44.03	ug/1		100
28) 1,2-Dichloroethane	6.74	62	2011919	78.52	ug/1	#	93
29) Trichloroethene			1066720	58.34	-		91
30) Dibromomethane	7.97		812287	62.81	_		87

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209001.D Vial: 1

Acq On : 9 Feb 09 9:49 am Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 10:12 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Ur	nit	Qv	alue
31)	1,2-Dichloropropane	8.15	63	920037	48.32	ua/1		97
	Bromodichloromethane	8.26	83	2093225	68.59			96
*	2-Chloroethylvinylether	9.62	63	571755	72.34	_	#	91
	cis-1,3-Dichloropropene	9.26	75	2203190	57.79	_		92
	Toluene	9.62	92	2848343	48.53			99
37)	Tetrachloroethene	10.20	164	1618430	49.84	-		93
38)	4-Methyl-2-pentanone	10.29	100	465343	103.46	ug/l		86
39)	trans-1,3-Dichloropropene	10.30	75	2206439	63.29	ug/l		96
40)	1,1,2-Trichloroethane	10.54	83	886654	53.94	ug/1		98
41)	Ethyl methacrylate	10.62	69	811405	54.41	ug/1		99
42)	Dibromochloromethane	10.79	129	1994586	66.63	ug/1		97
43)	1,3-Dichloropropane	10.96	76	2170467	54.97	ug/1		97
44)	1,2-Dibromoethane	11.14	107	1443043	58.10	ug/1		99
45)	2-Hexanone	11.60	43	2309768	107.77	ug/1		97
47)	Chlorobenzene	11.98	112	4016419	45.52	ug/1		96
48)	Ethylbenzene	12.05	91	6617549	48.09	ug/l		97
49)	1,1,1,2-Tetrachloroethane	12.10	131	1900441	53.54	ug/l		97
50)	Xylene, m+p	12.29	106	4533820	78.18	ug/l		100
51)	Xylene, o	12.96	106	2739110	44.64	ug/l		94
52)	Styrene	13.05	104	4138240	42.49	ug/l		98
	Bromoform	13.05	173	1294711	48.95	ug/l		99
54)	Isopropylbenzene	13.48	105	7575536	49.47	_		95
56)	Bromobenzene	14.05	156	2129267	47.79	ug/l		93
57)	n-Propylbenzene	14.14	91	8007473	47.14	ug/1		95
58)	1,1,2,2-Tetrachloroethane	14.27	83	1423492	41.18	ug/1		97
59)	2-Chlorotoluene	14.36	91	4896686	50.67	ug/l		96
60)	1,3,5-Trimethylbenzene	14.48	105	5549815	47.68	ug/1		99
61)	1,2,3-Trichloropropane	14.64	75	181151	48.88	ug/1		100
62)	trans-1,4-Dichloro-2-buten	14.56	53	567773	56.86	ug/l	#	77
63)	4-Chlorotoluene	14.64	91	4924981	49.50	ug/l		99
	tert-Butylbenzene	14.98	119	6376413	48.20	ug/l		94
	1,2,4-Trimethylbenzene	15.10	105	5776137	47.65	ug/l		98
	sec-Butylbenzene	15.27	105	8075342	46.17	ug/l		97
	4-Isopropyltoluene	15.52	119	7089889	47.58	_		97
68)	1,3-Dichlorobenzene	15.59	146	3669065	44.55	_		99
	1,4-Dichlorobenzene	15.74		3626494	48.39	-		97
	n-Butylbenzene	16.21	91	6256990	54.93	-		98
	1,2-Dichlorobenzene	16.42	146	3622909	50.79	_		98
	1,2-Dibromo-3-chloropropan	17.77		301692	54.02	-		89
	Hexachlorobutadiene	18.90	225	1659493	57.01	_		100
75)	1,2,4-Trichlorobenzene	18.92	180	3169363	53.69	ug/1		99

Vial: 1

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209001.D

Acq On : 9 Feb 09 9:49 am Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25u1 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 10:12 19109 Quant Results File: VOL.RES

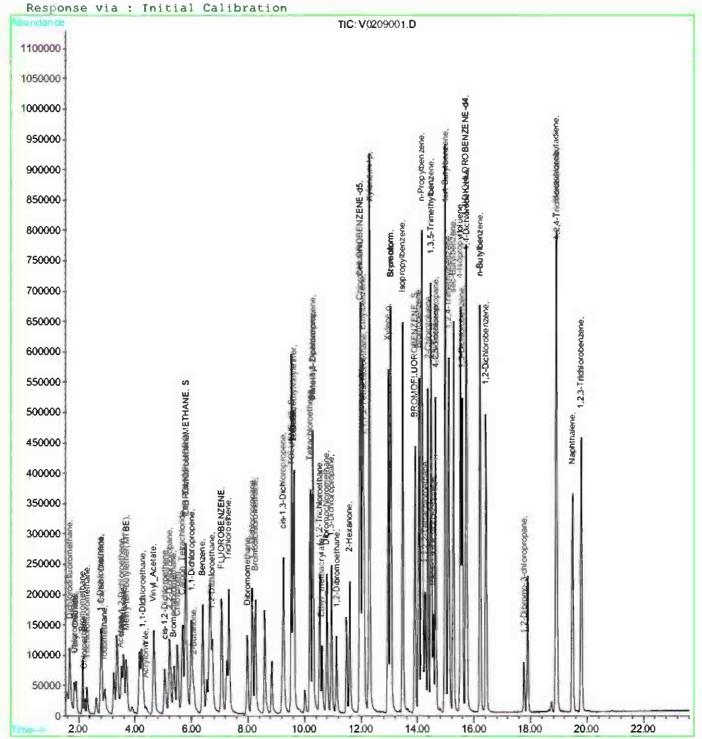
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Un	it	Qvalue
76)	Naphthalene	19.49	128	5755532	47.91	ug/l	100
77)	1,2,3-Trichlorobenzene	19.80	180	2815168	51.63	ug/1	99

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209001,D


Acq On : 9 Feb 09 9:49 am Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25u1 Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Feb 9 10:12 19109 Quant Results File: VOL,RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Data File : C:\HPCHEM\2\DATA\V020909\V0209003.D Vial: 3

Acq On : 9 Feb 09 10:19 am Operator: Stan Hunnicutt Inst : GC/MS Ins

Sample : LCS020509AV Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 10:42 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009 Response via : Initial Calibration

1) FLUOROBENZENE	Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
46 CHLOROBENZENE-d5	1) FLUOROBENZENE	7.05	96	2750245	50.00	ug/l	0.01
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE 5.78 113 988497 60.38 ug/l 0.00 Spiked Amount 50.000 Recovery 120.76% 35) TOLUENE-d8 9.53 98 4023772 59.74 ug/l 0.00 Spiked Amount 50.000 Recovery 119.48% 55) BROMOFLUOROMENZENE 13.90 95 2208785 55.56 ug/l 0.00 Spiked Amount 50.000 Recovery 1111.12% Target Compounds Qvalue 2) Dichiorodifluoromethane 1.68 85 1676700 73.33 ug/l 98 3) Chioromethane 1.85 50 712763 54.29 ug/l 95 4) Vinyl_Chloride 1.90 62 624411 62.95 ug/l 97 6) Chioroethane 2.14 94 536062 154.49 ug/l 97 6) Chioroethane 2.21 64 173153 138.40 ug/l 97 7) Trichiorofluoromethane 2.29 101 398188 160.88 ug/l 97 8) Carbon Disulfide 2.79 76 978984 76.24 ug/l 89 9) Carbon Disulfide 2.79 76 978984 76.24 ug/l 89 11) Acetone 2.91 142 742309 102.90 ug/l 89 12) trans-1,2-Dichioroethene 3.55 6 43710 77.95 ug/l 99 13) Alexane 3.55 57 485338 6556 ug/l 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichioroethane 4.66 63 87188 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l 8 68 17) Vinyl_Acetate 4.65 43 122104 89.81 ug/l 72 19) 2,2-Dichioroethane 5.04 96 542014 52.58 ug/l 72 19) 2,2-Dichioroethane 5.04 96 542014 52.58 ug/l 8 72 19) 2,2-Dichioroethane 5.04 96 542014 52.58 ug/l 8 72 19) 2,2-Dichioroethane 5.05 128 396009 55.37 ug/l 8 68 21) Chioroform 5.48 83 1624780 64.55 ug/l 98 220 220 220 220 220 220 220 220 220 22	46) CHLOROBENZENE-d5	11.95	117	3816097			0.00
DIBROMOFLUOROMETHANE 5.78 113 988497 60.38 ug/1 0.00 Spiked Amount 50.000 Recovery = 120.76% 120.76% 35) TOLUENE-d8 9.53 98 4023772 59.74 ug/1 0.00 Spiked Amount 50.000 Recovery = 119.48% 119.48% 55) BROMOFLUOROBENZENE 13.90 95 2208785 55.56 ug/1 0.00 Spiked Amount 50.000 Recovery = 111.12% 111.12% Target Compounds Qvalue 20 Dichlorodifluoromethane 1.68 85 1676700 73.33 ug/1 98 30 Chloromethane 1.85 50 712763 54.29 ug/1 95 40 Vinyl Chloride 1.90 62 624411 62.95 ug/1 93 50 Bromomethane 2.14 94 536062 154.49 ug/1 97 60 Chloroethane 2.21 64 173153 138.40 ug/1 97 70 Trichlorofluoromethane 2.27 69 309895 74.16 ug/1 89 90 Carbon Disulfide 2.79 76 978984 76.24 ug/1 89 90 Carbon Disulfide 2.79 76 978984 76.24 ug/1 89 90 10 Iodomethane 2.91 142 742309 102.90 ug/1 89 90 11 Acetone 3.51 96 447110 77.95 ug/1 99 13 n-Hexane 3.59 57 485338 65.56 ug/1 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/1 97 151 1,1-Dichloroethane 4.26 63 871788 79.77 ug/1 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/1 86 68 68 69 69 69 69 69	69) 1,4-DICHLOROBENZENE-d4	15.71	152	2267271			0.00
Spiked Amount 50.000 Spiked Amount 50.000 Spiked Amount 50.000 Recovery = 1120.76%	System Monitoring Compounds						
35 TOLUENE-d8 9.53 98 4023772 59.74 ug/1 0.00 Spiked Amount 50.000 Recovery = 119.48%	23) DIBROMOFLUOROMETHANE	5.78	113	988497	60.38	ug/l	0.00
Spiked Amount 50.000 13.90 95 2208785 55.56 ug/l 0.00	Spiked Amount 50.000			Recover	ry =	120.76%	
S5 BROMOFLUOROBENZENE 13.90 95 2208785 55.56 ug/l 0.00 Spiked Amount 50.000 Recovery = 111.12%	35) TOLUENE-d8	9.53	98	4023772	59.74	ug/l	0.00
Target Compounds 2) Dichlorodifluoromethane 1.68 85 1676700 73.33 ug/l 98 3) Chloromethane 1.85 50 712763 54.29 ug/l 95 4) Vinyl_Chloride 1.90 62 624411 62.95 ug/l 93 5) Bromomethane 2.14 94 536062 154.49 ug/l 97 6) Chloroethane 2.14 94 536062 154.49 ug/l 97 7) Trichlorofluoromethane 2.21 64 173153 138.40 ug/l 97 7) Trichlorofluoromethane 2.29 101 398188 160.88 ug/l 97 8) 1,1-Dichloroethene 2.76 96 309895 74.16 ug/l 89 9) Carbon Disulfide 2.79 76 978984 76.24 ug/l \$90 10) Iodomethane 2.91 142 742309 102.90 ug/l \$90 11) Acetone 3.47 58 65045 201.94 ug/l 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/l 99 13) n-Hexane 3.59 57 485338 65.56 ug/l 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l \$68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l 72 19) 2,2-Dichloropopane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l \$86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.69 17 173511 70.73 ug/l \$61 25) 2-Butanone 6.07 72 168317 100.71 ug/l \$61 26) 1,1-Dichloropopene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l \$93	Spiked Amount 50.000			Recove	ry =	119.48%	
Target Compounds 2) Dichlorodifluoromethane 1.68	55) BROMOFLUOROBENZENE	13.90	95	2208785	55.56	ug/l	0.00
Dichlorodifluoromethane	Spiked Amount 50.000			Recove	ry =	111.12%	
30 Chloromethane 1.85 50 712763 54.29 ug/l 95						Qv	alue
4) Vinyl_Chloride 1.90 62 624411 62.95 ug/l 93 5) Bromomethane 2.14 94 536062 154.49 ug/l 97 6) Chloroethane 2.21 64 173153 138.40 ug/l 97 7) Trichlorofluoromethane 2.29 101 398188 160.88 ug/l 97 8) 1,1-Dichloroethene 2.76 96 309895 74.16 ug/l 89 9) Carbon Disulfide 2.79 76 978984 76.24 ug/l # 90 10) Iodomethane 2.91 142 742309 102.90 ug/l # 90 11) Acetone 3.47 58 65045 201.94 ug/l 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/l 99 13) n-Hexane 3.59 57 485338 65.56 ug/l 100 14) Methy-tert-butylether(MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 1084	Dichlorodifluoromethane	1.68	85	1676700	73.33	ug/l	98
5) Bromomethane 2.14 94 536062 154.49 ug/l 97 6) Chloroethane 2.21 64 173153 138.40 ug/l 97 7) Trichlorofluoromethane 2.29 101 398188 160.88 ug/l 97 8) 1,1-Dichloroethene 2.76 96 309895 74.16 ug/l 89 9) Carbon Disulfide 2.79 76 978984 76.24 ug/l # 90 10) Iodomethane 2.91 142 742309 102.90 ug/l # 90 11) Acetone 3.47 58 65045 201.94 ug/l 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/l 99 13) n-Hexane 3.59 57 485338 65.56 ug/l 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l # 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l # 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 98 24) 1,1,1-Trichloropropene 5.99 75 1194721 56.60 ug/l 97 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	Chloromethane	1.85	50	712763	54.29	ug/l	95
6) Chloroethane 2.21 64 173153 138.40 ug/1 97 7) Trichlorofluoromethane 2.29 101 398188 160.88 ug/1 97 8) 1,1-Dichloroethene 2.76 96 309895 74.16 ug/1 89 9) Carbon Disulfide 2.79 76 978984 76.24 ug/1 # 90 10) Iodomethane 2.91 142 742309 102.90 ug/1 # 90 11) Acetone 3.47 58 65045 201.94 ug/1 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/1 99 13) n-Hexane 3.59 57 485338 65.56 ug/1 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/1 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/1 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/1 # 68 17) Vinyl Acetate 4.65 43 1222104 89.81 ug/1 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/1 # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/1 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/1 # 86 21) Chloroform 5.48 83 1624780 64.55 ug/1 100 22) Carbon Tetrachloride 5.66 117 1870924 87.87 ug/1 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/1 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/1 95 2.5 2-Butanone 6.07 72 168317 100.71 ug/1 # 61 2.6) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/1 97 2.7) Benzene 6.38 78 2546208 44.47 ug/1 100 2.8) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/1 # 93	4) Vinyl_Chloride	1.90	62	624411	62.95	ug/l	93
7) Trichlorofluoromethane 2.29 101 398188 160.88 ug/1 97 8) 1,1-Dichloroethene 2.76 96 309895 74.16 ug/1 89 9) Carbon Disulfide 2.79 76 978984 76.24 ug/1 # 90 10) Iodomethane 2.91 142 742309 102.90 ug/1 # 90 11) Acetone 3.47 58 65045 201.94 ug/1 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/1 99 13) n-Hexane 3.59 57 485338 65.56 ug/1 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/1 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/1 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/1 # 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/1 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/1 # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/1 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/1 # 86 21) Chloroform 5.48 83 1624780 64.55 ug/1 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/1 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/1 98 24) 1,1,1-Trichloroethane 5.99 75 1194721 56.60 ug/1 97 25) 2-Butanone 6.07 72 168317 100.71 ug/1 # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/1 97 27) Benzene 6.38 78 2546208 44.47 ug/1 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/1 # 93	5) Bromomethane	2.14	94	536062	154.49	ug/1	97
8) 1,1-Dichloroethene 2.76 96 309895 74.16 ug/1 89 9) Carbon Disulfide 2.79 76 978984 76.24 ug/1 # 90 10) Iodomethane 2.91 142 742309 102.90 ug/1 # 90 11) Acetone 3.47 58 65045 201.94 ug/1 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/1 99 13) n-Hexane 3.59 57 485338 65.56 ug/1 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/1 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/1 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/1 # 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/1 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/1 # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/1 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/1 # 86 21) Chloroform 5.48 83 1624780 64.55 ug/1 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/1 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/1 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/1 95 25) 2-Butanone 6.07 72 168317 100.71 ug/1 # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/1 97 27) Benzene 6.38 78 2546208 44.47 ug/1 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/1 # 93	6) Chloroethane	2.21	64	173153	138.40	ug/l	97
9) Carbon Disulfide 2.79 76 978984 76.24 ug/l # 90 10) Iodomethane 2.91 142 742309 102.90 ug/l # 90 11) Acetone 3.47 58 65045 201.94 ug/l 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/l 99 13) n-Hexane 3.59 57 485338 65.56 ug/l 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l # 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l # 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	Trichlorofluoromethane	2.29	101	398188	160.88	ug/l	97
10) Iodomethane	8) 1,1-Dichloroethene	2.76	96	309895	74.16	ug/l	89
11) Acetone 3.47 58 65045 201.94 ug/l 85 12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/l 99 13) n-Hexane 3.59 57 485338 65.56 ug/l 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l # 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l # 86 20) Bromochloromethane 5.36 128 396009 55.37 ug/l # 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	9) Carbon Disulfide	2.79			76.24	ug/1 #	90
12) trans-1,2-Dichloroethene 3.51 96 447110 77.95 ug/l 99 13) n-Hexane 3.59 57 485338 65.56 ug/l 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317<	10) Iodomethane	2.91	142	742309	102.90	ug/1 #	90
13) n-Hexane 3.59 57 485338 65.56 ug/l 100 14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l 61 26) 1,1-Dichloropropene 5.99 75 1194721 <td>11) Acetone</td> <td>3.47</td> <td>58</td> <td>65045</td> <td>201.94</td> <td>ug/l</td> <td>85</td>	11) Acetone	3.47	58	65045	201.94	ug/l	85
14) Methy-tert-butylether (MTBE 3.69 73 1537680 81.13 ug/l 97 15) 1,1-Dichloroethane 4.26 63 871788 79.77 ug/l 99 16) Acrylonitrile 4.39 53 108412 65.17 ug/l # 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l # 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 98 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 97 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 97 27) Benzene 6.38	<pre>12) trans-1,2-Dichloroethene</pre>	3.51	96	447110	77.95	ug/l	99
15) 1,1-Dichloroethane	13) n-Hexane	3.59	57	485338	65.56	ug/l	100
16) Acrylonitrile 4.39 53 108412 65.17 ug/l # 68 17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l # 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	14) Methy-tert-butylether (MTBE	3.69	73	1537680	81.13	ug/l	97
17) Vinyl_Acetate 4.65 43 1222104 89.81 ug/l 100 18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l #	<pre>15) 1,1-Dichloroethane</pre>	4.26	63	871788	79.77	ug/l	99
18) cis-1,2-Dichloroethene 5.04 96 542014 52.58 ug/l # 72 19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l # 86 21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	16) Acrylonitrile	4.39	53	108412	65.17	ug/1 #	68
19) 2,2-Dichloropropane 5.20 77 1403593 71.73 ug/l 96 20) Bromochloromethane 5.36 128 396009 55.37 ug/l # 86 21) Chloroform 5.48 83 1624780 64.55 ug/l l00 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l l98 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l l95 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # l61 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l l97 97 27) Benzene 6.38 78 2546208 44.47 ug/l l00 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # l93	<pre>17) Vinyl_Acetate</pre>	4.65	43	1222104	89.81	ug/1	100
20) Bromochloromethane 5.36 128 396009 55.37 ug/1 # 86 21) Chloroform 5.48 83 1624780 64.55 ug/1 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/1 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/1 95 25) 2-Butanone 6.07 72 168317 100.71 ug/1 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/1 97 27) Benzene 6.38 78 2546208 44.47 ug/1 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/1 #	18) cis-1,2-Dichloroethene	5.04	96	542014	52.58	ug/1 #	72
21) Chloroform 5.48 83 1624780 64.55 ug/l 100 22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	<pre>19) 2,2-Dichloropropane</pre>	5.20	77	1403593	71.73	ug/1	96
22) Carbon_Tetrachloride 5.66 117 1870924 87.87 ug/l 98 24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	20) Bromochloromethane	5.36	128	396009	55.37	ug/1 #	86
24) 1,1,1-Trichloroethane 5.79 97 1773511 70.73 ug/l 95 25) 2-Butanone 6.07 72 168317 100.71 ug/l # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	21) Chloroform	5.48	83	1624780	64.55	ug/l	100
25) 2-Butanone 6.07 72 168317 100.71 ug/1 # 61 26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/1 97 27) Benzene 6.38 78 2546208 44.47 ug/1 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/1 # 93	<pre>22) Carbon_Tetrachloride</pre>	5.66	117	1870924	87.87	ug/l	98
26) 1,1-Dichloropropene 5.99 75 1194721 56.60 ug/l 97 27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	24) 1,1,1-Trichloroethane	5.79	97	1773511	70.73	ug/l	95
27) Benzene 6.38 78 2546208 44.47 ug/l 100 28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/l # 93	25) 2-Butanone	6.07	72	168317	100.71	ug/1 #	61
28) 1,2-Dichloroethane 6.72 62 1932783 83.04 ug/1 # 93	26) 1,1-Dichloropropene	5.99	75	1194721	56.60	ug/1	97
	27) Benzene	6.38	78	2546208	44.47	ug/1	100
79) Trichlaroothona 731 95 1010341 50 90 vg/1 94	28) 1,2-Dichloroethane	6.72	62	1932783	83.04	ug/1 #	93
29) III OI OE (HEHE).31 93 1010341 00.90 Ug/1 94	29) Trichloroethene	7.31	95	1010341	60.90	ug/l	94
30) Dibromomethane 7.97 93 770366 65.58 ug/1 85	30) Dibromomethane	7.97	93	770366	65.58	ug/l	85

Data File : C:\HPCHEM\2\DATA\V020909\V0209003.D Vial: 3

Acq On : 9 Feb 09 10:19 am Operator: Stan Hunnicutt

Sample : LCS020509AV Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 10:42 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue
31)	1,2-Dichloropropane	8.14	63	896111	51.81 ug/1		98
	Bromodichloromethane	8.25	83	1987632	71.70 ug/1		95
33)	2-Chloroethylvinylether	9.61	63	541493	75.42 ug/1		90
34)	cis-1,3-Dichloropropene	9.25	75	2052195	59.26 ug/1	#	85
36)	Toluene	9.61	92	2666226	50.01 ug/1		95
37)	Tetrachloroethene	10.19	164	1805306	61.21 ug/1		95
38)	4-Methyl-2-pentanone	10.28	100	506181	123.89 ug/1		90
39)	trans-1,3-Dichloropropene	10.29	75	2124960	67.10 ug/1		89
40)	1,1,2-Trichloroethane	10.53	83	880198	58.95 ug/1		97
41)	Ethyl_methacrylate	10.62	69	817724	60.37 ug/1		94
42)	Dibromochloromethane	10.78	129	2004059	73.70 ug/1		97
43)	1,3-Dichloropropane	10.95	76	2211130	61.65 ug/1		100
44)	1,2-Dibromoethane	11.13	107	1451954	64.35 ug/1		99
45)	2-Hexanone	11.60	43	2811890	144.44 ug/1		93
47)	Chlorobenzene	11.98	112	3914757	46.62 ug/1		97
48)	Ethylbenzene	12.05	91	6426457	49.08 ug/1		97
49)	1,1,1,2-Tetrachloroethane	12.09	131	1851684	54.83 ug/1		99
50)	Xylene, m+p	12.28	106	4499695	81.55 ug/1		100
51)	Xylene, o	12.96	106	2723612	46.65 ug/l		97
52)	Styrene	13.05	104	4056578	43.77 ug/1		99
53)	Bromoform	13.05	173	1415932	56.26 ug/l		98
54)	Isopropylbenzene	13.47	105	7210983	49.49 ug/l		97
56)	Bromobenzene	14.04	156	2129400	50.23 ug/l		93
	n-Propylbenzene	14.13	91	7916421	48.98 ug/l		98
58)	1,1,2,2-Tetrachloroethane	14.26	83	1586819	48.24 ug/l		99
59)	2-Chlorotoluene	14.36	91	4834492	52.57 ug/l		98
60)	1,3,5-Trimethylbenzene	14.47	105	5575954	50.35 ug/l		100
61)	1,2,3-Trichloropropane	14.63	75	208966	59.26 ug/1		100
62)	trans-1,4-Dichloro-2-buten	14.55	53	627399	66.03 ug/1	#	80
	4-Chlorotoluene	14.63	91	4979034	52.60 ug/1		99
	tert-Butylbenzene	14.97	119	6278027	49.88 ug/1		96
	1,2,4-Trimethylbenzene	15.09	105	5891416	51.08 ug/1		97
	sec-Butylbenzene	15.26	105	8031334	48.25 ug/l		97
	4-Isopropyltoluene	15.51	119	7068242	49.85 ug/l		98
	1,3-Dichlorobenzene	15.58	146	3743859	47.77 ug/1		98
	1,4-Dichlorobenzene	15.73	146	3786074	49.01 ug/1		98
	n-Butylbenzene	16.20	91	6174777	52.59 ug/1		97
	1,2-Dichlorobenzene	16.41	146	3779584	51.40 ug/1		98
	1,2-Dibromo-3-chloropropan	17.76	75	371249	64.49 ug/1		85
•	Hexachlorobutadiene	18.88	225	1712618	57.08 ug/1		99
75)	1,2,4-Trichlorobenzene	18.91	180	3301954	54.26 ug/1		98

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209003.D Vial: 3

Acq On : 9 Feb 09 10:19 am Operator: Stan Hunnicutt Sample : LCS020509AV Inst : GC/MS Ins

 Sample
 : LCS020509AV
 Inst
 : GC/M

 Misc
 : VOL196
 25ul
 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 10:42 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

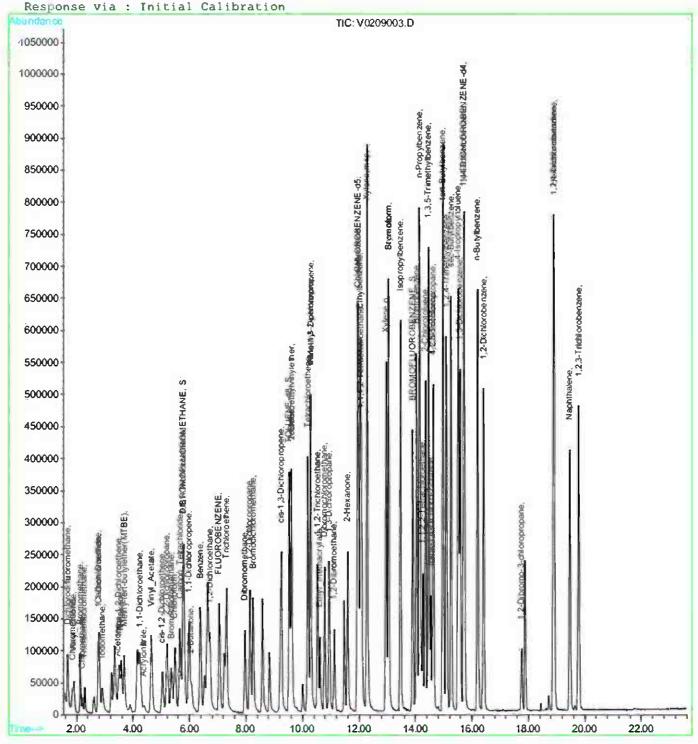
Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
76)	Naphthalene	19.47	128	6539979	52.82 ug/l	100
77)	1,2,3-Trichlorobenzene	19.78	180	3004951	53.47 ug/1	99

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209003,D


Acq On : 9 Feb 09 10:19 am Operator: Stan Hunnicutt
Sample : LCS020509AV Inst : GC/MS Ins

Hisc : VOL196 25ul Multiplr: 1,00

MS Integration Params: events.e

Quant Time: Feb 9 10:42 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Vial: 5

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209005.D

Acq On : 9 Feb 09 11:21 am Operator: Stan Hunnicutt

Sample : MB020509AV Inst : GC/MS Ins Misc : VOL195 10u1 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 17:00 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

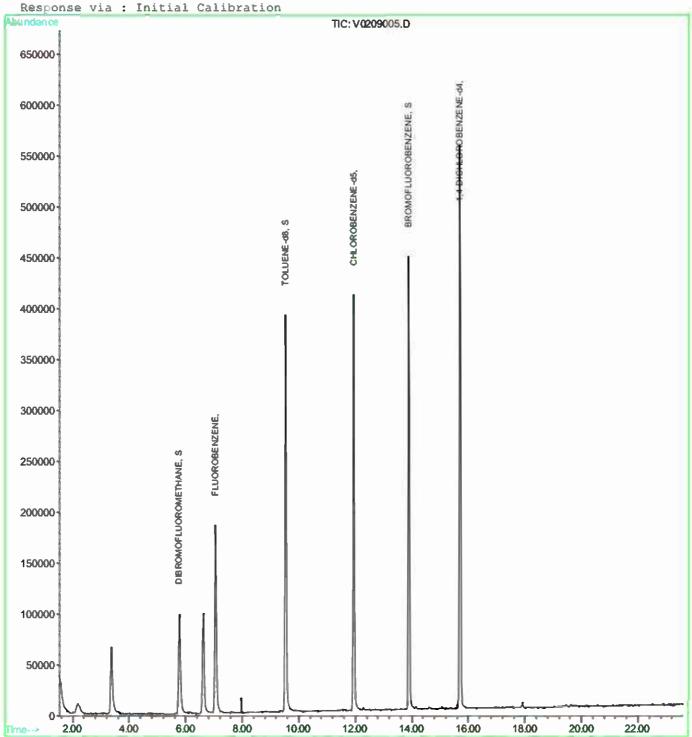
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
1) FLUOROBENZENE	7.06	96	2912436	50.00	ug/l	0.02
46) CHLOROBENZENE-d5	11.95	117	4130363	50.00	ug/l	0.00
69) 1,4-DICHLOROBENZENE-d4	15.70	152	2767596	50.00	ug/l	0.00
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE	E 79	112	1296501	7/ 79	na/1	0.02
Spiked Amount 50.000	5.78	113			149.56%	V.V2
	4			-		
35) TOLUENE-d8	9.54	98	4057514	56.88		0.01
Spiked Amount 50.000			Recover	:y =	113.76%	
55) BROMOFLUOROBENZENE	13.89	95	2347367	54.55	ug/l	0.00
Spiked Amount 50.000			Recover	:y =	109.10%	
Target Compounds					Qv	alue

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209005.D


Acq On : 9 Feb 09 11:21 am Operator: Stan Hunnicutt

Sample : MB020509AV Inst : GC/MS Ins Misc : VOL195 10u1 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 17:00 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 6

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209006.D

Acq On : 9 Feb 09 11:52 am Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 9 21:29 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

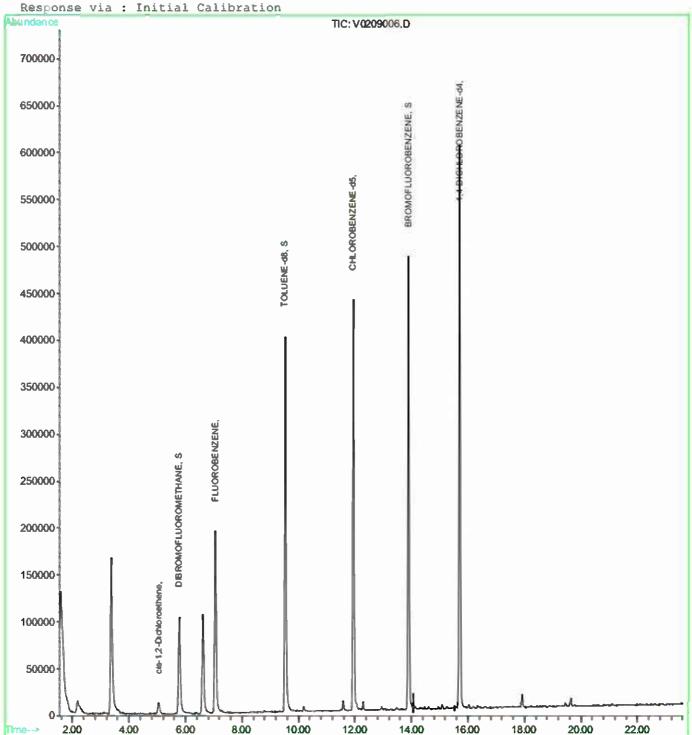
Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) FLUOROBENZENE	7.06	96	3040606	50.00	ug/1	0.02
46) CHLOROBENZENE-d5	11.95	117	4339962	50.00	ug/l	0.00
69) 1,4-DICHLOROBENZENE-d4	15.70	152	2985212	50.00	ug/l	0.00
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.78	113	1337618	73.90	ug/1	0.02
Spiked Amount 50.000			Recove	ry =	147.80%	
35) TOLUENE-d8	9.54	98	4236928	56.89	ug/l	0.01
Spiked Amount 50.000			Recove	ry =	113.78%	\$
55) BROMOFLUOROBENZENE	13.90	95	2496532	55.22	ug/l	0.00
Spiked Amount 50.000			Recove	ry =	110.449	\$
Target Compounds					Qv	alue
18) cis-1,2-Dichloroethene	5.06	96	116483	10.57	ug/1 #	61

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209006.D

 Acq On
 : 9 Feb 09 11:52 am
 Operator: Stan Hunnicutt


 Sample
 : w09-0132 5ml
 Inst : GC/MS Ins

Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 21:29 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 7

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209007.D

Acq On : 9 Feb 09 12:23 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 9 21:31 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

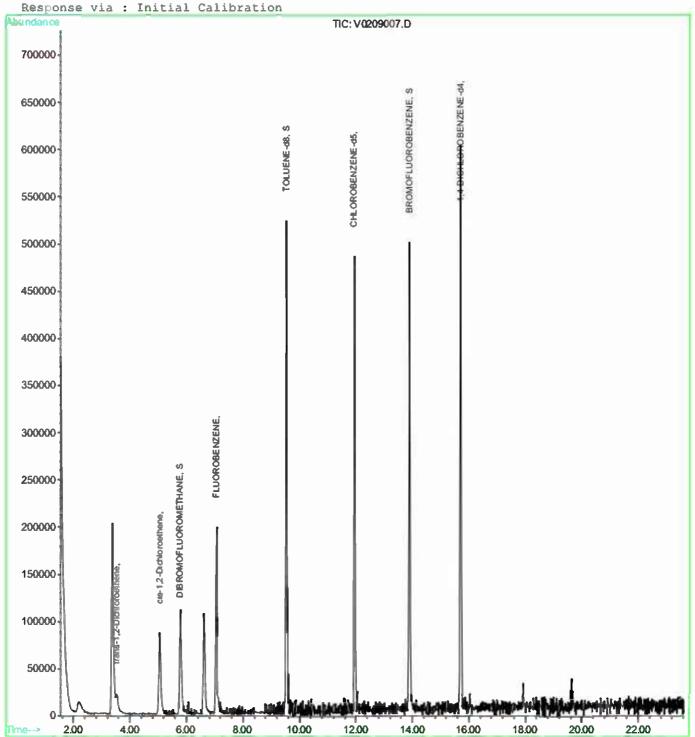
Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

Internal Standards			Response			(Min)
	7.08 11.95	96 117	2893021m 4053158m	50.00 50.00	ug/1 ug/1 ug/1	
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE	5.78	113	1208031		_	
Spiked Amount 50.000 35) TOLUENE-d8 Spiked Amount 50.000	9.55	98	4053142	57.20	140.30% ug/l 114.40%	
55) BROMOFLUOROBENZENE Spiked Amount 50.000	13.90	95	2362411 Recover		ug/1 111.90%	0.01
Target Compounds					Qva	alue
			0		ug/l	0
7) Trichlorofluoromethane12) trans-1,2-Dichloroethene16) Acrylonitrile	3.54 0.00	96 53	107099 0	17.75 -3.67	ug/l ug/l	98
18) cis-1,2-Dichloroethene	5.06	96	804076	73.98	ug/l	88

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209007.D

 Acq On
 : 9 Feb 09 12:23 pm
 Operator: Stan Hunnicutt


 Sample
 : w09-0140 5ml
 Inst : GC/MS Ins

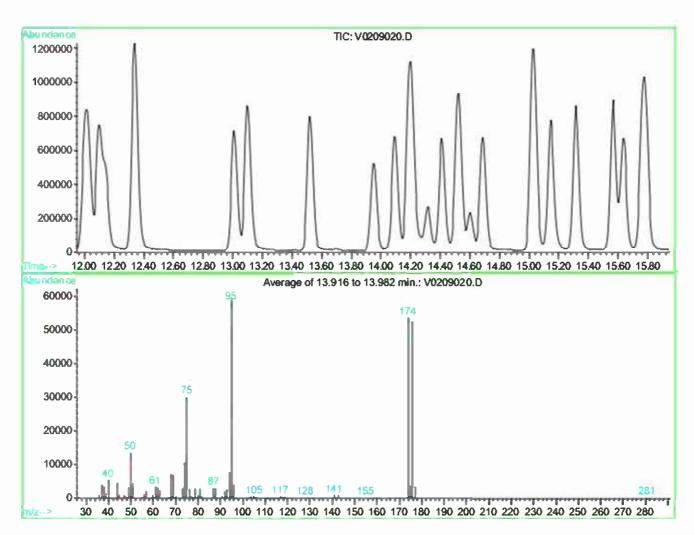
Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 21:31 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Data File : C:\HPCHEM\2\DATA\V020909\V0209020.D


Acq On : 9 Feb 09 10:14 pm Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Method : C:\HPCHEM\2\METHODS\GRO.M (Chemstation Integrator)

Title : GRO

Spectrum Information: Average of 13.916 to 13.982 min.

	Target Mass	1	Rel. to Mass	1	Lower Limit%	I	Upper Limit%	1	Rel. Abn%		Raw Abn	1	Result Pass/Fail	1
	50		95	1	15		40		22.7	1	13452		PASS	
	75	1	95	1	30	-	60		50.7		30034		PASS	
	95		95		100	1	100		100.0		59241		PASS	1
	96		95		5		9		6.9		4067		PASS	
	173		174		0.00		2		0.0		0		PASS	
	174		95		50		100		90.5		53592		PASS	
	175		174		5		9		7.2		3840		PASS	
	176		174		95		101		97.7		52372		PASS	
	177	-	176		5	-	9	1	6.4		3377		PASS	-

Acq On : 9 Feb 09 10:14 pm Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 22:38 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

DataAcq Meth : VOL

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) FLUOROBENZENE	7.10	96	4424900	50.00	ug/l	0.07
46) CHLOROBENZENE-d5	12.00	117	4963590		ug/l	0.06
69) 1,4-DICHLOROBENZENE-d4	15.76	152	2902634		ug/1	0.07
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.83	113	1463986	55.58	ug/l	0.06
Spiked Amount 50.000			Recovei	ry =	111.16%	
35) TOLUENE-d8	9.59	98	5219612	48.16	ug/l	0.06
Spiked Amount 50.000			Recover	ry =	96.32%	
55) BROMOFLUOROBENZENE	13.95	95	2803111	54.21	ug/l	0.06
Spiked Amount 50.000			Recove	cy =	108.42%	
Target Compounds					Qv	alue
Dichlorodifluoromethane	1.69	85	1903289	51.73		97
Chloromethane	1.87	50	1384056	65.52	ug/l	98
4) Vinyl_Chloride	1.92		1237839		ug/l	92
5) Bromomethane			529214	94.79	ug/1	99
6) Chloroethane	2.23		179130	86.05	ug/l	95
7) Trichlorofluoromethane	2.31	101	447502	106.51	ug/1 #	86
8) 1,1-Dichloroethene	2.78	96	457104	67.99	ug/l	91
9) Carbon Disulfide	2.82	76	1371114	66.37	ug/1 #	85
10) Iodomethane	2.94	142	1127380	97.13	ug/l	93
11) Acetone	3.51	58	103594	199.90	ug/l	66
<pre>12) trans-1,2-Dichloroethene</pre>	3.54	96	645717	69.97	ug/l	93
13) n-Hexane	3.61	57	806144	67.69	ug/l	94
14) Methy-tert-butylether (MTBE	3.73	73	2160962	70.87	ug/l	95
<pre>15) 1,1-Dichloroethane</pre>	4.30	63	1309139	74.45	ug/l	94
16) Acrylonitrile	4.43	53	225313	85.25	ug/l	92
<pre>17) Vinyl_Acetate</pre>	4.70	43	2027136	92.59	ug/l	100
18) cis-1,2-Dichloroethene	5.09	96	1044263	62.88	ug/l	93
<pre>19) 2,2-Dichloropropane</pre>	5.26	77	2059169	65.40	ug/l	99
20) Bromochloromethane	5.40	128	635070	55.19	ug/1 #	82
21) Chloroform	5.54	83	2336103	57.68	ug/l	96
<pre>22) Carbon_Tetrachloride</pre>	5.71	117	2318058	67.67	ug/l	98
24) 1,1,1-Trichloroethane	5.84	97	2385925	59.14	ug/l	96
25) 2-Butanone	6.12	72	341605	127.03	ug/l	82
26) 1,1-Dichloropropene	6.03	75	1862863	54.85	ug/l	96
27) Benzene	6.43	78	4564763	49.56	ug/1	100
28) 1,2-Dichloroethane	6.78	62	2389476	63.81	ug/l	99
29) Trichloroethene	7.36	95	1387428	51.75	ug/l	97
30) Dibromomethane	8.02		1024441		ug/1 #	77

Data File : C:\HPCHEM\2\DATA\V020909\V0209020.D Vial: 1

Acq On : 9 Feb 09 10:14 pm Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 9 22:38 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
31)	1,2-Dichloropropane	8.19	63	1253670	45.05 ug/1	99
32)	Bromodichloromethane	8.30	83	2350350	52.70 ug/l	
33)	2-Chloroethylvinylether	9.67	63	665262	57.59 ug/1	
34)	cis-1,3-Dichloropropene	9.30	75	2727572	48.95 ug/1	92
36)	Toluene	9.66	92	3858916	44.99 ug/1	99
37)	Tetrachloroethene	10.24	164	1750382	36.89 ug/1	92
38)	4-Methyl-2-pentanone	10.34	100	664649	101.11 ug/1	84
39)	trans-1,3-Dichloropropene	10.34	75	2682298	52.64 ug/l	94
40)	1,1,2-Trichloroethane	10.58	83	1130798	47.07 ug/l	99
41)	Ethyl_methacrylate	10.67	69	1032874	47.40 ug/l	94
42)	Dibromochloromethane	10.84	129	2338899	53.46 ug/l	99
43)	1,3-Dichloropropane	11.00	76	2756400	47.77 ug/l	100
44)	1,2-Dibromoethane	11.18	107	1721608	47.43 ug/1	99
45)	2-Hexanone	11.65	43	3539333	113.00 ug/1	94
47)	Chlorobenzene	12.03	112	5297821	48.51 ug/1	99
48)	Ethylbenzene	12.10	91	8391534	49.27 ug/l	100
49)	1,1,1,2-Tetrachloroethane	12.14	131	2149105	48.92 ug/l	97
50)	Xylene, m+p	12.34	106	6372658	88.79 ug/l	90
51)	Xylene, o	13.01	106	3496477	46.05 ug/l	99
52)	Styrene	13.10	104	5759347	47.78 ug/l	90
53)	Bromoform	13.10	173	1578331	48.21 ug/1	99
54)	Isopropylbenzene	13.52	105	9443846	49.83 ug/l	96
56)	Bromobenzene	14.10	156	2514659	45.60 ug/l	89
	n-Propylbenzene	14.19	91	10333381	49.15 ug/l	97
58)	1,1,2,2-Tetrachloroethane	14.32	83	2036761	47.61 ug/1	99
59)	2-Chlorotoluene	14.41	91	6195906	51.80 ug/l	98
60)	1,3,5-Trimethylbenzene	14.53	105	7322477	50.83 ug/l	99
61)	1,2,3-Trichloropropane	14.69	75	228984	49.93 ug/l	100
62)	trans-1,4-Dichloro-2-buten	14.60	53	735519	59.52 ug/l	90
	4-Chlorotoluene	14.69	91	6457102	52.44 ug/l	
	tert-Butylbenzene	15.03	119	8419780	51.43 ug/1	
	1,2,4-Trimethylbenzene	15.15	105	7597276	50.64 ug/l	
	sec-Butylbenzene	15.32		11047608	51.03 ug/1	
	4-Isopropyltoluene	15.57	119	9316985	50.52 ug/1	
	1,3-Dichlorobenzene	15.64	146	4766666	46.76 ug/l	
	1,4-Dichlorobenzene	15.79	146	4814441	48.68 ug/l	
	n-Butylbenzene	16.26	91	8164422	54.31 ug/1	
	1,2-Dichlorobenzene	16.47	146	4534956	48.18 ug/1	
	1,2-Dibromo-3-chloropropan	17.82	75	394810	53.57 ug/1	
•	Hexachlorobutadiene	18.94	225	1897497	49.40 ug/1	
75)	1,2,4-Trichlorobenzene	18.97	180	3713671	47.67 ug/l	99

Vial: 1

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209020.D

Acq On : 9 Feb 09 10:14 pm Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25u1 Multiplr: 1.00

MS Integration Params: events.e

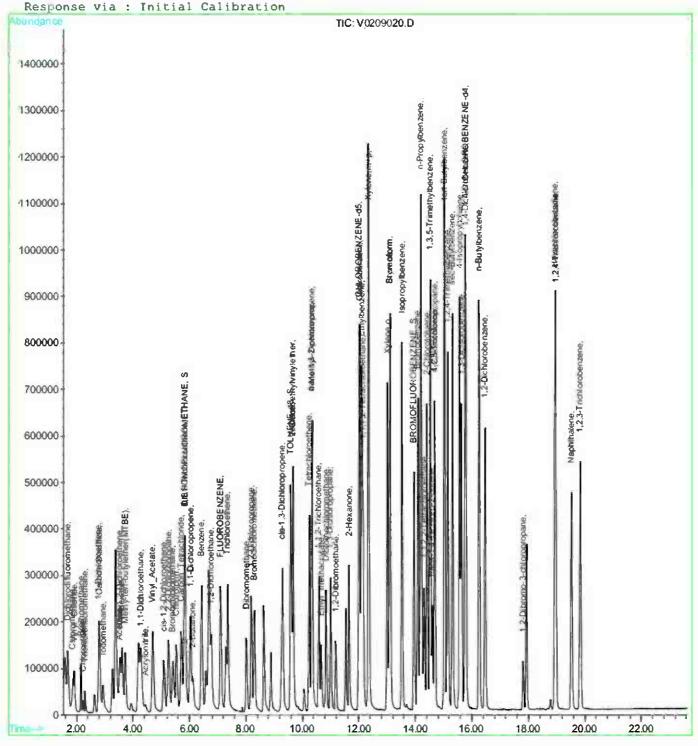
Quant Time: Feb 9 22:38 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
76)	Naphthalene	19.53	128	7424470	46.84 ug/l	100
771	1.2.3-Trichlorobenzene	19.84	180	3295058	45.80 ug/1	99

Data File : C:\HPCHEM\2\DATA\V020909\V0209020,D


9 Feb 09 10:14 pm Operator: Stan Hunnicutt

Sample : CCV VOC : GC/MS Ins Multiplr: 1,00 : VOL196 25ul

MS Integration Params: events.e

Quant Time: Feb 9 22:38 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\VOL,M (Chemstation Integrator)

Vial: 3

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V020909\V0209022.D

Acq On : 9 Feb 09 11:15 pm Operator: Stan Hunnicutt

MS Integration Params: events.e

Quant Time: Feb 10 10:30 19109 Quant Results File: VOL.RES

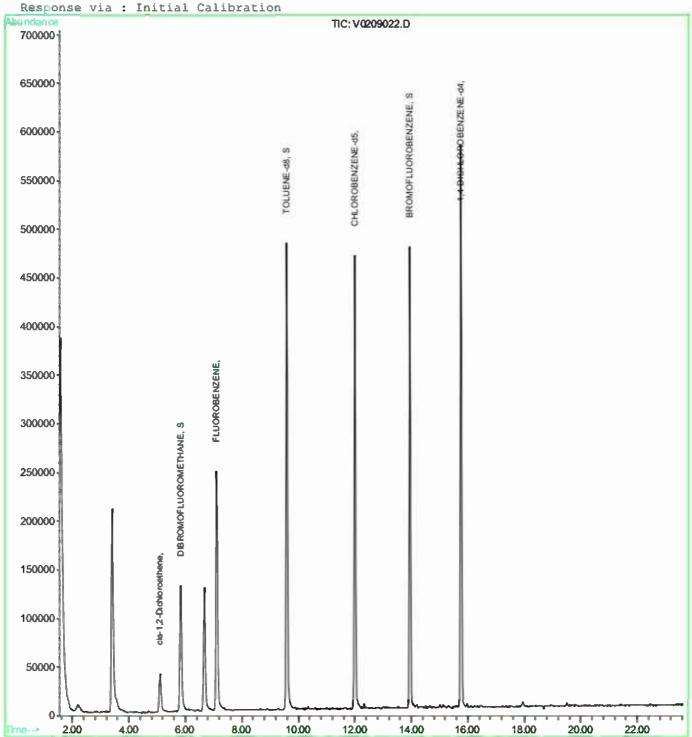
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) FLUOROBENZENE	7.11	96	4350079	50.00	ug/1	0.07
46) CHLOROBENZENE-d5	12.00	117	4590375	50.00	ug/l	0.06
69) 1,4-DICHLOROBENZENE-d4	15.75	152	2804707	50.00	ug/l	0.05
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.83	113	1650271	63.73	ug/l	0.06
Spiked Amount 50.000			Recove	ry =	127.46%	;
35) TOLUENE-d8	9.59	98	5222470	49.02	ug/l	0.06
Spiked Amount 50.000			Recove	ry =	98.04%	:
55) BROMOFLUOROBENZENE	13.94	95	2507274	52.43	ug/1	0.06
Spiked Amount 50.000			Recove	ry =	104.86%	;
Target Compounds					Qv	alue
18) cis-1,2-Dichloroethene	5.11	96	429663	26.57	ug/l	99

Quantitation Report

Data File: C:\HPCHEM\2\DATA\V020909\V0209022.D Vial: 3


Acq On : 9 Feb 09 11:15 pm Operator: Stan Hunnicutt
Sample : w09-0096 500ul/5ml H2O Inst : GC/MS Ins

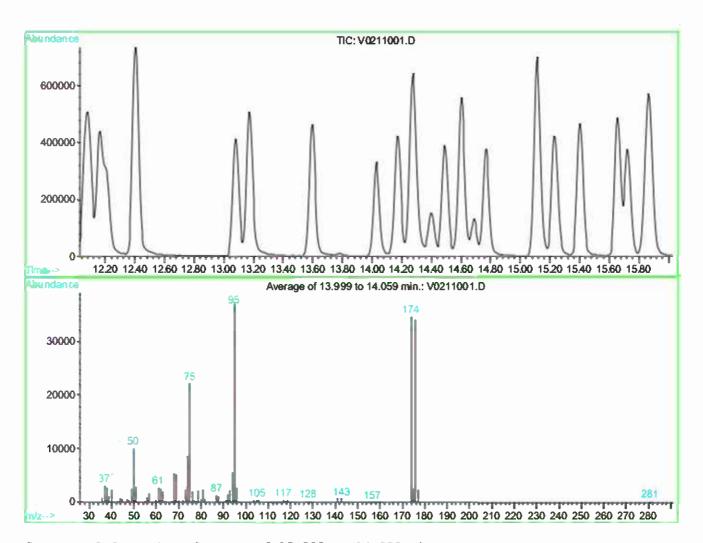
Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 10 10:30 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Data File : C:\HPCHEM\2\DATA\V021109\V0211001.D


Acq On : 11 Feb 09 2:53 pm Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25ul Multiplr: 1.00

MS Integration Params: events.e

Method : C:\HPCHEM\2\METHODS\GRO.M (Chemstation Integrator)

Title : GRO

Spectrum Information: Average of 13.999 to 14.059 min.

	Target Mass	1	Rel. to Mass	1	Lower Limit%	I	Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
	50		95	1	15		40		27.0	ı	10037		PASS	
	75	-	95	1	30	-	60		59.6		22178		PASS	
	95		95		100	1	100		100.0		37188		PASS	1
	96		95		5		9		7.1		2638		PASS	
	173		174		0.00		2		0.0		0		PASS	
	174		95		50		100		93.2		34644		PASS	
	175		174		5		9		7.1		2469		PASS	
	176		174		95		101		98.3		34055		PASS	
	177	-	176		5	-	9	1	6.6	-	2256	-	PASS	-

-

Data File : C:\HPCHEM\2\DATA\V021109\V0211001.D Vial: 1

Acq On : 11 Feb 09 2:53 pm Operator: Stan Hunnicutt
Sample : CCV VOC Inst : GC/MS Ins

 Sample
 : CCV VOC
 Inst : GC/MS

 Misc
 : VOL196 25ul
 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 15:17 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

DataAcq Meth : VOL

Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev(Min)
1) FLUOROBENZENE	7.13	96	2052727	50.00	ug/1	0.09
46) CHLOROBENZENE-d5	12.07	117	2708910	50.00		0.13
69) 1,4-DICHLOROBENZENE-d4	15.85		1523789	50.00		0.16
System Monitoring Compounds						
23) DIBROMOFLUOROMETHANE	5.85	113	781686	63.97	ug/1	0.08
Spiked Amount 50.000			Recove		~	
35) TOLUENE-d8	9.63	98		-	ug/l	
Spiked Amount 50.000			Recove		-	
55) BROMOFLUOROBENZENE	14.03	95		59.57	ug/1	0.14
Spiked Amount 50.000			Recove		-	4%
Target Compounds						Ovalue
2) Dichlorodifluoromethane	1.69	85	1458500	85.46	ug/l	99
3) Chloromethane	1.88	50	938322	95.75		98
4) Vinyl Chloride	1.92	62	941366	127.15		95
5) Bromomethane	2.16	94	552579	213.36	ug/1	98
6) Chloroethane	2.23	64	195367	213.43		100
7) Trichlorofluoromethane	2.31	101	369887	204.99	ug/l	98
8) 1,1-Dichloroethene	2.68	96	160603	51.49	ug/1	# 75
9) Carbon Disulfide	2.69		636111	66.38	ug/1	97
10) Iodomethane	2.83	142	604633	112.29	ug/1	# 79
11) Acetone	3.53		147352	612.91	ug/1	85
12) trans-1,2-Dichloroethene	3.49	96	412658	96.39	ug/1	84
13) n-Hexane	3.54	57	541850	98.07	ug/1	98
14) Methy-tert-butylether (MTBE	3.74	73	1725309	121.97	ug/1	100
<pre>15) 1,1-Dichloroethane</pre>	4.28	63	1015491	124.49	ug/l	96
16) Acrylonitrile	4.46	53	129394	106.41	ug/l	# 61
<pre>17) Vinyl_Acetate</pre>	4.73	43	1709172	168.29	ug/l	100
18) cis-1,2-Dichloroethene	5.10	96	520229	67.49	ug/l	# 71
<pre>19) 2,2-Dichloropropane</pre>	5.26	77	1549131	106.07	ug/l	94
20) Bromochloromethane	5.42	128	320969	60.13	ug/1	# 74
21) Chloroform	5.55	83	1352716	72.00	ug/l	98
<pre>22) Carbon_Tetrachloride</pre>	5.71	117	1544423	97.19	ug/l	98
24) 1,1,1-Trichloroethane	5.84	97	1612553	86.16	ug/l	98
25) 2-Butanone	6.19	72	118180	94.74	ug/l	# 1
26) 1,1-Dichloropropene	6.04	75	971383	61.66	ug/l	# 93
27) Benzene	6.45	78	1947711	45.58	ug/l	100
28) 1,2-Dichloroethane	6.81	62	1680451	96.74	ug/l	# 90
29) Trichloroethene	7.39	95	819612	66.33	~	86
30) Dibromomethane	8.06		616943	70.36	-	85

Data File : C:\HPCHEM\2\DATA\V021109\V0211001.D Vial: 1

Acq On : 11 Feb 09 2:53 pm Operator: Stan Hunnicutt

Sample : CCV VOC Misc : VOL196 25ul Inst : GC/MS Ins Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 15:17 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009 Response via : Initial Calibration

31 1,2-Dichloropropane 8.23 63 664527 51.48 ug/1 98 32 Bromodichloromethane 8.35 83 1625892 78.58 ug/1 98 33 2-Chloroethylvinylether 9.71 63 466930 87.13 ug/1 82 34 cis=1,3-bichloropropene 9.35 75 1632943 63.17 ug/1 87 76 76 76 76 76 76 77 7		Compound	R.T.	QIon	Response	Conc Unit	Q	value
32 Bromodichloromethane	31)	1,2-Dichloropropane	8.23	63	664527	51.48 ug/	1	96
33) 2-Chloroethylvinylether 34) cis-1,3-Dichloropropene 9.35			8.35	83	1625892	_		98
34 cis-1,3-Dichloropropene 9.35 75 1632943 63.17 ug/l # 76 36 Toluene 9.72 92 1975987 49.66 ug/l 99 99 38 4-Methyl-2-pentanone 10.40 100 354147 116.13 ug/l 72 73 trans-1,3-Dichloropropene 10.40 75 1793221 75.86 ug/l # 83 4-Methyl-2-pentanone 10.40 75 1793221 75.86 ug/l # 83 4-Methyl-methacrylate 10.73 69 591198 58.48 ug/l 99 41 Ethyl_methacrylate 10.73 69 591198 58.48 ug/l 93 42 Dibromochloromethane 10.90 129 1496159 73.71 ug/l 99 43 1,3-Dichloropropane 11.06 76 1529215 57.13 ug/l 98 44 1,2-Dibromoethane 11.24 107 979960 58.19 ug/l 94 45 2-Hexanone 11.73 43 1921190 132.22 ug/l 89 47 Chlorobenzene 12.09 112 2799637 46.97 ug/l 93 48 Ethylbenzene 12.16 91 4744976 51.05 ug/l 95 49 1,1,1,2-Tetrachloroethane 12.21 131 1431467 59.71 ug/l 94 45 25 25 25 25 25 25 2	33)	2-Chloroethylvinylether	9.71	63		~		82
36) Toluene 9.72 92 1975987 49.66 ug/l 99 37) Tetrachloroethene 10.30 164 1112183 50.52 ug/l 91 38) 4-Methyl-2-pentanone 10.41 100 354147 116.13 ug/l 72 39) trans-1,3-Dichloropropene 10.40 75 1793221 75.86 ug/l \$83 40) 1,1,2-Trichloroethane 10.65 83 596072 53.49 ug/l 99 41) Ethyl_methacrylate 10.73 69 591198 58.48 ug/l 99 42) Dibromochloromethane 10.90 129 1496159 73.71 ug/l 99 43) 1,3-Dichloropropane 11.06 76 1529215 57.13 ug/l 99 44) 1,2-Dibromoethane 11.24 107 979960 58.19 ug/l 94 45) 2-Hexanone 11.73 43 1921190 132.22 ug/l 89 47) Chlorobenzene 12.09 112 2799637 46.97 ug/l 93 48) Ethylbenzene 12.16 91 4744976 51.05 ug/l 95 49) 1,1,1,2-Tetrachloroethane 12.21 131 1431467 59.71 ug/l 94 49) 1,1,1,2-Tetrachloroethane 12.21 131 1431467 59.71 ug/l 93 51) Xylene, m=p 13.18 173 1068471 59.80 ug/l 93 53) Bromoform 13.18 173 1068471 59.80 ug/l 100 54) Isopropylbenzene 13.60 105 5364432 51.87 ug/l 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/l 92 56) Bromobenzene 14.47 156 1466881 48.74 ug/l 92 56) Bromobenzene 14.49 91 3433621 52.60 ug/l 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 97 59) 2-Chlorotoluene 14.69 53 494485 73.32 ug/l \$64 63) 4-Chlorotoluene 15.51 119 4553038 50.96 ug/l 92 60) 1,3,5-Trimethylbenzene 15.23 105 413796 50.54 ug/l 92 66) sec-Butylbenzene 15.51 119 4553038 50.96 ug/l 98 68) 1,2,4-Trimethylbenzene 15.52 105 413796 50.54 ug/l 99 68) 1,2,4-Trimethylbenzene 15.66 119 4960417 49.29 ug/l 95 68) 1,2-Dichlorobenzene 15.66 119 4960417 49.29 ug/l 95 68) 1,3-Dichlorobenzene 15.88 146 242762 346.76 ug/l \$9 71) n-Butylbenzene 15.86 149 4960417 49.29 ug/l 95 68) 1,3-Dichlorobenzene 15.88 146 242763 46.90 ug/l \$9 71) n-Butylbenzene 15.87 146 2324309 47.04 ug/l \$9 72) 1,2-Dichlorobenzene 15.88 146 242763 46.90 ug/l \$9 73) 1,2-Dichlorobenzene 15.72 146 238426 34.00 ug/l \$9 73) 1,2-Dichlorobenzene 15.73 15.51 1990 69.18 ug/l \$9 73) 1,2-Dichlorobenzene 15.74 166 2354309 47.04 ug/l \$9 73) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/l \$9 740 1,2-Dichlor			9.35	75	1632943	63.17 ug/	1 #	76
38			9.72	92	1975987	_		99
39) trans-1,3-Dichloropropene	37)	Tetrachloroethene	10.30	164	1112183	50.52 ug/	1	91
39) trans-1,3-Dichloropropene	38)	4-Methyl-2-pentanone	10.41	100	354147	116.13 ug/	1	72
### A11	39)	trans-1,3-Dichloropropene	10.40	75	1793221			83
42) Dibromochloromethane 42) Dibromochloromethane 43) 1,3-Dichloropropane 44) 1,2-Dibromoethane 44) 1,2-Dibromoethane 44) 1,2-Dibromoethane 45) 2-Hexanone 47) Chlorobenzene 47) Chlorobenzene 48) Ethylbenzene 49) 1,1,1,2-Tetrachloroethane 40) 1,1,1,2-Tetrachloroethane 41) 1,24 107 43) 1921190 44) 1,1,1,2-Tetrachloroethane 42,11 131 1431467 43,13 1431467 44,14,14,2-Tetrachloroethane 45,14,14,2-Tetrachloroethane 46,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,16,	40)	1,1,2-Trichloroethane	10.65	83	596072	53.49 ug/	1	99
43) 1,3-Dichloropropane	41)	Ethyl_methacrylate	10.73	69	591198	58.48 ug/	1	93
44) 1,2-Dibromoethane	42)	Dibromochloromethane	10.90	129	1496159	73.71 ug/	1	99
45) 2-Hexanone	43)	1,3-Dichloropropane	11.06	76	1529215	57.13 ug/	1	98
47) Chlorobenzene 12.09 112 2799637 46.97 ug/l 93 48) Ethylbenzene 12.16 91 4744976 51.05 ug/l 95 49) 1,1,1,2-Tetrachloroethane 12.21 131 1431467 59.71 ug/l 94 50) Xylene,m+p 12.41 106 3253833 83.07 ug/l 93 51) Xylene,o 13.08 106 1797815 43.38 ug/l 84 52) Styrene 13.17 104 2771012 42.12 ug/l 93 53) Bromoform 13.18 173 1068471 59.80 ug/l 100 54) Isopropylbenzene 13.60 105 5364432 51.87 ug/l 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/l 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105 <	44)	1,2-Dibromoethane	11.24	107	979960	58.19 ug/	1	94
## 12.16 91 4744976 51.05 ug/1 95 ## 1,1,1,2-Tetrachloroethane 12.21 131 1431467 59.71 ug/1 94 ## 50) Xylene,m+p 12.41 106 3253833 83.07 ug/1 93 ## 51) Xylene,o 13.08 106 1797815 43.38 ug/1 84 ## 52) Styrene 13.17 104 2771012 42.12 ug/1 93 ## 53) Bromoform 13.60 105 5364432 51.87 ug/1 92 ## 56) Bromobenzene 14.17 156 1466881 48.74 ug/1 91 ## 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/1 95 ## 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/1 97 ## 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/1 92 ## 60 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/1 93 ## 61 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/1 100 ## 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/1 # 64 ## 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/1 92 ## 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 ## 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/1 92 ## 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 ## 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 ## 68) 1,3-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 95 ## 70) 1,4-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 ## 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 ## 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99	45)	2-Hexanone	11.73	43	1921190	132.22 ug/	1	89
49) 1,1,1,2-Tetrachloroethane 12.21 131 1431467 59.71 ug/1 94 50) Xylene,m+p 12.41 106 3253833 83.07 ug/1 93 51) Xylene,o 13.08 106 1797815 43.38 ug/1 84 52) Styrene 13.17 104 2771012 42.12 ug/1 93 53) Bromoform 13.18 173 1068471 59.80 ug/1 100 54) Isopropylbenzene 13.60 105 5364432 51.87 ug/1 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/1 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/1 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/1 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/1 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692	47)	Chlorobenzene	12.09	112	2799637	46.97 ug/	1	93
50) Xylene,m+p 12.41 106 3253833 83.07 ug/l 93 51) Xylene,o 13.08 106 1797815 43.38 ug/l 84 52) Styrene 13.17 104 2771012 42.12 ug/l 93 53) Bromoform 13.18 173 1068471 59.80 ug/l 100 54) Isopropylbenzene 13.60 105 5364432 51.87 ug/l 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/l 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 95 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105	48)	Ethylbenzene	12.16	91	4744976	51.05 ug/	1	95
51) Xylene, o 13.08 106 1797815 43.38 ug/l 84 52) Styrene 13.17 104 2771012 42.12 ug/l 93 53) Bromoform 13.18 173 1068471 59.80 ug/l 100 54) Isopropylbenzene 13.60 105 5364432 51.87 ug/l 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/l 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/l 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/l 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/l 92 64) tert-Butylbenzene 15.11 119 <td< td=""><td>49)</td><td>1,1,1,2-Tetrachloroethane</td><td>12.21</td><td>131</td><td>1431467</td><td>59.71 ug/</td><td>1</td><td>94</td></td<>	49)	1,1,1,2-Tetrachloroethane	12.21	131	1431467	59.71 ug/	1	94
52) Styrene 13.17 104 2771012 42.12 ug/1 93 53) Bromoform 13.18 173 1068471 59.80 ug/1 100 54) Isopropylbenzene 13.60 105 5364432 51.87 ug/1 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/1 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/1 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/1 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/1 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/1 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/1 # 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/1 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 65) 1,2,4-Trimethylbenzene 15.40 105 <td< td=""><td>50)</td><td>Xylene, m+p</td><td>12.41</td><td>106</td><td>3253833</td><td>83.07 ug/</td><td>1</td><td>93</td></td<>	50)	Xylene, m+p	12.41	106	3253833	83.07 ug/	1	93
53) Bromoform 13.18 173 1068471 59.80 ug/l 100 54) Isopropylbenzene 13.60 105 5364432 51.87 ug/l 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/l 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/l 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/l # 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/l 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/l 98 65) 1,2,4-Trimethylbenze	51)	Xylene, o	13.08	106	1797815	43.38 ug/	1	84
54) Isopropylbenzene 13.60 105 5364432 51.87 ug/l 92 56) Bromobenzene 14.17 156 1466881 48.74 ug/l 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/l 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/l 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/l 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/l 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/l 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/l 94 67) 4-Isopropyltoluene 15.66 <td>52)</td> <td>Styrene</td> <td>13.17</td> <td>104</td> <td>2771012</td> <td>42.12 ug/</td> <td>1</td> <td>93</td>	52)	Styrene	13.17	104	2771012	42.12 ug/	1	93
56) Bromobenzene 14.17 156 1466881 48.74 ug/l 91 57) n-Propylbenzene 14.27 91 5574788 48.59 ug/l 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/l 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/l 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/l 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/l 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/l 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/l 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/l 95 68) 1,3-Dichlorobenzene 15.88<	53)	Bromoform	13.18	173	1068471	59.80 ug/	1	100
57) n-Propylbenzene 14.27 91 5574788 48.59 ug/1 95 58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/1 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/1 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/1 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/1 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/1 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/1 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene	54)	Isopropylbenzene	13.60	105	5364432	51.87 ug/	1	92
58) 1,1,2,2-Tetrachloroethane 14.40 83 1006016 43.09 ug/l 97 59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/l 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/l 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/l 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/l 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/l 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/l 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/l 95 68) 1,3-Dichlorobenzene 15.88 146 2427623 46.76 ug/l 92 71) n-Butylbenzene	56)	Bromobenzene	14.17	156	1466881	48.74 ug/	1	91
59) 2-Chlorotoluene 14.49 91 3433621 52.60 ug/l 92 60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/l 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/l 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/l 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/l 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/l 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/l 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/l 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/l 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/l 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/l 92 71) n-Butylbenzene	57)	n-Propylbenzene	14.27	91	5574788	48.59 ug/	1	95
60) 1,3,5-Trimethylbenzene 14.61 105 4128692 52.52 ug/1 93 61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/1 # 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/1 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/1 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99	58)	1,1,2,2-Tetrachloroethane	14.40	83	1006016	43.09 ug/	1	97
61) 1,2,3-Trichloropropane 14.76 75 181963 72.70 ug/1 100 62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/1 # 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/1 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/1 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99	59)	2-Chlorotoluene		91	3433621	52.60 ug/	1	92
62) trans-1,4-Dichloro-2-buten 14.69 53 494485 73.32 ug/1 # 64 63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/1 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/1 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99	60)	1,3,5-Trimethylbenzene	14.61	105	4128692	52.52 ug/	1	93
63) 4-Chlorotoluene 14.77 91 3526115 52.47 ug/1 92 64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/1 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99	61)	1,2,3-Trichloropropane	14.76	75	181963	72.70 ug/	1	100
64) tert-Butylbenzene 15.11 119 4553038 50.96 ug/1 98 65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/1 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99	62)	trans-1,4-Dichloro-2-buten	14.69	53	494485	73.32 ug/	1 #	64
65) 1,2,4-Trimethylbenzene 15.23 105 4137796 50.54 ug/l 92 66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/l 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/l 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/l 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/l # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/l 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/l # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/l # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/l 99	63)	4-Chlorotoluene			3526115	52.47 ug/	1	92
66) sec-Butylbenzene 15.40 105 5626660 47.62 ug/1 94 67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99		=	15.11	119	4553038	~		98
67) 4-Isopropyltoluene 15.66 119 4960417 49.29 ug/1 95 68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99			15.23	105	4137796	50.54 ug/	1	
68) 1,3-Dichlorobenzene 15.72 146 2388426 42.93 ug/1 95 70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/1 # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/1 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99		_	15.40	105	5626660	47.62 ug/	1	94
70) 1,4-Dichlorobenzene 15.88 146 2427623 46.76 ug/l # 92 71) n-Butylbenzene 16.35 91 4199436 53.22 ug/l 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/l # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/l # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/l 99						~		
71) n-Butylbenzene 16.35 91 4199436 53.22 ug/l 96 72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/l # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/l # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/l 99	68)	1,3-Dichlorobenzene	15.72	146	2388426	-		
72) 1,2-Dichlorobenzene 16.57 146 2324309 47.04 ug/1 # 95 73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99		•	15.88			-		
73) 1,2-Dibromo-3-chloropropan 17.93 75 251597 65.03 ug/1 # 73 74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99		4				-		
74) Hexachlorobutadiene 19.07 225 1395190 69.18 ug/1 99		•				~		
						-		
75) 1,2,4-Trichlorobenzene 19.10 180 2209671 54.03 ug/1 99						~		
	75)	1,2,4-Trichlorobenzene	19.10	180	2209671	54.03 ug/	1	99

Vial: 1

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211001.D

Acq On : 11 Feb 09 2:53 pm Operator: Stan Hunnicutt

Sample : CCV VOC Inst : GC/MS Ins Misc : VOL196 25u1 Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 15:17 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260
Last Update : Tue Jan 27 12:47:25 2009
Response via : Initial Calibration

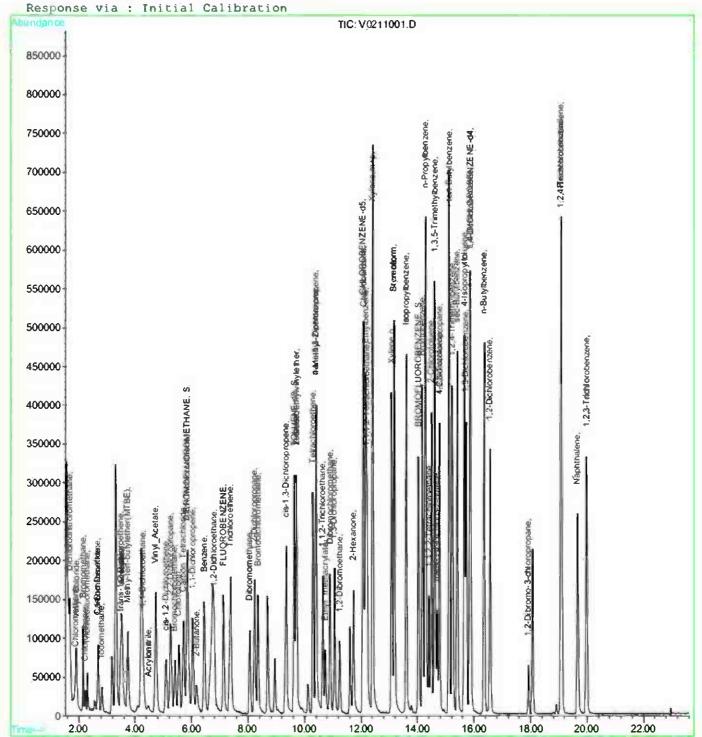
	Compound	R.T.	QIon	Response	Conc Unit	Qvalue		
76)	Naphthalene	19.66	128	4060059	48.79 ug/l	100		
771	1.2.3-Trichlorobenzene	19.98	180	2027938	53.69 ug/1	99		

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211001,D

Operator: Stan Hunnicutt : 11 Feb 09 2:53 pm

Sample : CCV VOC : GC/MS Ins : VOL196 25ul Multiplr: 1,00


MS Integration Params: events.e

Quant Time: Feb 11 15:17 19109 Quant Results File: VOL, RES

Method : C:\HPCHEM\2\METHODS\GRO,M (Chemstation Integrator)

Title : GRO

Last Update : Sun Jan 18 10:29:09 2009

Vial: 3

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211003.D

Acq On : 11 Feb 09 3:52 pm Operator: Stan Hunnicutt

Sample : s09-0092 5.28g/5ml CH3OH 200ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 16:16 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

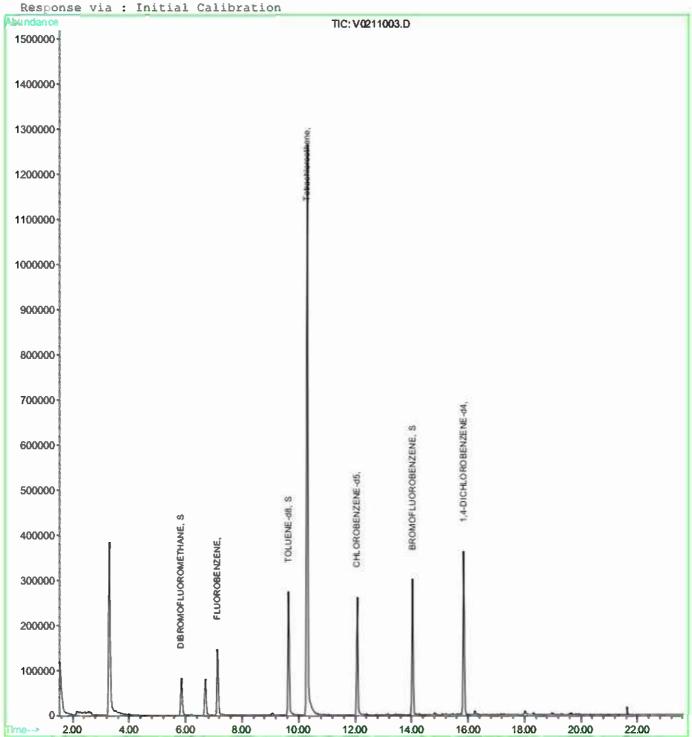
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) FLUOROBENZENE 7.14 96 2053397 50.00 ug/1 0 46) CHLOROBENZENE-d5 12.08 117 2455989 50.00 ug/1 0 69) 1,4-DICHLOROBENZENE-d4 15.84 152 1676076 50.00 ug/1 0 System Monitoring Compounds 23) DIBROMOFLUOROMETHANE 5.86 113 917926 75.09 ug/1 0 Spiked Amount 50.000 Recovery = 150.18% 35) TOLUENE-d8 9.64 98 2709599 53.88 ug/1 0 Spiked Amount 50.000 Recovery = 107.76% 55) BROMOFLUOROBENZENE 14.03 95 1503313 58.76 ug/1 0 Spiked Amount 50.000 Recovery = 117.52%			0.10			
46) CHLOROBENZENE-d5	12.08	117	2455989	50.00	ug/1	0.14
69) 1,4-DICHLOROBENZENE-d4	15.84	152	1676076	50.00	ug/1	0.14
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE 5.86 113 917926 75.09 ug/1 0.09 Spiked Amount 50.000 Recovery = 150.18%						
23) DIBROMOFLUOROMETHANE	5.86	113	917926	75.09	ug/1	0.09
Spiked Amount 50.000			Recove	ry =	150.18%	
35) TOLUENE-d8	9.64	98	2709599	53.88	ug/l	0.12
Spiked Amount 50.000			Recove	ry =	107.76%	
55) BROMOFLUOROBENZENE	14.03	95	1503313	58.76	ug/1	0.14
Spiked Amount 50.000			Recove	ry =	117.52%	
Target Compounds					Qva	alue
37) Tetrachloroethene	FLUOROBENZENE 7.14 96 2053397 50.00 ug/1 0.10 CHLOROBENZENE-d5 12.08 117 2455989 50.00 ug/1 0.14 1,4-DICHLOROBENZENE-d4 15.84 152 1676076 50.00 ug/1 0.14 m Monitoring Compounds DIBROMOFLUOROMETHANE 5.86 113 917926 75.09 ug/1 0.09 ked Amount 50.000 Recovery = 150.18% TOLUENE-d8 9.64 98 2709599 53.88 ug/1 0.12 ked Amount 50.000 Recovery = 107.76% BROMOFLUOROBENZENE 14.03 95 1503313 58.76 ug/1 0.14 ked Amount 50.000 Recovery = 117.52% Qvalue					

Quantitation Report

Data File: C:\HPCHEM\2\DATA\V021109\V0211003.D Vial: 3


Acq On : 11 Feb 09 3:52 pm Operator: Stan Hunnicutt

Sample : s09-0092 5.28g/5ml CH3OH 200ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 16:16 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 4

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211004.D

Acq On : 11 Feb 09 4:22 pm Operator: Stan Hunnicutt

Sample : s09-0093 5.66g/5ml CH3OH 200ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 17:47 19109 Quant Results File: VOL.RES

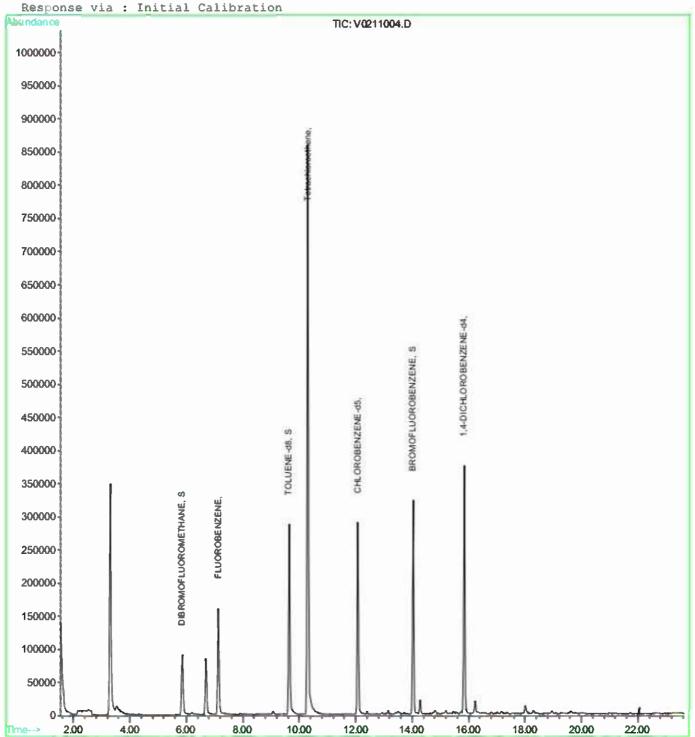
Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

23) DIBROMOFLUOROMETHANE Spiked Amount 50.000 Recovery = 150.54% 35) TOLUENE-d8 Spiked Amount Spiked Amount 50.000 Recovery = 107.42% 55) BROMOFLUOROBENZENE Spiked Amount								
1) FLUOROBENZENE	FLUOROBENZENE 7.14 96 2156882 50.00 ug/1 0.10 CHLOROBENZENE-d5 12.07 117 2652801 50.00 ug/1 0.13 1,4-DICHLOROBENZENE-d4 15.84 152 1775188 50.00 ug/1 0.14 em Monitoring Compounds DIBROMOFLUOROMETHANE 5.86 113 966397 75.27 ug/1 0.09 iked Amount 50.000 Recovery = 150.54% TOLUENE-d8 9.64 98 2837264 53.71 ug/1 0.12 iked Amount 50.000 Recovery = 107.42% BROMOFLUOROBENZENE 14.03 95 1616295 58.49 ug/1 0.14 iked Amount 50.000 Recovery = 116.98% et Compounds							
46) CHLOROBENZENE-d5	12.07	117	2652801	50.00	ug/l	0.13		
69) 1,4-DICHLOROBENZENE-d4	15.84	152	1775188	50.00	ug/l	0.14		
Spiked Amount 50.000 Recovery = 150.54%								
23) DIBROMOFLUOROMETHANE	5.86	113	966397	75.27	ug/l	0.09		
Spiked Amount 50.000			Recove	ry =	150.54%			
35) TOLUENE-d8	9.64	98	2837264	53.71	ug/l	0.12		
Spiked Amount 50.000			2156882 50.00 ug/l 0.10 2652801 50.00 ug/l 0.13 1775188 50.00 ug/l 0.14 966397 75.27 ug/l 0.09 Recovery = 150.54% 2837264 53.71 ug/l 0.12 Recovery = 107.42% 1616295 58.49 ug/l 0.14 Recovery = 116.98%					
55) BROMOFLUOROBENZENE	14.03	95	1616295	58.49	ug/l	0.14		
Spiked Amount 50.000			Recove	ry =	116.98%			
Target Compounds					Qv	alue		
37) Tetrachloroethene	10.30	164	3566403	154.18	ug/l	91		

Data File: C:\HPCHEM\2\DATA\V021109\V0211004.D Vial: 4


Acq On : 11 Feb 09 4:22 pm Operator: Stan Hunnicutt

Sample : s09-0093 5.66g/5ml CH3OH 200ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 17:47 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 5

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211005.D

Acq On : 11 Feb 09 4:52 pm Operator: Stan Hunnicutt

Sample : s09-0095 5.12g/5ml CH3OH 200ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 17:49 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

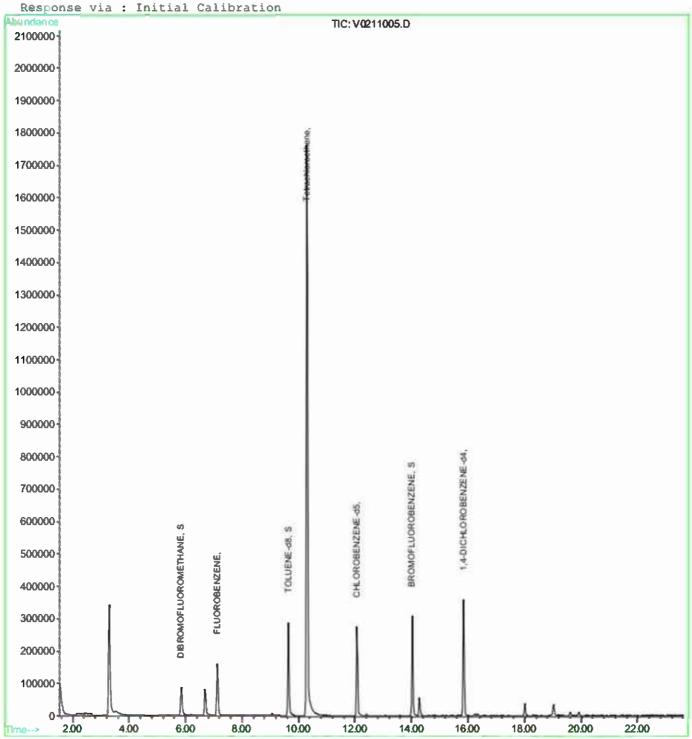
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	its Dev	(Min)			
1) FLUOROBENZENE	7.13	96	2204607	50.00	ug/l	0.09			
46) CHLOROBENZENE-d5	12.07	117	2472120	50.00	ug/l	0.13			
69) 1,4-DICHLOROBENZENE-d4	15.84	152	1669182	50.00	ug/l	0.14			
System Monitoring Compounds 23) DIBROMOFLUOROMETHANE 5.86 113 971143 74.00 ug/1 0.09 Spiked Amount 50.000 Recovery = 148.00%									
23) DIBROMOFLUOROMETHANE	5.86	113	971143	74.00	ug/l	0.09			
Spiked Amount 50.000			Recovei	cy =	148.00%				
35) TOLUENE-d8	9.64	98	2795151	51.77	ug/l	0.12			
Spiked Amount 50.000	103.54%								
55) BROMOFLUOROBENZENE	14.03	95	1507932	58.55	ug/1	0.14			
Spiked Amount 50.000			Recover	cy =	117.10%				
Target Compounds					Qva	lue			
37) Tetrachloroethene	10.30	164	7416401	313.68	ug/l	93			

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211005.D


Acq On : 11 Feb 09 4:52 pm Operator: Stan Hunnicutt

Sample : s09-0095 5.12g/5ml CH3OH 200ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 11 17:49 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 14

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211014.D

Acq On : 11 Feb 09 9:20 pm Operator: Stan Hunnicutt

Sample : s09-0092 5.28g/5ml CH3OH 25ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 12 11:42 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

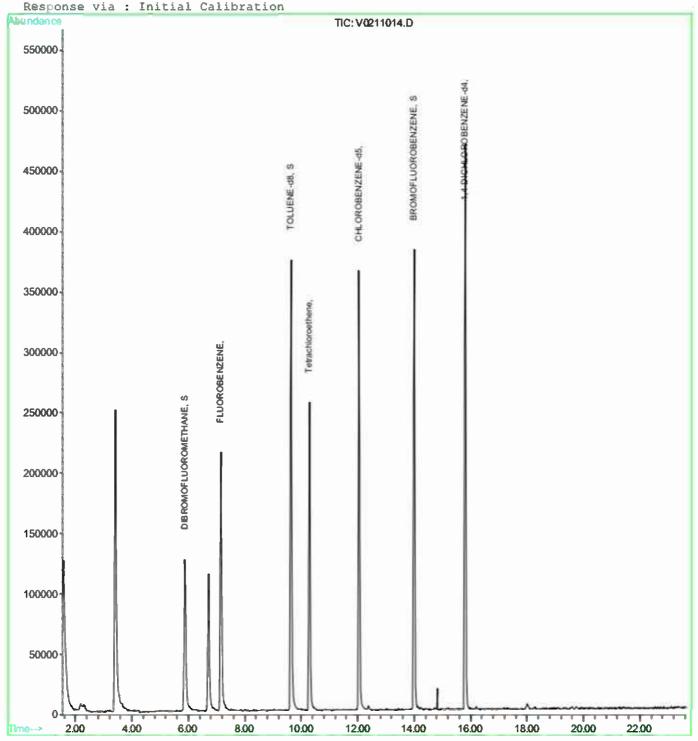
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ut	nits Dev	(Min)		
1) FLUOROBENZENE 7.15 96 3222206 50.00 ug/1 0.12 46) CHLOROBENZENE-d5 12.04 117 3238110 50.00 ug/1 0.10 69) 1,4-DICHLOROBENZENE-d4 15.80 152 2157254 50.00 ug/1 0.10 System Monitoring Compounds 23) DIBROMOFLUOROMETHANE 5.88 113 1498179 78.11 ug/1 0.11 Spiked Amount 50.000 Recovery = 156.22% 35) TOLUENE-d8 9.63 98 3889644 49.29 ug/1 0.11 Spiked Amount 50.000 Recovery = 98.58% 55) BROMOFLUOROBENZENE 13.99 95 1945224 57.66 ug/1 0.10 Spiked Amount 50.000 Recovery = 115.32% Target Compounds					0.12			
· · · · · · · · · · · · · · · · · · ·	12.04	117	3238110	50.00	ug/l	0.10		
69) 1,4-DICHLOROBENZENE-d4	15.80	152	2157254	50.00	ug/l	0.10		
23) DIBROMOFLUOROMETHANE 5.88 113 1498179 78.11 ug/1 0.11 Spiked Amount 50.000 Recovery = 156.22%								
•	5.88	113	1498179	78.11	ug/l	0.11		
Spiked Amount 50.000			Recove	ry =	156.22%			
35) TOLUENE-d8	9.63	98	3889644	49.29	ug/l	0.11		
7 1,4-DICHLOROBENZENE-d4 15.80 152 2157254 50.00 ug/l 0.10 ystem Monitoring Compounds 23) DIBROMOFLUOROMETHANE 5.88 113 1498179 78.11 ug/l 0.11 Spiked Amount 50.000 Recovery = 156.22% 35) TOLUENE-d8 9.63 98 3889644 49.29 ug/l 0.11 Spiked Amount 50.000 Recovery = 98.58% 55) BROMOFLUOROBENZENE 13.99 95 1945224 57.66 ug/l 0.10								
55) BROMOFLUOROBENZENE	13.99	95	1945224	57.66	ug/l	0.10		
Spiked Amount 50.000			Recove	ry =	115.32%			
Target Compounds					Qv	alue		
1) FLUOROBENZENE 7.15 96 3222206 50.00 ug/1 0.12 46) CHLOROBENZENE-d5 12.04 117 3238110 50.00 ug/1 0.10 69) 1,4-DICHLOROBENZENE-d4 15.80 152 2157254 50.00 ug/1 0.10 System Monitoring Compounds 23) DIBROMOFLUOROMETHANE 5.88 113 1498179 78.11 ug/1 0.11 Spiked Amount 50.000 Recovery = 156.22% 35) TOLUENE-d8 9.63 98 3889644 49.29 ug/1 0.11 Spiked Amount 50.000 Recovery = 98.58% 55) BROMOFLUOROBENZENE 13.99 95 1945224 57.66 ug/1 0.10 Spiked Amount 50.000 Recovery = 115.32%								

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211014.D Vial: 14


Acq On : 11 Feb 09 9:20 pm Operator: Stan Hunnicutt

Sample : s09-0092 5.28g/5ml CH3OH 25ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 12 11:42 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 15

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211015.D

Acq On : 11 Feb 09 9:49 pm Operator: Stan Hunnicutt

Sample : s09-0093 5.66g/5ml CH3OH 25ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 12 11:43 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

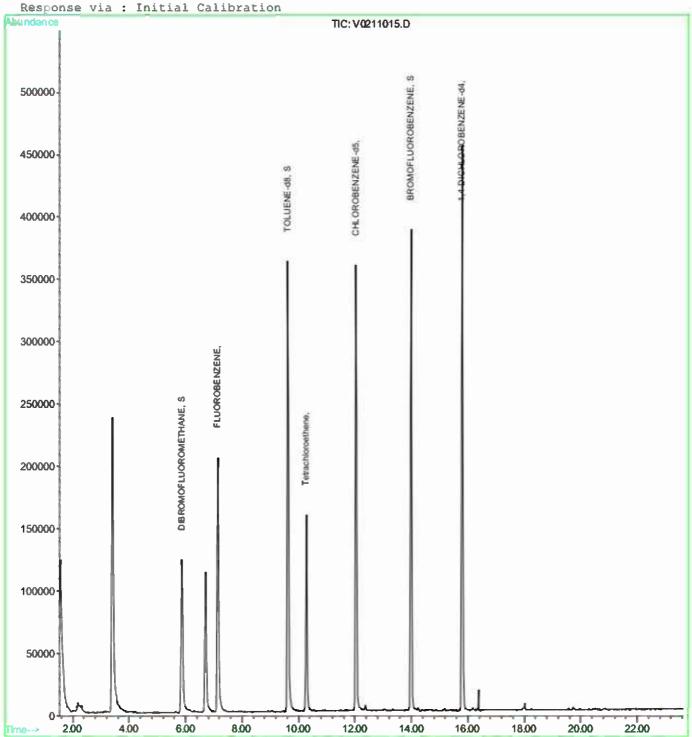
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)		
1) FLUOROBENZENE	FLUOROBENZENE 7.15 96 3000465 50.00 ug/1 0. CHLOROBENZENE-d5 12.04 117 3247316 50.00 ug/1 0. 1,4-DICHLOROBENZENE-d4 15.79 152 2059291 50.00 ug/1 0. em Monitoring Compounds DIBROMOFLUOROMETHANE 5.87 113 1509119 84.49 ug/1 0. ked Amount 50.000 Recovery = 168.98% TOLUENE-d8 9.63 98 3596837 48.95 ug/1 0. ked Amount 50.000 Recovery = 97.90% BROMOFLUOROBENZENE 13.98 95 1955739 57.81 ug/1 0. ked Amount 50.000 Recovery = 115.62%		0.11					
46) CHLOROBENZENE-d5	12.04	117	3247316	50.00	ug/l	0.10		
69) 1,4-DICHLOROBENZENE-d4	15.79	152	2059291	50.00	ug/1	0.09		
System Monitoring Compounds								
23) DIBROMOFLUOROMETHANE	5.87	113	1509119	84.49	ug/1	0.11		
Spiked Amount 50.000			Recove	ry =	168.98%			
35) TOLUENE-d8	9.63	98	3596837	48.95	ug/1	0.10		
Spiked Amount 50.000	12.04 117 3247316 50.00 ug/1 0.10 NE-d4 15.79 152 2059291 50.00 ug/1 0.09 ounds ANE 5.87 113 1509119 84.49 ug/1 0.11 .000 Recovery = 168.98% 9.63 98 3596837 48.95 ug/1 0.10 .000 Recovery = 97.90% E 13.98 95 1955739 57.81 ug/1 0.09 .000 Recovery = 115.62%							
55) BROMOFLUOROBENZENE	13.98	95	1955739	57.81	ug/1	0.09		
Spiked Amount 50.000			Recove	ry =	115.62%			
Target Compounds					Qv	alue		
37) Tetrachloroethene	10.28	164	627140	19.49	ug/1 #	85		

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211015.D Vial: 15


Acq On : 11 Feb 09 9:49 pm Operator: Stan Hunnicutt

Sample : s09-0093 5.66g/5ml CH3OH 25ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 12 11:43 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Vial: 16

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211016.D

Acq On : 11 Feb 09 10:19 pm Operator: Stan Hunnicutt

Sample : s09-0095 5.12g/5ml CH3OH 25ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 12 11:44 19109 Quant Results File: VOL.RES

Quant Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

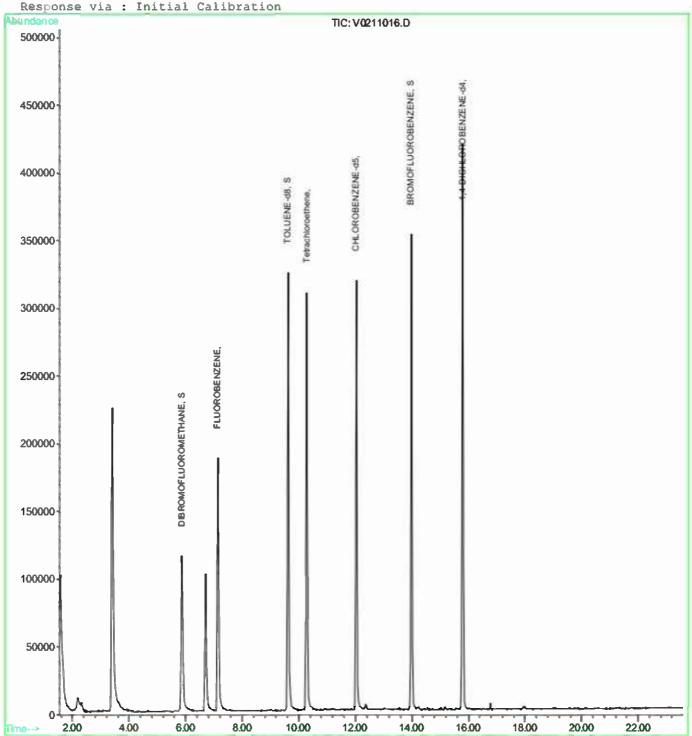
Title : GCMS VOC Method 8260 Last Update : Tue Jan 27 12:47:25 2009

Response via : Initial Calibration

Internal Standards	R.T.	nits Dev	(Min)					
1) FLUOROBENZENE	7.15	7.15 96 2709912 50.00 ug/1						
46) CHLOROBENZENE-d5	12.03	117	2889465	50.00	ug/l	0.09		
69) 1,4-DICHLOROBENZENE-d4	15.79	152	1846908	50.00	ug/l	0.09		
System Monitoring Compounds								
23) DIBROMOFLUOROMETHANE	5.87	113	1323964	82.07	ug/l	0.10		
Spiked Amount 50.000			Recove	ry =	164.14%	;		
35) TOLUENE-d8	9.62	98	3289518	49.56	ug/l	0.10		
Spiked Amount 50.000	ENE-d5 12.03 117 2889465 50.00 ug/1 0.09 ROBENZENE-d4 15.79 152 1846908 50.00 ug/1 0.09 ROBENZENE-d4 15.79 152 1846908 50.00 ug/1 0.09 ROBENZENE 5.87 113 1323964 82.07 ug/1 0.10 Recovery = 164.14% 9.62 98 3289518 49.56 ug/1 0.10 Recovery = 99.12% ROBENZENE 13.98 95 1741996 57.87 ug/1 0.09							
55) BROMOFLUOROBENZENE	13.98	95	1741996	57.87	ug/1	0.09		
Spiked Amount 50.000			Recove	ry =	115.74%			
Target Compounds					Qv	alue		
37) Tetrachloroethene	10.28	164	1196973	41.19	ug/1 #	86		

Quantitation Report

Data File : C:\HPCHEM\2\DATA\V021109\V0211016.D Vial: 16


Acq On : 11 Feb 09 10:19 pm Operator: Stan Hunnicutt

Sample : s09-0095 5.12g/5ml CH3OH 25ul Inst : GC/MS Ins Misc : Multiplr: 1.00

MS Integration Params: events.e

Quant Time: Feb 12 11:44 19109 Quant Results File: VOL.RES

Method : C:\HPCHEM\2\METHODS\VOL.M (Chemstation Integrator)

Sample Preparation Worksheet Percent Solids Analysis Sierra Mobile Labs, Inc.

- 1													_	_			_		_	_	_
	% Total Solids	95.4	95.7	8.96	95.6	96.3	95.4	86.6	83.4	96.0	96.1	87.8	89.3	89.1	95.7	96.4					
	Ws - W _{DISH} (g)	15.12	16.28	15.21	14.92	15.23	15.45	15.93	15.01	15.68	14.94	15.17	16.27	14.86	14.89	15.24					
2/5/2009 12:30	Wr-Woish (g)	14.42	15.58	14.73	14.27	14.67	14.74	13.80	12.52	15.05	14.35	13.32	14.53	13.24	14.25	14.69					
Final Weigh Time:	W _T = Final Mass (g)	15.72	16.87	16.06	15.56	15.96	16.03	15.11	13.81	16.35	15.66	14.61	15.83	14.52	15.55	15.98					
	$W_S = Mass of$ Sample + Boat (g)	16.42	17.57	16.54	16.21	16.52	16.74	17.24	16.30	16.98	16.25	16.46	17.57	16.14	16.19	16.53					
2/5/2009 7:35	W _{DEH} = Mass of Weigh Boat (g)	1.30	1.29	1.33	1.29	1.29	1.29	1.31	1.29	1.30	1.31	1.29	1.30	1.28	1.30	1.29					
Initial Weigh Time:	Weigh Boat ID	×	M	Ξ	7	Ò	Н	D	Ç	P	γ	В	0	z	T	S					
Initial	Sample ID	0600-60	09-0091	09-0092	09-0093	09-0094	09-0095	09-0101	09-0102	09-0103	09-0104	09-0105	09-0106	09-0108	09-0109	09-0110					

Indianapolis, IN 46268

(317)875-5894

February 25, 2009

Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

RE: Project: Michigan Plaza

Pace Project No.: 5023333

Dear Leena Lothe:

Enclosed are the analytical results for sample(s) received by the laboratory on February 13, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raedra Zuckowoth

Phaedra Zucksworth

phaedra.zucksworth@pacelabs.com **Project Manager**

Illinois/NELAC Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky Certification #: 0042 Ohio VAP: CL0065 Pennsylvania: 68-00791

West Virginia Certification #: 330

Endosures

Page 290 Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

SAMPLE SUMMARY

Project Michigan Plaza
Pace Project No.: 5023333

Lab ID	Sample ID	Matrix	Date Collected	Date Received
5023333001	SB-11 (5-6)	Solid	02/13/09 10:00	02/13/09 16:58
5023333002	SB-11 (8-9)	Solid	02/13/09 10:10	02/13/09 16:58
5023333003	SB-11 (12-13))	Solid	02/13/09 10:20	02/13/09 16:58
5023333004	SB-13 (9-10)	Solid	02/13/09 11:55	02/13/09 16:58
5023333005	SB-13 (10-11)	Solid	02/13/09 12:05	02/13/09 16:58
5023333006	SB-13 (17-18)	Solid	02/13/09 12:15	02/13/09 16:58
5023333007	SB-12 (13-14)	Solid	02/13/09 13:10	02/13/09 16:58
5023333008	SB-12 (17-18)	Solid	02/13/09 13:15	02/13/09 16:58
5023333009	SB-12 (18-19)	Solid	02/13/09 13:20	02/13/09 16:58
5023333010	FD-1	Solid	02/13/09 08:00	02/13/09 16:58
5023333011	SB-14 (13-14)	Solid	02/13/09 14:40	02/13/09 16:58
5023333012	SB-14 (16-17)	Solid	02/13/09 14:55	02/13/09 16:58
5023333013	SB-14 (17-18)	Solid	02/13/09 15:00	02/13/09 16:58
5023333014	SB-11	Water	02/13/09 10:45	02/13/09 16:58
5023333015	SB-13	Water	02/13/09 12:30	02/13/09 16:58
5023333016	SB-12	Water	02/13/09 13:30	02/13/09 16:58
5023333017	SB-14	Water	02/13/09 15:10	02/13/09 16:58

Page 291
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

SAMPLE ANALYTE COUNT

Project

Michigan Plaza

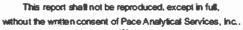
Pace Project No.: 5023333

Lab ID	Sample ID	Method	Analysts	Analytes Reported
5023333001	SB-11 (5-6)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333002	SB-11 (8-9)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333003	SB-11 (12-13))	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333004	SB-13 (9-10)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333005	SB-13 (10-11)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333006	SB-13 (17-18)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333007	SB-12 (13-14)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333008	SB-12 (17-18)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333009	SB-12 (18-19)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333010	FD-1	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333011	SB-14 (13-14)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333012	SB-14 (16-17)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333013	SB-14 (17-18)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023333014	SB-11	EPA 8260	SLB	73
5023333015	SB-13	EPA 8260	SLB	73
5023333016	SB-12	EPA 8260	SLB	73
5023333017	SB-14	EPA 8260	SLB	73

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-11 (5-6) Lab ID: 5023333001 Collected: 02/13/09 10:00 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260)					
Acetone	ND ug/l	kg	104	1		02/14/09 01:31	67-64-1	
Acrolein	ND ug/l	kg	104	1		02/14/09 01:31	107-02-8	
Acrylonitrile	ND ug/l	kg	104	1		02/14/09 01:31	107-13-1	
Benzene	ND ug/l	kg	5.2	1		02/14/09 01:31	71-43-2	
Promobenzene	ND ug/l	kg	5.2	1		02/14/09 01:31	108-86-1	
3romochioromethane	ND ug/l	ka	5.2	1		02/14/09 01:31	74-97-5	
Promodichloromethane	ND ug/l	kg	5.2	1		02/14/09 01:31	75-27-4	
lromoform .	ND ug/	_	5.2	1		02/14/09 01:31	75-25-2	
iromomethane	ND ug/l	_	5.2	1		02/14/09 01:31	74-83-9	
-Butanone (MEK)	ND ug/l	-	26.1	1		02/14/09 01:31		
-Butylbenzene	ND ug/l	_	5.2	1		02/14/09 01:31		
ec-Butylbenzene	ND ug/l	_	5.2	1		02/14/09 01:31		
ert-Butylbenzene	ND ug/l	_	5.2	1		02/14/09 01:31		
Carbon disulfide	ND ug/l	_	10.4	1		02/14/09 01:31		
Carbon tetrachloride	ND ug/l	-	5.2	1		02/14/09 01:31		
Chlorobenzene	ND ug/l		5.2	1		02/14/09 01:31		
Chloroethane	ND ug/l	_	5.2	1		02/14/09 01:31		
hloroform	ND ug/l	_	5.2	1		02/14/09 01:31		
	_	_	5.2	1		02/14/09 01:31		
hloromethane	ND ug/l	-	5.2 5.2	1		02/14/09 01:31		
-Chlorotoluene	ND ug/l	_		•				
-Chlorotoluene	ND ug/i	_	5.2	1		02/14/09 01:31		
ibromochloromethane	ND ug/l	_	5.2	1		02/14/09 01:31		
,2-Dibromoethane (EDB)	ND ug/l	_	5.2	1		02/14/09 01:31		
ibromomethane	ND ug/l	-	5.2	1		02/14/09 01:31		
,2-Dichlorobenzene	ND ug/l	_	5.2	1		02/14/09 01:31		
,3-Dichlorobenzene	ND ug/l	kg	5.2	1		02/14/09 01:31		
,4-Dichlorobenzene	ND ug/l	kg	5.2	1		02/14/09 01:31		
ans-1,4-Dichloro-2-butene	ND ug/i	kg	104	1		02/14/09 01:31	110-57-6	
Pichlorodifluoromethane	ND ug/l	kg	5.2	1		02/14/09 01:31	75-71-8	
,1-Dichloroethane	ND ug/l	kg	5.2	1		02/14/09 01:31	75-34-3	
,2-Dichloroethane	ND ug/l	kg	5.2	1		02/14/09 01:31	107-06-2	
,1-Dichloroethene	ND ug/l	kg	5.2	1		02/14/09 01:31	75-35-4	
is-1,2-Dichloroethene	ND ug/l	kg	5.2	1		02/14/09 01:31	156-59-2	
ans-1,2-Dichloroethene	ND ug/l	kg	5.2	1		02/14/09 01:31	156-60-5	
,2-Dichloropropane	ND ug/l	kg	5.2	1		02/14/09 01:31	78-87-5	
,3-Dichloropropane	ND ug/l	kg	5.2	1		02/14/09 01:31	142-28-9	
,2-Dichloropropane	ND ug/l	kg	5.2	1		02/14/09 01:31	594-20-7	
1-Dichloropropene	ND ug/l	_	5.2	1		02/14/09 01:31	563-58-6	
is-1,3-Dichloropropene	ND ug/l		5.2	1		02/14/09 01:31	10061-01-5	
ans-1,3-Dichloropropene	ND ug/l	-	5.2	1		02/14/09 01:31		
thylbenzene	ND ug/l	_	5.2	1		02/14/09 01:31		
thyl methacrylate	ND ug/l	_	10.4	1		02/14/09 01:31		
exachloro-1,3-butadiene	ND ug/l	_	5.2	1		02/14/09 01:31		
-Hexane	ND ug/l	_	5.2	1		02/14/09 01:31		
-Hexanone	ND ug/l	-	104	1		02/14/09 01:31		
-nexalione odomethane	ND ug/l	_	104	1		02/14/09 01:31		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 4 of 50

Page 293
ce Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5023333

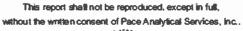
Sample: SB-11 (5-6) Lab ID: 5023333001 Collected: 02/13/09 10:00 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
sopropylberzene (Cumene)	ND ug	/kg	5.2	1		02/14/09 01:31	98-82-8	
p-Isopropyttoluene	ND ug	ı/kg	5.2	1		02/14/09 01:31	99-87-6	
Viethylene chloride	ND ug	/kg	20.9	1		02/14/09 01:31	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	ı/kg	26.1	1		02/14/09 01:31	108-10-1	
Methyl-tert-butyl ether	ND ug	ı/kg	5.2	1		02/14/09 01:31	1634-04-4	
Vaphthalene	ND ug	/kg	5.2	1		02/14/09 01:31	91-20-3	
-Propylbenzene	ND ug	ı/kg	5.2	1		02/14/09 01:31	103-65-1	
Styrene	ND ug	/kg	5.2	1		02/14/09 01:31	100-42-5	
I,1,1,2-Tetrachloroethane	ND ug	ı/kg	5.2	1		02/14/09 01:31	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	ı/kg	5.2	1		02/14/09 01:31	79-34-5	
etrachloroethene	3890 ug	/kg	261	50		02/16/09 14:04	127-18-4	
oluene	ND ug	ı/kg	5.2	1		02/14/09 01:31	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.2	1		02/14/09 01:31	87-61-6	
.2.4-Trichlorobenzene	ND ug	ı/kg	5.2	1		02/14/09 01:31	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.2	1		02/14/09 01:31	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.2	1		02/14/09 01:31	79-00-5	
[richloroethene	25.3 ug	ı/kg	5.2	1		02/14/09 01:31	79-01-6	
[richlorofluoromethane	ND ug	/kg	5.2	1		02/14/09 01:31	75-69-4	
.2.3-Trichloropropane	ND ug	ı/kg	5.2	1		02/14/09 01:31	96-18-4	
,2,4-Trimethylbenzene	ND ug	ı/kg	5.2	1		02/14/09 01:31	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.2	1		02/14/09 01:31	108-67-8	
/inyl acetate	ND ug	/kg	104	1		02/14/09 01:31	108-05-4	
/inyl chloride	ND ug	/kg	5.2	1		02/14/09 01:31	75-01-4	
(ylene (Total)	ND ug	ı/kg	10.4	1		02/14/09 01:31	1330-20-7	
Dibromofluoromethane (S)	99 %		80-124	1		02/14/09 01:31	1868-53-7	
oluene-d8 (S)	101 %		58-145	1		02/14/09 01:31	2037-26-5	
-Bromofluorobenzene (S)	95 %		61-131	1		02/14/09 01:31	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	4.2 %		0.10	1		02/13/09 18:16		

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-11 (8-9) Lab ID: 5023333002 Collected: 02/13/09 10:10 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Method: EPA 82	60					
Acetone	ND ug/kg	104	1		02/14/09 02:08	67-64-1	
Acrolein	ND ug/kg	104	1		02/14/09 02:08	107-02-8	
Acrylonitrile	ND ug/kg	104	1		02/14/09 02:08	107-13-1	
Benzene	ND ug/kg	5.2	1		02/14/09 02:08	71-43-2	
3romobenzene	ND ug/kg	5.2	1		02/14/09 02:08	108-86-1	
3romochloromethane	ND ug/kg	5.2	1		02/14/09 02:08	74-97-5	
3romodichloromethane	ND ug/kg	5.2	1		02/14/09 02:08	75-27-4	
Promoform	ND ug/kg	5.2	1		02/14/09 02:08	75-25-2	
3romomethane	ND ug/kg	5.2	1		02/14/09 02:08	74-83-9	
-Butanone (MEK)	ND ug/kg	26.0	1		02/14/09 02:08		
-Butylbenzene	ND ug/kg	5.2	1		02/14/09 02:08		
ec-Butylbenzene	ND ug/kg	5.2	1		02/14/09 02:08		
ert-Butylbenzene	ND ug/kg	5.2	1		02/14/09 02:08		
Carbon disulfide	ND ug/kg	10.4	1		02/14/09 02:08		
Carbon tetrachloride	ND ug/kg	5.2	1		02/14/09 02:08		
Chlorobenzene	ND ug/kg	5.2	1		02/14/09 02:08		
Chloroethane		5.2	1		02/14/09 02:08		
Chloroform	ND ug/kg	5.2	1		02/14/09 02:08		
Chloromethane	ND ug/kg	5.2	1		02/14/09 02:08		
-Chlorotoluene	ND ug/kg	5.2 5.2	1		02/14/09 02:08		
	ND ug/kg		1				
-Chlorotoluene	ND ug/kg	5.2	•		02/14/09 02:08		
ibromochloromethane	ND ug/kg	5.2	1		02/14/09 02:08		
,2-Dibromoethane (EDB)	ND ug/kg	5.2	1		02/14/09 02:08		
Dibromomethane	ND ug/kg	5.2	1		02/14/09 02:08		
,2-Dichlorobenzene	ND ug/kg	5.2	1		02/14/09 02:08		
,3-Dichlorobenzene	ND ug/kg	5.2	1		02/14/09 02:08		
,4-Dichlorobenzene	ND ug/kg	5.2	1		02/14/09 02:08		
rans-1,4-Dichloro-2-butene	ND ug/kg	104	1		02/14/09 02:08		
Pichlorodifluoromethane	ND ug/kg	5.2	1		02/14/09 02:08		
,1-Dichloroethane	ND ug/kg	5.2	1		02/14/09 02:08	75-34-3	
,2-Dichloroethane	ND ug/kg	5.2	1		02/14/09 02:08	107-06-2	
,1-Dichloroethene	ND ug/kg	5.2	1		02/14/09 02:08	75-35-4	
is-1,2-Dichloroethene	ND ug/kg	5.2	1		02/14/09 02:08	156-59-2	
rans-1,2-Dichloroethene	ND ug/kg	5.2	1		02/14/09 02:08	156-60-5	
,2-Dichloropropane	ND ug/kg	5.2	1		02/14/09 02:08	78-87-5	
,3-Dichloropropane	ND ug/kg	5.2	1		02/14/09 02:08	142-28-9	
,2-Dichloropropane	ND ug/kg	5.2	1		02/14/09 02:08	594-20-7	
,1-Dichloropropene	ND ug/kg	5.2	1		02/14/09 02:08	563-58-6	
is-1,3-Dichloropropene	ND ug/kg	5.2	1		02/14/09 02:08	10061-01-5	
rans-1,3-Dichloropropene	ND ug/kg	5.2	1		02/14/09 02:08	10061-02-6	
Ethylbenzene	ND ug/kg	5.2	1		02/14/09 02:08	100-41-4	
thyl methacrylate	ND ug/kg	10.4	1		02/14/09 02:08	97-63-2	
lexachloro-1,3-butadiene	ND ug/kg	5.2	1		02/14/09 02:08		
-Hexane	ND ug/kg	5.2	1		02/14/09 02:08		
-Hexanone	ND ug/kg	104	1		02/14/09 02:08		
odomethane	ND ug/kg	104	1		02/14/09 02:08		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 50

7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-11 (8-9) Lab ID: 50233333002 Collected: 02/13/09 10:10 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
sopropylberzene (Cumene)	ND ug	/kg	5.2	1		02/14/09 02:08	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.2	1		02/14/09 02:08	99-87-6	
Methylene chloride	ND ug	/kg	20.8	1		02/14/09 02:08	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.0	1		02/14/09 02:08	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.2	1		02/14/09 02:08	1634-04-4	
Naphthalene	ND ug	/kg	5.2	1		02/14/09 02:08	91-20-3	
n-Propylbenzene	ND ug	/kg	5.2	1		02/14/09 02:08	103-65-1	
Styrene	ND ug	/kg	5.2	1		02/14/09 02:08	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.2	1		02/14/09 02:08	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.2	1		02/14/09 02:08	79-34-5	
etrachloroethene	4320 ug	/kg	260	50		02/16/09 14:41	127-18-4	
oluene	ND ug	/kg	5.2	1		02/14/09 02:08	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.2	1		02/14/09 02:08	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.2	1		02/14/09 02:08	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.2	1		02/14/09 02:08	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.2	1		02/14/09 02:08	79-00-5	
richloroethene	34.0 ug	/kg	5.2	1		02/14/09 02:08	79-01-6	
richlorofluoromethane	ND ug	/kg	5.2	1		02/14/09 02:08	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.2	1		02/14/09 02:08	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.2	1		02/14/09 02:08	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.2	1		02/14/09 02:08	108-67-8	
/inyl acetate	ND ug	/kg	104	1		02/14/09 02:08	108-05-4	
/inyl chloride	ND ug	/kg	5.2	1		02/14/09 02:08	75-01-4	
(ylene (Total)	ND ug	/kg	10.4	1		02/14/09 02:08	1330-20-7	
Dibromofluoromethane (S)	93 %		80-124	1		02/14/09 02:08	1868-53-7	
oluene-d8 (S)	102 %		58-145	1		02/14/09 02:08	2037-26-5	
-Bromofluorobenzene (S)	93 %		61-131	1		02/14/09 02:08	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	3.9 %		0.10	1		02/13/09 18:16		

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-11 (12-13)) Lab ID: 5023333003 Collected: 02/13/09 10:20 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260)					
Acetone	ND ug/l	kg	106	1		02/14/09 02:44	67-64-1	
Acrolein	ND ug/l	kg	106	1		02/14/09 02:44	107-02-8	
Acrylonitrile	ND ug/l	kg	106	1		02/14/09 02:44	107-13-1	
Benzene	ND ug/l	kg	5.3	1		02/14/09 02:44	71-43-2	
Promobenzene	ND ug/l	k@	5.3	1		02/14/09 02:44	108-86-1	
3romochioromethane	ND ug/l	kq	5.3	1		02/14/09 02:44	74-97-5	
Promodichloromethane	ND ug/l		5.3	1		02/14/09 02:44	75-27-4	
romoform	ND ug/l	_	5.3	1		02/14/09 02:44	75-25-2	
iromomethane	ND ug/l	_	5.3	1		02/14/09 02:44	74-83-9	
-Butanone (MEK)	ND ug/l	-	26.6	1		02/14/09 02:44		
-Butylbenzene	ND ug/l	_	5.3	1		02/14/09 02:44		
ec-Butylbenzene	ND ug/l	_	5.3	1		02/14/09 02:44		
ert-Butylbenzene	ND ug/l	_	5.3	1		02/14/09 02:44		
Carbon disulfide	ND ug/l	_	10.6	1		02/14/09 02:44		
Carbon tetrachloride	ND ug/l	-	5.3	1		02/14/09 02:44		
Chlorobenzene	ND ug/l	_	5.3	1		02/14/09 02:44		
Chloroethane	ND ug/l	_	5.3	1		02/14/09 02:44		
Chloroform	ND ug/l	_	5.3	1		02/14/09 02:44		
		_	5.3	1		02/14/09 02:44		
hloromethane	ND ug/l	-		1				
-Chlorotoluene	ND ug/l	_	5.3	•		02/14/09 02:44		
-Chlorotoluene	ND ug/i		5.3	1		02/14/09 02:44		
ibromochloromethane	ND ug/l	_	5.3	1		02/14/09 02:44		
,2-Dibromoethane (EDB)	ND ug/l	_	5.3	1		02/14/09 02:44		
ibromomethane	ND ug/l	-	5.3	1		02/14/09 02:44		
,2-Dichlorobenzene	ND ug/l	_	5.3	1		02/14/09 02:44		
,3-Dichlorobenzene	ND ug/i	kg	5.3	1		02/14/09 02:44		
,4-Dichlorobenzene	ND ug/l	kg	5.3	1		02/14/09 02:44		
rans-1,4-Dichloro-2-butene	ND ug/i	kg	106	1		02/14/09 02:44	110-57-6	
Pichlorodifluoromethane	ND ug/l	kg	5.3	1		02/14/09 02:44	75-71-8	
,1-Dichloroethane	ND ug/l	k <u>Q</u>	5.3	1		02/14/09 02:44	75-34-3	
,2-Dichloroethane	ND ug/i	kg	5.3	1		02/14/09 02:44	107-06-2	
,1-Dichloroethene	ND ug/l	kg	5.3	1		02/14/09 02:44	75-35-4	
is-1,2-Dichloroethene	6.7 ug/l	kg	5.3	1		02/14/09 02:44	156-59-2	
ans-1,2-Dichloroethene	ND ug/l	kg	5.3	1		02/14/09 02:44	156-60-5	
,2-Dichloropropane	ND ug/l	kg	5.3	1		02/14/09 02:44	78-87-5	
,3-Dichloropropane	ND ug/l	kg	5.3	1		02/14/09 02:44	142-28-9	
,2-Dichloropropane	ND ug/l	kg	5.3	1		02/14/09 02:44	594-20-7	
1-Dichloropropene	ND ug/l	_	5.3	1		02/14/09 02:44	563-58-6	
is-1,3-Dichloropropene	ND ug/l	_	5.3	1		02/14/09 02:44	10061-01-5	
ans-1,3-Dichloropropene	ND ug/l	-	5.3	1		02/14/09 02:44		
thylbenzene	ND ug/l	_	5.3	1		02/14/09 02:44		
thyl methacrylate	ND ug/l		10.6	1		02/14/09 02:44		
lexachloro-1,3-butadiene	ND ug/l	_	5.3	1		02/14/09 02:44		
-Hexane	ND ug/l	_	5.3	1		02/14/09 02:44		
-Hexanone	ND ug/l	-	106	1		02/14/09 02:44		
-nexalione odomethane	ND ug/l	_	106	1		02/14/09 02:44		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 50

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. .

7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-11 (12-13)) Lab ID: 5023333003 Collected: 02/13/09 10:20 Received: 02/13/09 16:58 Matrix: Solid

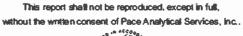
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
sopropylberzene (Cumene)	ND ug	/kg	5.3	1		02/14/09 02:44	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.3	1		02/14/09 02:44	99-87-6	
Viethylene chloride	ND ug	/kg	21.3	1		02/14/09 02:44	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.6	1		02/14/09 02:44	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.3	1		02/14/09 02:44	1634-04-4	
Vaphthalene	ND ug	/kg	5.3	1		02/14/09 02:44	91-20-3	
-Propylbenzene	ND ug	/kg	5.3	1		02/14/09 02:44	103-65-1	
Styrene	ND ug	/kg	5.3	1		02/14/09 02:44	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/14/09 02:44	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/14/09 02:44	79-34-5	
etrachloroethene	7690 ug	/kg	266	50		02/16/09 15:22	127-18-4	
oluene	ND ug	/kg	5.3	1		02/14/09 02:44	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.3	1		02/14/09 02:44	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.3	1		02/14/09 02:44	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.3	1		02/14/09 02:44	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.3	1		02/14/09 02:44	79-00-5	
richloroethene	36.4 ug	/kg	5.3	1		02/14/09 02:44	79-01-6	
richlorofluoromethane	ND ug	/kg	5.3	1		02/14/09 02:44	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.3	1		02/14/09 02:44	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.3	1		02/14/09 02:44	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.3	1		02/14/09 02:44	108-67-8	
/inyl acetate	ND ug	/kg	106	1		02/14/09 02:44	108-05-4	
/inyl chloride	ND ug	/kg	5.3	1		02/14/09 02:44	75-01-4	
(ylene (Total)	ND ug	/kg	10.6	1		02/14/09 02:44	1330-20-7	
Dibromofluoromethane (S)	97 %		80-124	1		02/14/09 02:44	1868-53-7	
oluene-d8 (S)	105 %		58-145	1		02/14/09 02:44	2037-26-5	
-Bromofluorobenzene (S)	90 %		61-131	1		02/14/09 02:44	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	6.0 %		0.10	1		02/13/09 18:16		

7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-13 (9-10) Lab ID: 5023333004 Collected: 02/13/09 11:55 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV 5030 Low Level	Analytical Meth	od: EPA 8260)					
cetone	ND ug/	kg	110	1		02/14/09 03:21	67-64-1	
Acrolein	ND ug/	kg	110	1		02/14/09 03:21	107-02-8	
crylonitrile	ND ug/	kg	110	1		02/14/09 03:21	107-13-1	
lenzene	ND ug/	kg	5.5	1		02/14/09 03:21	71-43-2	
kromobenzene	ND ug/	kg	5.5	1		02/14/09 03:21	108-86-1	
romochloromethane	ND ug/	ka	5.5	1		02/14/09 03:21	74-97-5	
Promodichloromethane	ND ug/	kg	5.5	1		02/14/09 03:21	75-27-4	
lromoform .	ND ug/	_	5.5	1		02/14/09 03:21	75-25-2	
iromomethane	ND ug/	_	5.5	1		02/14/09 03:21	74-83-9	
-Butanone (MEK)	ND ug/	-	27.6	1		02/14/09 03:21		
-Butylbenzene	ND ug/	_	5.5	1		02/14/09 03:21		
ec-Butylbenzene	ND ug/	_	5.5	1		02/14/09 03:21		
ert-Butylbenzene	ND ug/	_	5.5	1		02/14/09 03:21		
Carbon disulfide	ND ug/	_	11.0	1		02/14/09 03:21		
Carbon tetrachloride	ND ug/	-	5.5	1		02/14/09 03:21		
Chlorobenzene			5.5	1		02/14/09 03:21		
Chloroethane	ND ug/	_	5.5	1		02/14/09 03:21		
Chloroform	ND ug/	_	5.5	1		02/14/09 03:21		
	ND ug/	_		-				
hioromethane	ND ug/	-	5.5	1		02/14/09 03:21		
-Chlorotoluene	ND ug/	_	5.5	1		02/14/09 03:21		
-Chlorotoluene	ND ug/		5.5	1		02/14/09 03:21		
Pibromochloromethane	ND ug/	_	5.5	1		02/14/09 03:21		
,2-Dibromoethane (EDB)	ND ug/	_	5.5	1		02/14/09 03:21		
Pibromomethane	ND ug/	-	5.5	1		02/14/09 03:21		
,2-Dichlorobenzene	ND ug/	kg	5.5	1		02/14/09 03:21	95-50-1	
,3-Dichlorobenzene	ND ug/	kg	5.5	1		02/14/09 03:21	541-73-1	
,4-Dichlorobenzene	ND ug/	kg	5.5	1		02/14/09 03:21	106-46-7	
rans-1,4-Dichloro-2-butene	ND ug/	kg	110	1		02/14/09 03:21	110-57-6	
Dichlorodifluoromethane	ND ug/	kg	5.5	1		02/14/09 03:21	75-71-8	
,1-Dichloroethane	ND ug/	kg	5.5	1		02/14/09 03:21	75-34-3	
,2-Dichloroethane	ND ug/	kg	5.5	1		02/14/09 03:21	107-06-2	
,1-Dichloroethene	ND ug/	_	5.5	1		02/14/09 03:21	75-35-4	
is-1,2-Dichloroethene	32.5 ug/		5.5	1		02/14/09 03:21	156-59-2	
ans-1,2-Dichloroethene	ND ug/		5.5	1		02/14/09 03:21	156-60-5	
,2-Dichloropropane	ND ug/	-	5.5	1		02/14/09 03:21	78-87-5	
,3-Dichloropropane	ND ug/	_	5.5	1		02/14/09 03:21		
,2-Dichloropropane	ND ug/	_	5.5	1		02/14/09 03:21		
,1-Dichloropropene	ND ug/	_	5.5	1		02/14/09 03:21		
is-1,3-Dichloropropene	ND ug/	_	5.5	1		02/14/09 03:21		
ans-1,3-Dichloropropene	ND ug/	-	5.5	1		02/14/09 03:21		
thylbenzene	ND ug/	_	5.5	1		02/14/09 03:21		
thylmethacrylate	_		11.0	1		02/14/09 03:21		
inyi meinacryiate lexachloro-1,3-butadiene	ND ug/	_	5.5	1		02/14/09 03:21		
	ND ug/	_						
-Hexane	ND ug/	-	5.5	1		02/14/09 03:21		
-Hexanone	ND ug/	кg	110	1		02/14/09 03:21	29.1-19-0	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 50

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-13 (9-10) Lab ID: 5023333004 Collected: 02/13/09 11:55 Received: 02/13/09 16:58 Matrix: Solid

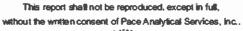
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
sopropylberzene (Cumene)	ND ug	/kg	5.5	1		02/14/09 03:21	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.5	1		02/14/09 03:21	99-87-6	
Methylene chloride	ND ug	/kg	22.1	1		02/14/09 03:21	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	27.6	1		02/14/09 03:21	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.5	1		02/14/09 03:21	1634-04-4	
Vaphthalene	ND ug	/kg	5.5	1		02/14/09 03:21	91-20-3	
n-Propylbenzene	ND ug	/kg	5.5	1		02/14/09 03:21	103-65-1	
Styrene	ND ug	/kg	5.5	1		02/14/09 03:21	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.5	1		02/14/09 03:21	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.5	1		02/14/09 03:21	79-34-5	
etrachloroethene	1410 ug	/kg	138	25		02/16/09 16:21	127-18-4	
oluene	ND ug	/kg	5.5	1		02/14/09 03:21	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.5	1		02/14/09 03:21	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.5	1		02/14/09 03:21	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.5	1		02/14/09 03:21	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.5	1		02/14/09 03:21	79-00-5	
richloroethene	45.2 ug	/kg	5.5	1		02/14/09 03:21	79-01-6	
richlorofluoromethane	ND ug	/kg	5.5	1		02/14/09 03:21	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.5	1		02/14/09 03:21	96-18-4	
.2,4-Trimethylbenzene	ND ug	/kg	5.5	1		02/14/09 03:21	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.5	1		02/14/09 03:21	108-67-8	
/inyl acetate	ND ug	/kg	110	1		02/14/09 03:21	108-05-4	
/inyl chloride	ND ug	/kg	5.5	1		02/14/09 03:21	75-01-4	
(ylene (Total)	ND ug	/kg	11.0	1		02/14/09 03:21	1330-20-7	
Dibromofluoromethane (S)	101 %		80-124	1		02/14/09 03:21	1868-53-7	
oluene-d8 (S)	103 %		58-145	1		02/14/09 03:21	2037-26-5	
-Bromofluorobenzene (S)	94 %		61-131	1		02/14/09 03:21	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	9.5 %		0.10	1		02/13/09 18:16		

Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-13 (10-11) Lab ID: 5023333005 Collected: 02/13/09 12:05 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260)					
Acetone	ND ug/l	kg	108	1		02/14/09 03:57	67-64-1	
Acrolein	ND ug/l	kg	108	1		02/14/09 03:57	107-02-8	
Acrylonitrile	ND ug/l	kg	108	1		02/14/09 03:57	107-13-1	
Benzene	ND ug/l	kg	5.4	1		02/14/09 03:57	71-43-2	
Promobenzene	ND ug/l	kg	5.4	1		02/14/09 03:57	108-86-1	
3romochloromethane	ND ug/t	kg	5.4	1		02/14/09 03:57	74-97-5	
3romodichloromethane	ND ug/l	kg	5.4	1		02/14/09 03:57	75-27-4	
kromoform	ND ug/t	kg	5.4	1		02/14/09 03:57	75-25-2	
Promomethane	ND ug/l	kq	5.4	1		02/14/09 03:57	74-83-9	
-Butanone (MEK)	ND ug/l	-	27.1	1		02/14/09 03:57	78-93-3	
-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 03:57	104-51-8	
ec-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 03:57	135-98-8	
ert-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 03:57		
Carbon disulfide	ND ug/l	_	10.8	1		02/14/09 03:57		
Carbon tetrachloride	ND ug/l	-	5.4	1		02/14/09 03:57		
Chlorobenzene	ND ug/l		5.4	1		02/14/09 03:57		
Chloroethane	ND ug/l	_	5.4	1		02/14/09 03:57		
hloroform	ND ug/l	_	5.4	1		02/14/09 03:57		
Chloromethane	ND ug/l	_	5.4	1		02/14/09 03:57		
-Chlorotoluene	ND ug/l	-	5.4	1		02/14/09 03:57		
-Chlorotoluene	ND ug/l	_	5.4	1		02/14/09 03:57		
Pibromochloromethane	ND ug/l		5.4	1		02/14/09 03:57		
,2-Dibromoethane (EDB)	ND ug/l	_	5.4	1		02/14/09 03:57		
• •	=	_	5.4	1				
Dibromomethane	ND ug/l	-	5.4	1		02/14/09 03:57 02/14/09 03:57		
,2-Dichlorobenzene	ND ug/l	_						
,3-Dichlorobenzene	ND ug/l	_	5.4	1		02/14/09 03:57		
,4-Dichlorobenzene	ND ug/l	_	5.4	1		02/14/09 03:57		
rans-1,4-Dichloro-2-butene	ND ug/l	_	108	1		02/14/09 03:57		
Dichlorodifluoromethane	ND ug/l	-	5.4	1		02/14/09 03:57		
,1-Dichloroethane	ND ug/l	_	5.4	1		02/14/09 03:57		
,2-Dichloroethane	ND ug/l	_	5.4	1		02/14/09 03:57		
,1-Dichloroethene	ND ug/l	_	5.4	1		02/14/09 03:57		
is-1,2-Dichloroethene	45.8 ug/l	_	5.4	1		02/14/09 03:57		
rans-1,2-Dichloroethene	ND ug/l	-	5.4	1		02/14/09 03:57		
,2-Dichloropropane	ND ug/l	kg	5.4	1		02/14/09 03:57		
,3-Dichloropropane	ND ug/i	_	5.4	1		02/14/09 03:57		
,2-Dichloropropane	ND ug/l	_	5.4	1		02/14/09 03:57		
,1-Dichloropropene	ND ug/i	kg	5.4	1		02/14/09 03:57	563-58-6	
is-1,3-Dichloropropene	ND ug/l	kg	5.4	1		02/14/09 03:57	10061-01-5	
ans-1,3-Dichloropropene	ND ug/l	kg	5.4	1		02/14/09 03:57		
thylbenzene	ND ug/i	kg	5.4	1		02/14/09 03:57	100-41-4	
thyl methacrylate	ND ug/l	kg	10.8	1		02/14/09 03:57	97-63-2	
lexachloro-1,3-butadiene	ND ug/l	kg	5.4	1		02/14/09 03:57	87-68-3	
-Hexane	ND ug/l	kg	5.4	1		02/14/09 03:57	110-54-3	
-Hexanone	ND ug/l	kg.	108	1		02/14/09 03:57	591-78-6	
odomethane	ND ug/l	_	108	1		02/14/09 03:57	74-88-4	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 50

Page 301 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5023333

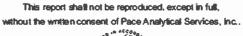
Sample: SB-13 (10-11) Lab ID: 5023333005 Collected: 02/13/09 12:05 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV 5030 Low Level	Analytical Meth	nod: EPA 826	0					
sopropylberzene (Cumere)	ND ug	/kg	5.4	1		02/14/09 03:57	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.4	1		02/14/09 03:57	99-87-6	
Viethylene chloride	ND ug	/kg	21.7	1		02/14/09 03:57	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	27.1	1		02/14/09 03:57	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.4	1		02/14/09 03:57	1634-04-4	
Vaphthalene	ND ug	/kg	5.4	1		02/14/09 03:57	91-20-3	
-Propylbenzene	ND ug	/kg	5.4	1		02/14/09 03:57	103-65-1	
Styrene	ND ug	/kg	5.4	1		02/14/09 03:57	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.4	1		02/14/09 03:57	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.4	1		02/14/09 03:57	79-34-5	
etrachloroethene	1640 ug	/kg	136	25		02/16/09 16:58	127-18-4	
oluene	ND ug	/kg	5.4	1		02/14/09 03:57	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.4	1		02/14/09 03:57	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.4	1		02/14/09 03:57	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.4	1		02/14/09 03:57	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.4	1		02/14/09 03:57	79-00-5	
richloroethene	55.7 ug	/kg	5.4	1		02/14/09 03:57	79-01-6	
richlorofluoromethane	ND ug	/kg	5.4	1		02/14/09 03:57	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.4	1		02/14/09 03:57	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.4	1		02/14/09 03:57	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.4	1		02/14/09 03:57	108-67-8	
/inyl acetate	ND ug	/kg	108	1		02/14/09 03:57	108-05-4	
/inyl chloride	ND ug	/kg	5.4	1		02/14/09 03:57	75-01-4	
(ylene (Total)	ND ug	/kg	10.8	1		02/14/09 03:57	1330-20-7	
Dibromofluoromethane (S)	99 %		80-124	1		02/14/09 03:57	1868-53-7	
oluene-d8 (S)	103 %		58-145	1		02/14/09 03:57	2037-26-5	
-Bromofluorobenzene (S)	93 %		61-131	1		02/14/09 03:57	460-00-4	
Percent Moisture	Analytical Meth	nod: ASTM D	2974-87					
Percent Moisture	7.8 %		0.10	1		02/13/09 18:17		

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-13 (17-18) Lab ID: 5023333006 Collected: 02/13/09 12:15 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Method: EPA (3260					
Acetone	ND ug/kg	111	1		02/14/09 04:33	67-64-1	
Acrolein	ND ug/kg	111	1		02/14/09 04:33	107-02-8	
Acrylonitrile	ND ug/kg	111	1		02/14/09 04:33	107-13-1	
3enzene	ND ug/kg	5.5	1		02/14/09 04:33	71-43-2	
Bromobenzene	ND ug/kg	5.5	1		02/14/09 04:33	108-86-1	
3romochloromethane	ND ug/kg	5.5	1		02/14/09 04:33	74-97-5	
3romodichloromethane	ND ug/kg	5.5	1		02/14/09 04:33	75-27-4	
3romoform	ND ug/kg	5.5	1		02/14/09 04:33	75-25-2	
3romomethane	ND ug/kg	5.5	1		02/14/09 04:33	74-83-9	
-Butanone (MEK)	ND ug/kg	27.7	1		02/14/09 04:33		
-Butylbenzene	ND ug/kg	5.5	1		02/14/09 04:33		
sec-Butylbenzene	ND ug/kg	5.5	1		02/14/09 04:33		
ert-Butylbenzene	ND ug/kg	5.5	1		02/14/09 04:33		
Carbon disulfide	ND ug/kg	11.1	1		02/14/09 04:33		
Carbon tetrachloride	ND ug/kg	5.5	1		02/14/09 04:33		
Chlorobenzene	ND ug/kg	5.5	1		02/14/09 04:33		
Chloroethane		5.5	1		02/14/09 04:33		
Chloroform	ND ug/kg	5.5	1		02/14/09 04:33		
Chloromethane	ND ug/kg	5.5	1		02/14/09 04:33		
:-Chlorotoluene	ND ug/kg	5.5	1		02/14/09 04:33		
	ND ug/kg		1				
-Chlorotoluene	ND ug/kg	5.5	•		02/14/09 04:33		
bromochloromethane	ND ug/kg	5.5	1		02/14/09 04:33		
,2-Dibromoethane (EDB)	ND ug/kg	5.5	1		02/14/09 04:33		
Dibromomethane	ND ug/kg	5.5	1		02/14/09 04:33		
,2-Dichlorobenzene	ND ug/kg	5.5	1		02/14/09 04:33		
,3-Dichlorobenzene	ND ug/kg	5.5	1		02/14/09 04:33		
,4-Dichlorobenzene	ND ug/kg	5.5	1		02/14/09 04:33		
rans-1,4-Dichloro-2-butene	ND ug/kg	111	1		02/14/09 04:33		
Pichlorodifluoromethane	ND ug/kg	5.5	1		02/14/09 04:33		
,1-Dichloroethane	ND ug/kg	5.5	1		02/14/09 04:33	75-34-3	
,2-Dichloroethane	ND ug/kg	5.5	1		02/14/09 04:33	107-06-2	
,1-Dichloroethene	ND ug/kg	5.5	1		02/14/09 04:33	75-35-4	
is-1,2-Dichlorcethene	831 ug/kg	139	25		02/16/09 14:22	156-59-2	
rans-1,2-Dichloroethene	8.1 ug/kg	5.5	1		02/14/09 04:33	156-60-5	
,2-Dichloropropane	ND ug/kg	5.5	1		02/14/09 04:33	78-87-5	
,3-Dichloropropane	ND ug/kg	5.5	1		02/14/09 04:33	142-28-9	
,2-Dichloropropane	ND ug/kg	5.5	1		02/14/09 04:33	594-20-7	
,1-Dichloropropene	ND ug/kg	5.5	1		02/14/09 04:33	563-58-6	
is-1,3-Dichloropropene	ND ug/kg	5.5	1		02/14/09 04:33	10061-01-5	
rans-1,3-Dichloropropene	ND ug/kg	5.5	1		02/14/09 04:33	10061-02-6	
Ethylbenzene	ND ug/kg	5.5	1		02/14/09 04:33	100-41-4	
thyl methacrylate	ND ug/kg	11.1	1		02/14/09 04:33	97-63-2	
lexachloro-1,3-butadiene	ND ug/kg	5.5	1		02/14/09 04:33	87-68-3	
-Hexane	ND ug/kg	5.5	1		02/14/09 04:33	110-54-3	
-Hexanone	ND ug/kg	111	1		02/14/09 04:33		
odomethane	ND ug/kg	111	1		02/14/09 04:33		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 50

Page 303 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5023333

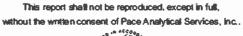
Sample: SB-13 (17-18) Lab ID: 5023333006 Collected: 02/13/09 12:15 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 826	0					
sopropylberzene (Cumere)	ND ug	/kg	5.5	1		02/14/09 04:33	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.5	1		02/14/09 04:33	99-87-6	
Vethylene chloride	ND ug	/kg	22.2	1		02/14/09 04:33	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	27.7	1		02/14/09 04:33	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.5	1		02/14/09 04:33	1634-04-4	
laphthalene	ND ug	/kg	5.5	1		02/14/09 04:33	91-20-3	
-Propylbenzene	ND ug	/kg	5.5	1		02/14/09 04:33	103-65-1	
Styrene	ND ug	/kg	5.5	1		02/14/09 04:33	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.5	1		02/14/09 04:33	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.5	1		02/14/09 04:33	79-34-5	
etrachloroethene	55000 ug	/kg	2770	500		02/16/09 18:25	127-18-4	
oluene	ND ug	/kg	5.5	1		02/14/09 04:33	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.5	1		02/14/09 04:33	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.5	1		02/14/09 04:33	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.5	1		02/14/09 04:33	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.5	1		02/14/09 04:33	79-00-5	
richloroethene	105 ug	/kg	5.5	1		02/14/09 04:33	79-01-6	
richlorofluoromethane	ND ug	/kg	5.5	1		02/14/09 04:33	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.5	1		02/14/09 04:33	96-18-4	
.2,4-Trimethylbenzene	ND ug	/kg	5.5	1		02/14/09 04:33	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.5	1		02/14/09 04:33	108-67-8	
/inyl acetate	ND ug	/kg	111	1		02/14/09 04:33	108-05-4	
/inyl chloride	246 ug	/kg	5.5	1		02/14/09 04:33	75-01-4	
(ylene (Total)	ND ug	/kg	11.1	1		02/14/09 04:33	1330-20-7	
Dibromofluoromethane (S)	93 %	·	80-124	1		02/14/09 04:33	1868-53-7	
oluene-d8 (S)	110 %		58-145	1		02/14/09 04:33	2037-26-5	
-Bromofluorobenzene (S)	86 %		61-131	1		02/14/09 04:33	460-00-4	
Percent Moisture	Analytical Meth	nod: ASTM D	2974-87					
Percent Moisture	9.8 %		0.10	1		02/13/09 18:17		

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-12 (13-14) Lab ID: 5023333007 Collected: 02/13/09 13:10 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260)					
Acetone	ND ug/l	kg	104	1		02/14/09 05:10	67-64-1	
Acrolein	ND ug/l	vg.	104	1		02/14/09 05:10	107-02-8	
Acrylonitrile	ND ug/l	κg	104	1		02/14/09 05:10	107-13-1	
Benzene	ND ug/l	kg.	5.2	1		02/14/09 05:10	71-43-2	
Promobenzene	ND ug/l	(Q	5.2	1		02/14/09 05:10	108-86-1	
3romochioromethane	ND ug/l	κα	5.2	1		02/14/09 05:10	74-97-5	
Promodichloromethane	ND ug/l	_	5.2	1		02/14/09 05:10	75-27-4	
romoform	ND ug/l	_	5.2	1		02/14/09 05:10	75-25-2	
Iromomethane	ND ug/l	_	5.2	1		02/14/09 05:10	74-83-9	
-Butanone (MEK)	ND ug/l	-	26.1	1		02/14/09 05:10		
-Butylbenzene	ND ug/l	_	5.2	1		02/14/09 05:10		
ec-Butylbenzene	ND ug/l	_	5.2	1		02/14/09 05:10		
ert-Butylbenzene	ND ug/l	_	5.2	1		02/14/09 05:10		
Carbon disulfide	ND ug/l	_	10.4	1		02/14/09 05:10		
Carbon tetrachloride	ND ug/l	-	5.2	1		02/14/09 05:10		
Chlorobenzene	ND ug/l		5.2	1		02/14/09 05:10		
Chloroethane	ND ug/l	_	5.2	1		02/14/09 05:10		
Chloroform	ND ug/l	_	5.2	1		02/14/09 05:10		
hloromethane		_	5.2	1		02/14/09 05:10		
	ND ug/l	-	5.2 5.2	1		02/14/09 05:10		
-Chlorotoluene	ND ug/l	_						
-Chlorotoluene	ND ug/i	_	5.2	1		02/14/09 05:10		
bromochloromethane	ND ug/l	_	5.2	1		02/14/09 05:10		
,2-Dibromoethane (EDB)	ND ug/i	_	5.2	1		02/14/09 05:10		
ibromomethane	ND ug/l	-	5.2	1		02/14/09 05:10		
,2-Dichlorobenzene	ND ug/l	_	5.2	1		02/14/09 05:10		
,3-Dichlorobenzene	ND ug/l	kg	5.2	1		02/14/09 05:10		
,4-Dichlorobenzene	ND ug/l	(Q	5.2	1		02/14/09 05:10		
ans-1,4-Dichloro-2-butene	ND ug/i	G	104	1		02/14/09 05:10	110-57-6	
Pichlorodifluoromethane	ND ug/l	κg	5.2	1		02/14/09 05:10	75-71-8	
,1-Dichloroethane	ND ug/l	¢ <u>C</u>	5.2	1		02/14/09 05:10	75-34-3	
,2-Dichloroethane	ND ug/l	kg	5.2	1		02/14/09 05:10	107-06-2	
,1-Dichloroethene	ND ug/l		5.2	1		02/14/09 05:10	75-35-4	
is-1,2-Dichloroethene	12.3 ug/l	kg .	5.2	1		02/14/09 05:10	156-59-2	
ans-1,2-Dichloroethene	ND ug/l	vg	5.2	1		02/14/09 05:10	156-60-5	
,2-Dichloropropane	ND ug/l	vg.	5.2	1		02/14/09 05:10	78-87-5	
,3-Dichloropropane	ND ug/l	kg	5.2	1		02/14/09 05:10	142-28-9	
2-Dichloropropane	ND ug/l	κ <u>α</u>	5.2	1		02/14/09 05:10	594-20-7	
,1-Dichloropropene	ND ug/l	_	5.2	1		02/14/09 05:10	563-58-6	
is-1,3-Dichloropropene	ND ug/l	_	5.2	1		02/14/09 05:10	10061-01-5	
ans-1,3-Dichloropropene	ND ug/l	-	5.2	1		02/14/09 05:10		
thylbenzene	ND ug/i	_	5.2	1		02/14/09 05:10		
thyl methacrylate	ND ug/l	-	10.4	1		02/14/09 05:10		
exachloro-1,3-butadiene	ND ug/l	_	5.2	1		02/14/09 05:10		
-Hexane	ND ug/l	_	5.2	1		02/14/09 05:10		
-Hexanone	ND ug/l	-	104	1		02/14/09 05:10		
odomethane	ND ug/i	_	104	1		02/14/09 05:10		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 16 of 50

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-12 (13-14) Lab ID: 5023333007 Collected: 02/13/09 13:10 Received: 02/13/09 16:58 Matrix: Solid

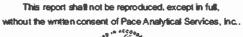
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
sopropylberzene (Cumene)	ND ug	/kg	5.2	1		02/14/09 05:10	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.2	1		02/14/09 05:10	99-87-6	
Methylene chloride	ND ug	/kg	20.9	1		02/14/09 05:10	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.1	1		02/14/09 05:10	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.2	1		02/14/09 05:10	1634-04-4	
Vaphthalene	ND ug	/kg	5.2	1		02/14/09 05:10	91-20-3	
n-Propylbenzene	ND ug	/kg	5.2	1		02/14/09 05:10	103-65-1	
Styrene	ND ug	/kg	5.2	1		02/14/09 05:10	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.2	1		02/14/09 05:10	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.2	1		02/14/09 05:10	79-34-5	
etrachloroethene	6290 ug	/kg	261	50		02/16/09 17:43	127-18-4	
oluene	ND ug	/kg	5.2	1		02/14/09 05:10	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.2	1		02/14/09 05:10	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.2	1		02/14/09 05:10	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.2	1		02/14/09 05:10	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.2	1		02/14/09 05:10	79-00-5	
richloroethene	35.9 ug	/kg	5.2	1		02/14/09 05:10	79-01-6	
richlorofluoromethane	ND ug	/kg	5.2	1		02/14/09 05:10	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.2	1		02/14/09 05:10	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.2	1		02/14/09 05:10	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.2	1		02/14/09 05:10	108-67-8	
/inyl acetate	ND ug	/kg	104	1		02/14/09 05:10	108-05-4	
/inyl chloride	ND ug	/kg	5.2	1		02/14/09 05:10	75-01-4	
(ylene (Total)	ND ug	/kg	10.4	1		02/14/09 05:10	1330-20-7	
Dibromofluoromethane (S)	99 %		80-124	1		02/14/09 05:10	1868-53-7	
oluene-d8 (S)	103 %		58-145	1		02/14/09 05:10	2037-26-5	
-Bramofluarobenzene (S)	92 %		61-131	1		02/14/09 05:10	460-00-4	
Percent Moisture	Analytical Meth	nod: ASTM D2	974-87					
Percent Moisture	4.3 %		0.10	1		02/13/09 18:17		

Page 306 ace Analytical Services, Inc. 7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5023333


Sample: SB-12 (17-18) Lab ID: 5023333006 Collected: 02/13/09 13:15 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
cetone	ND ug	/kg	105	1		02/14/09 05:46	67-64-1	
Acrolein	ND ug	/kg	105	1		02/14/09 05:46	107-02-8	
korytonitrile	ND ug	/kg	105	1		02/14/09 05:46	107-13-1	
lenzene	ND ug	/kg	5.3	1		02/14/09 05:46	71-43-2	
kromobenzene	ND ug	/kg	5.3	1		02/14/09 05:46	108-86-1	
romochloromethane	ND ug	_	5.3	1		02/14/09 05:46	74-97-5	
Promodichloromethane	ND ug		5.3	1		02/14/09 05:46	75-27-4	
Promoform	ND ug	_	5.3	1		02/14/09 05:46	75-25-2	
kromomethane	ND ug	_	5.3	1		02/14/09 05:46	74-83-9	
-Butanone (MEK)	ND ug	-	26.4	1		02/14/09 05:46		
-Butylbenzene	ND ug	_	5.3	1		02/14/09 05:46		
ec-Butylbenzene	ND ug	. =	5.3	1		02/14/09 05:46		
ert-Butylbenzene	ND ug	_	5.3	1		02/14/09 05:46		
Carbon disulfide	ND ug	_	10.5	1		02/14/09 05:46		
Carbon tetrachloride	ND ug	-	5.3	1		02/14/09 05:46		
Chlorobenzene		_	5.3	1		02/14/09 05:46		
Chloroethane	ND ug	_	5.3	1		02/14/09 05:46		
Chloroform	ND ug	. =	5.3 5.3	1		02/14/09 05:46		
	ND ug	_						
Chloromethane	ND ug	-	5.3	1		02/14/09 05:46		
-Chlorotoluene	ND ug	_	5.3	1		02/14/09 05:46		
-Chlorotoluene	ND ug	_	5.3	1		02/14/09 05:46		
bromochloromethane	ND ug	_	5.3	1		02/14/09 05:46		
,2-Dibromoethane (EDB)	ND ug	_	5.3	1		02/14/09 05:46		
Dibromomethane	ND ug	/kg	5.3	1		02/14/09 05:46		
,2-Dichlorobenzene	ND ug	/kg	5.3	1		02/14/09 05:46	95-50-1	
,3-Dichlorobenzene	ND ug	/kg	5.3	1		02/14/09 05:46	541-73-1	
,4-Dichlorobenzene	ND ug	/kg	5.3	1		02/14/09 05:46	106-46-7	
rans-1,4-Dichloro-2-butene	ND ug	/kg	105	1		02/14/09 05:46	110-57-6	
Dichlorodifluoromethane	ND ug	/kg	5.3	1		02/14/09 05:46	75-71-8	
,1-Dichloroethane	ND ug	/kg	5.3	1		02/14/09 05:46	75-34-3	
,2-Dichloroethane	ND ug	/kg	5.3	1		02/14/09 05:46	107-06-2	
,1-Dichloroethene	ND ug	/kg	5.3	1		02/14/09 05:46	75-35-4	
is-1,2-Dichloroethene	45.8 ug	/kg	5.3	1		02/14/09 05:46	156-59-2	
rans-1,2-Dichloroethene	ND ug	/kg	5.3	1		02/14/09 05:46	156-60-5	
,2-Dichloropropane	ND ug		5.3	1		02/14/09 05:46	78-87-5	
,3-Dichloropropane	ND ug	_	5.3	1		02/14/09 05:46	142-28-9	
,2-Dichloropropane	ND ug	_	5.3	1		02/14/09 05:46		
.1-Dichloropropene	ND ug		5.3	1		02/14/09 05:46		
is-1,3-Dichloropropene	ND ug		5.3	1		02/14/09 05:46		
rans-1,3-Dichloropropene	ND ug		5.3	1		02/14/09 05:46		
thylbenzene	ND ug	_	5.3	1		02/14/09 05:46		
thyl methacrylate	ND ug		10.5	1		02/14/09 05:46		
•	-	_	5.3	1		02/14/09 05:46		
lexachloro-1,3-butadiene	ND ug	_						
-Hexane	ND ug	. =	5.3	1 1		02/14/09 05:46		
-Hexanone	ND ug	/KC	105	7		02/14/09 05:46	291-18C	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 18 of 50

Page 307 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5023333

Sample: SB-12 (17-18) Lab ID: 5023333008 Collected: 02/13/09 13:15 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260 MSV 5030 Low Level	Analytical Meth	nod: EPA 826	0					
sopropylberzene (Cumere)	ND ug	/kg	5.3	1		02/14/09 05:46	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.3	1		02/14/09 05:46	99-87-6	
Vethylene chloride	ND ug	/kg	21.1	1		02/14/09 05:46	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.4	1		02/14/09 05:46	108-10-1	
Nethyl-tert-butyl ether	ND ug	/kg	5.3	1		02/14/09 05:46	1634-04-4	
laphthalene	ND ug	/kg	5.3	1		02/14/09 05:46	91-20-3	
-Propylbenzene	ND ug	/kg	5.3	1		02/14/09 05:46	103-65-1	
Styrene	ND ug	/kg	5.3	1		02/14/09 05:46	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/14/09 05:46	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/14/09 05:46	79-34-5	
etrachloroethene	19100 ug	/kg	2640	500		02/16/09 18:02	127-18-4	
oluene	ND ug	/kg	5.3	1		02/14/09 05:46	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.3	1		02/14/09 05:46	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.3	1		02/14/09 05:46	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.3	1		02/14/09 05:46	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.3	1		02/14/09 05:46	79-00-5	
richloroethene	84.9 ug	/kg	5.3	1		02/14/09 05:46	79-01-6	
richlorofluoromethane	ND ug	/kg	5.3	1		02/14/09 05:46	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.3	1		02/14/09 05:46	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.3	1		02/14/09 05:46	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.3	1		02/14/09 05:46	108-67-8	
/inyl acetate	ND ug	/kg	105	1		02/14/09 05:46	108-05-4	
/inyl chloride	ND ug	/kg	5.3	1		02/14/09 05:46	75-01-4	
(ylene (Total)	ND ug	/kg	10.5	1		02/14/09 05:46	1330-20-7	
Dibromofluoromethane (S)	96 %	-	80-124	1		02/14/09 05:46	1868-53-7	
oluene-d8 (S)	107 %		58-145	1		02/14/09 05:46	2037-26-5	
-Bromofluorobenzene (S)	87 %		61-131	1		02/14/09 05:46	460-00-4	
ercent Moisture	Analytical Meth	od: ASTM D	2974-87					
Percent Moisture	5.2 %		0.10	1		02/13/09 18:17		

Date: 02/25/2009 03:30 PM

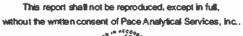
REPORT OF LABORATORY ANALYSIS

Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-12 (18-19) Lab ID: 5023333009 Collected: 02/13/09 13:20 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260						
Acetone	ND ug/l	kg	108	1		02/14/09 06:30	67-64-1	
Acrolein	ND ug/l	kg	108	1		02/14/09 06:30	107-02-8	
Acrylonitrile	ND ug/l	kg	108	1		02/14/09 06:30	107-13-1	
Benzene	ND ug/l	kg	5.4	1		02/14/09 06:30	71-43-2	
Promobenzene	ND ug/l	kg	5.4	1		02/14/09 06:30	108-86-1	
3romochloromethane	ND ug/l	kg	5.4	1		02/14/09 06:30	74-97-5	
Promodichloromethane	ND ug/l	kg	5.4	1		02/14/09 06:30	75-27-4	
lromoform	ND ug/l	_	5.4	1		02/14/09 06:30	75-25-2	
Promomethane	ND ug/l	_	5.4	1		02/14/09 06:30	74-83-9	
-Butanone (MEK)	ND ug/l	-	26.9	1		02/14/09 06:30	78-93-3	
-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 06:30	104-51-8	
ec-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 06:30	135-98-8	
ert-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 06:30		
Carbon disulfide	ND ug/l	_	10.8	1		02/14/09 06:30		
Carbon tetrachloride	ND ug/l	-	5.4	1		02/14/09 06:30		
Chlorobenzene	ND ug/l	_	5.4	1		02/14/09 06:30		
Chloroethane	ND ug/l	_	5.4	1		02/14/09 06:30		
Chloroform	ND ug/l	_	5.4	1		02/14/09 06:30		
Chloromethane	ND ug/l	_	5.4	1		02/14/09 06:30		
-Chlorotoluene	ND ug/l	-	5.4	1		02/14/09 06:30		
-Chlorotoluene	ND ug/l	_	5.4	1		02/14/09 06:30		
Pibromochloromethane	ND ug/l	_	5.4	1		02/14/09 06:30		
,2-Dibromoethane (EDB)	ND ug/l	_	5.4	1		02/14/09 06:30		
, ,	-	_	5.4	1				
Dibromomethane	ND ug/l	-	5.4	1		02/14/09 06:30 02/14/09 06:30		
,2-Dichlorobenzene	ND ug/l	_						
,3-Dichlorobenzene	ND ug/l	_	5.4	1		02/14/09 06:30		
,4-Dichlorobenzene	ND ug/l	_	5.4	1		02/14/09 06:30		
rans-1,4-Dichloro-2-butene	ND ug/l	_	108	1		02/14/09 06:30		
Dichlorodifluoromethane	ND ug/l	-	5.4	1		02/14/09 06:30		
,1-Dichloroethane	ND ug/l	_	5.4	1		02/14/09 06:30		
,2-Dichloroethane	ND ug/l	_	5.4	1		02/14/09 06:30		
,1-Dichloroethene	ND ug/l	_	5.4	1		02/14/09 06:30		
is-1,2-Dichloroethene	1660 ug/l	_	134	25		02/16/09 14:59		
rans-1,2-Dichloroethene	15.4 ug/l	-	5.4	1		02/14/09 06:30		
.2-Dichloropropane	ND ug/l	kg	5.4	1		02/14/09 06:30		
.3-Dichloropropane	ND ug/l	_	5.4	1		02/14/09 06:30		
.2-Dichloropropane	ND ug/l	_	5.4	1		02/14/09 06:30		
,1-Dichloropropene	ND ug/l	kg	5.4	1		02/14/09 06:30	563-58-6	
s-1,3-Dichloropropene	ND ug/l	kg	5.4	1		02/14/09 06:30		
ans-1,3-Dichloropropene	ND ug/l	_	5.4	1		02/14/09 06:30		
thylbenzene	ND ug/l	kg	5.4	1		02/14/09 06:30	100-41-4	
thyl methacrylate	ND ug/l	kg	10.8	1		02/14/09 06:30	97-63-2	
lexachloro-1,3-butadiene	ND ug/l	kg	5.4	1		02/14/09 06:30	87-68-3	
-Hexane	ND ug/l	kg	5.4	1		02/14/09 06:30	110-54-3	
-Hexanone	ND ug/l	kg	108	1		02/14/09 06:30	591-78-6	
odomethane	ND ug/l	_	108	1		02/14/09 06:30	74-88-4	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 50

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

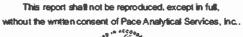
Sample: SB-12 (18-19) Lab ID: 5023333009 Collected: 02/13/09 13:20 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
sopropylberzene (Cumene)	ND ug	/kg	5.4	1		02/14/09 06:30	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.4	1		02/14/09 06:30	99-87-6	
Methylene chloride	ND ug	/kg	21.5	1		02/14/09 06:30	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.9	1		02/14/09 06:30	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.4	1		02/14/09 06:30	1634-04-4	
Vaphthalene	ND ug	/kg	5.4	1		02/14/09 06:30	91-20-3	
n-Propylbenzene	ND ug	/kg	5.4	1		02/14/09 06:30	103-65-1	
Styrene	ND ug	/kg	5.4	1		02/14/09 06:30	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.4	1		02/14/09 06:30	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.4	1		02/14/09 06:30	79-34-5	
etrachloroethene	53400 ug	/kg	2690	500		02/16/09 18:47	127-18-4	
oluene	ND ug	/kg	5.4	1		02/14/09 06:30	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.4	1		02/14/09 06:30	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.4	1		02/14/09 06:30	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.4	1		02/14/09 06:30	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.4	1		02/14/09 06:30	79-00-5	
richloroethene	154 ug	/kg	5.4	1		02/14/09 06:30	79-01-6	
richlorofluoromethane	ND ug	/kg	5.4	1		02/14/09 06:30	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.4	1		02/14/09 06:30	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.4	1		02/14/09 06:30	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.4	1		02/14/09 06:30	108-67-8	
/inyl acetate	ND ug	/kg	108	1		02/14/09 06:30	108-05-4	
/inyl chloride	37.8 ug	/kg	5.4	1		02/14/09 06:30	75-01-4	
(ylene (Total)	ND ug	/kg	10.8	1		02/14/09 06:30	1330-20-7	
Dibromofluoromethane (S)	100 %		80-124	1		02/14/09 06:30	1868-53-7	
oluene-d8 (S)	107 %		58-145	1		02/14/09 06:30	2037-26-5	
-Bramofluarobenzene (S)	85 %		61-131	1		02/14/09 06:30	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	7.0 %		0.10	1		02/13/09 18:17		

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: FD-1 Lab ID: 5023333010 Collected: 02/13/09 08:00 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Meth	od: EPA 8260)					
Acetone	ND ug/	kg	111	1		02/14/09 07:07	67-64-1	
Acrolein	ND ug/	kg	111	1		02/14/09 07:07	107-02-8	
Acrylonitrile	ND ug/	kg	111	1		02/14/09 07:07	107-13-1	
Benzene	ND ug/	kg	5.5	1		02/14/09 07:07	71-43-2	
Bromobenzene	ND ug/	kg	5.5	1		02/14/09 07:07	108-86-1	
3romochioromethane	ND ug/	kg	5.5	1		02/14/09 07:07	74-97-5	
Iromodichloromethane	ND ug/	kg	5.5	1		02/14/09 07:07	75-27-4	
lromoform .	ND ug/	_	5.5	1		02/14/09 07:07	75-25-2	
Iromomethane	ND ug/	_	5.5	1		02/14/09 07:07	74-83-9	
-Butanone (MEK)	ND ug/	-	27.7	1		02/14/09 07:07		
-Butylbenzene	ND ug/	_	5.5	1		02/14/09 07:07		
ec-Butylbenzene	ND ug/	_	5.5	1		02/14/09 07:07		
ert-Butylbenzene	ND ug/	_	5.5	1		02/14/09 07:07		
Carbon disulfide	ND ug/	_	11.1	1		02/14/09 07:07		
Carbon tetrachloride	ND ug/	-	5.5	1		02/14/09 07:07		
Chlorobenzene	ND ug/		5.5	1		02/14/09 07:07		
Chloroethane	ND ug/	_	5.5	1		02/14/09 07:07		
hloroform	ND ug/	_	5.5	1		02/14/09 07:07		
	-	_	5.5	1		02/14/09 07:07		
hloromethane	ND ug/	-	5.5 5.5	1		02/14/09 07:07		
-Chlorotoluene	ND ug/	_		•				
-Chlorotoluene	ND ug/		5.5	1		02/14/09 07:07		
ibromochloromethane	ND ug/	_	5.5	1		02/14/09 07:07		
,2-Dibromoethane (EDB)	ND ug/	_	5.5	1		02/14/09 07:07		
ibromomethane	ND ug/	-	5.5	1		02/14/09 07:07		
,2-Dichlorobenzene	ND ug/	_	5.5	1		02/14/09 07:07		
,3-Dichlorobenzene	ND ug/	kg	5.5	1		02/14/09 07:07		
,4-Dichlorobenzene	ND ug/	kg	5.5	1		02/14/09 07:07		
ans-1,4-Dichloro-2-butene	ND ug/	kg	111	1		02/14/09 07:07	110-57-6	
Pichlorodifluoromethane	ND ug/	kg	5.5	1		02/14/09 07:07	75-71-8	
,1-Dichloroethane	ND ug/	kg	5.5	1		02/14/09 07:07	75-34-3	
,2-Dichloroethane	ND ug/	kg	5.5	1		02/14/09 07:07	107-06-2	
,1-Dichloroethene	ND ug/	kg	5.5	1		02/14/09 07:07	75-35-4	
is-1,2-Dichloroethene	524 ug/	kg	139	25		02/16/09 15:41	156-59-2	
ans-1,2-Dichloroethene	6.8 ug/	kg	5.5	1		02/14/09 07:07	156-60-5	
,2-Dichloropropane	ND ug/	kg	5.5	1		02/14/09 07:07	78-87-5	
,3-Dichloropropane	ND ug/	kg	5.5	1		02/14/09 07:07	142-28-9	
2-Dichloropropane	ND ug/	kg	5.5	1		02/14/09 07:07	594-20-7	
1-Dichloropropene	ND ug/	kg	5.5	1		02/14/09 07:07	563-58-6	
is-1,3-Dichloropropene	ND ug/	_	5.5	1		02/14/09 07:07	10061-01-5	
ans-1,3-Dichloropropene	ND ug/	-	5.5	1		02/14/09 07:07		
thylbenzene	ND ug/	_	5.5	1		02/14/09 07:07		
thyl methacrylate	ND ug/		11.1	1		02/14/09 07:07		
exachloro-1,3-butadiene	ND ug/	_	5.5	1		02/14/09 07:07		
-Hexane	ND ug/	_	5.5	1		02/14/09 07:07		
-Hexanone	ND ug/	-	111	1		02/14/09 07:07		
xdomethane	ND ug/	_	111	1		02/14/09 07:07		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 50

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: FD-1 Lab ID: 5023333010 Collected: 02/13/09 08:00 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Meth	od: EPA 8260)					
sopropylberzene (Cumene)	ND ug	/kg	5.5	1		02/14/09 07:07	98-82-8	
p-Isopropyltoluene	ND ug/	/kg	5.5	1		02/14/09 07:07	99-87-6	
Viethylene chloride	ND ugi	/kg	22.2	1		02/14/09 07:07	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ugi	/kg	27.7	1		02/14/09 07:07	108-10-1	
Methyl-tert-butyl ether	ND ugi	/kg	5.5	1		02/14/09 07:07	1634-04-4	
Vaphthalene	ND ug	/kg	5.5	1		02/14/09 07:07	91-20-3	
-Propylbenzene	ND ug/	/kg	5.5	1		02/14/09 07:07	103-65-1	
Styrene	ND ug	/kg	5.5	1		02/14/09 07:07	100-42-5	
,1,1,2-Tetrachloroethane	ND uga	/kg	5.5	1		02/14/09 07:07	630-20-6	
,1,2,2-Tetrachloroethane	ND ugi	/kg	5.5	1		02/14/09 07:07	79-34-5	
etrachloroethene	74300 ug/	/kg	2770	500		02/16/09 19:05	127-18-4	
oluene	ND uga	/kg	5.5	1		02/14/09 07:07	108-88-3	
.2.3-Trichlorobenzene	ND ugi	_	5.5	1		02/14/09 07:07	87-61-6	
.2,4-Trichlorobenzene	ND ugi	/kg	5.5	1		02/14/09 07:07	120-82-1	
,1,1-Trichloroethane	ND ugi	/kg	5.5	1		02/14/09 07:07	71-55-6	
,1,2-Trichloroethane	ND ug/	/kg	5.5	1		02/14/09 07:07	79-00-5	
richloroethene	97.9 ug/	/kg	5.5	1		02/14/09 07:07	79-01-6	
richlorofluoromethane	ND ugi	/kg	5.5	1		02/14/09 07:07	75-69-4	
.2.3-Trichloropropane	ND ugi	/kg	5.5	1		02/14/09 07:07	96-18-4	
.2,4-Trimethylbenzene	ND ugi	-	5.5	1		02/14/09 07:07	95-63-6	
.3.5-Trimethylbenzene	ND ug/	/kg	5.5	1		02/14/09 07:07	108-67-8	
inyl acetate	ND ug/	_	111	1		02/14/09 07:07	108-05-4	
'inyl chloride	217 ug/	_	5.5	1		02/14/09 07:07	75-01-4	
(Viene (Total)	ND ug	_	11.1	1		02/14/09 07:07	1330-20-7	
Dibromofluoromethane (S)	94 %	-	80-124	1		02/14/09 07:07	1868-53-7	
oluene-d8 (S)	107 %		58-145	1		02/14/09 07:07	2037-26-5	
-Bromofluorobenzene (S)	91 %		61-131	1		02/14/09 07:07		
ercent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	9.8 %		0.10	1		02/13/09 18:17		

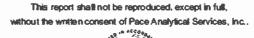
Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-14 (13-14) Lab ID: 5023333011 Collected: 02/13/09 14:40 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260)					
Acetone	ND ug/l	kg	108	1		02/14/09 07:43	67-64-1	
Acrolein	ND ug/l	kg	108	1		02/14/09 07:43	107-02-8	
Acrylonitrile	ND ug/l	kg	108	1		02/14/09 07:43	107-13-1	
Benzene	ND ug/l	kg	5.4	1		02/14/09 07:43	71-43-2	
Bromobenzene	ND ug/l	kg	5.4	1		02/14/09 07:43	108-86-1	
3romochioromethane	ND ug/l	kq	5.4	1		02/14/09 07:43	74-97-5	
Promodichloromethane	ND ug/l	kg	5.4	1		02/14/09 07:43	75-27-4	
lromoform .	ND ug/l	_	5.4	1		02/14/09 07:43	75-25-2	
iromomethane	ND ug/l	_	5.4	1		02/14/09 07:43	74-83-9	
-Butanone (MEK)	ND ug/l	-	27.0	1		02/14/09 07:43		
-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 07:43		
ec-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 07:43		
ert-Butylbenzene	ND ug/l	_	5.4	1		02/14/09 07:43		
Carbon disulfide	ND ug/l	_	10.8	1		02/14/09 07:43		
Carbon tetrachloride	ND ug/l	-	5.4	1		02/14/09 07:43		
Chlorobenzene	ND ug/l		5.4	1		02/14/09 07:43		
Chloroethane	ND ug/l	_	5.4	1		02/14/09 07:43		
hloroform	ND ug/l	_	5.4	1		02/14/09 07:43		
:hloromethane		_	5.4	1		02/14/09 07:43		
-Chlorotoluene	ND ug/l	-	5.4	1		02/14/09 07:43		
	ND ug/l	_		•				
-Chlorotoluene	ND ug/i		5.4	1		02/14/09 07:43		
bromochloromethane	ND ug/l	_	5.4	1		02/14/09 07:43		
,2-Dibromoethane (EDB)	ND ug/l	_	5.4	1		02/14/09 07:43		
bromomethane	ND ug/l	-	5.4	1		02/14/09 07:43		
,2-Dichlorobenzene	ND ug/l	_	5.4	1		02/14/09 07:43		
,3-Dichlorobenzene	ND ug/i	_	5.4	1		02/14/09 07:43		
,4-Dichlorobenzene	ND ug/l	_	5.4	1		02/14/09 07:43		
rans-1,4-Dichloro-2-butene	ND ug/i	kg	108	1		02/14/09 07:43		
Pichlorodifluoromethane	ND ug/l	kg	5.4	1		02/14/09 07:43	75-71-8	
,1-Dichloroethane	ND ug/l	kg	5.4	1		02/14/09 07:43	75-34-3	
,2-Dichloroethane	ND ug/l	kg	5.4	1		02/14/09 07:43	107-06-2	
,1-Dichloroethene	ND ug/l	kg	5.4	1		02/14/09 07:43	75-35-4	
is-1,2-Dichloroethene	8,6 ug/l	kg	5.4	1		02/14/09 07:43	156-59-2	
ans-1,2-Dichloroethene	ND ug/l	kg	5.4	1		02/14/09 07:43	156-60-5	
,2-Dichloropropane	ND ug/l	kg	5.4	1		02/14/09 07:43	78-87-5	
,3-Dichloropropane	ND ug/i	kg	5.4	1		02/14/09 07:43	142-28-9	
,2-Dichloropropane	ND ug/l	kg.	5.4	1		02/14/09 07:43	594-20-7	
1-Dichloropropene	ND ug/l	_	5.4	1		02/14/09 07:43	563-58-6	
is-1,3-Dichloropropene	ND ug/l	_	5.4	1		02/14/09 07:43	10061-01-5	
ans-1,3-Dichloropropene	ND ug/l	-	5.4	1		02/14/09 07:43		
thylbenzene	ND ug/l	_	5.4	1		02/14/09 07:43		
thyl methacrylate	ND ug/l		10.8	1		02/14/09 07:43		
lexachloro-1,3-butadiene	ND ug/l	_	5.4	1		02/14/09 07:43		
-Hexane	ND ug/l	_	5.4	1		02/14/09 07:43		
-Hexanone	ND ug/l	-	108	1		02/14/09 07:43		
odomethane	ND ug/l	_	108	1		02/14/09 07:43		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 50

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

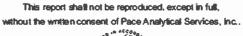
Sample: SB-14 (13-14) Lab ID: 5023333011 Collected: 02/13/09 14:40 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	od: EPA 8260						
sopropylberzene (Cumene)	ND ug/	'kg	5.4	1		02/14/09 07:43	98-82-8	
p-Isopropyttoluene	ND ug/	'kg	5.4	1		02/14/09 07:43	99-87-6	
Methylene chloride	ND ug/	'kg	21.6	1		02/14/09 07:43	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug/	'kg	27.0	1		02/14/09 07:43	108-10-1	
Nethyl-tert-butyl ether	ND ug/	'kg	5.4	1		02/14/09 07:43	1634-04-4	
Vaphthalene	ND ug/	'kg	5.4	1		02/14/09 07:43	91-20-3	
-Propylbenzene	ND ug/	'kg	5.4	1		02/14/09 07:43	103-65-1	
Styrene	ND ug/	'kg	5.4	1		02/14/09 07:43	100-42-5	
,1,1,2-Tetrachloroethane	ND ug/	'kg	5.4	1		02/14/09 07:43	630-20-6	
,1,2,2-Tetrachloroethane	ND ug/	'kg	5.4	1		02/14/09 07:43	79-34-5	
etrachloroethene	21000 ug/	'kg	2700	500		02/16/09 15:59	127-18-4	
oluene	ND ug/	'kg	5.4	1		02/14/09 07:43	108-88-3	
.2.3-Trichlorobenzene	ND ug/	'kg	5.4	1		02/14/09 07:43	87-61-6	
.2.4-Trichlorobenzene	ND ug/	'kg	5.4	1		02/14/09 07:43	120-82-1	
,1,1-Trichloroethane	ND ug/	'kg	5.4	1		02/14/09 07:43	71-55-6	
,1,2-Trichloroethane	ND ug/	'kg	5.4	1		02/14/09 07:43	79-00-5	
richloroethene	13.5 ug/	'kg	5.4	1		02/14/09 07:43	79-01-6	
richlorofluoromethane	ND ug/	'kg	5.4	1		02/14/09 07:43	75-69-4	
.2,3-Trichloropropane	ND ug/	'kg	5.4	1		02/14/09 07:43	96-18-4	
.2.4-Trimethylbenzene	ND ug/	'kg	5.4	1		02/14/09 07:43	95-63-6	
.3.5-Trimethylbenzene	ND ug/	'kg	5.4	1		02/14/09 07:43	108-67-8	
/inyl acetate	ND ug/	'kg	108	1		02/14/09 07:43	108-05-4	
/inyl chloride	ND ug/	'kg	5.4	1		02/14/09 07:43	75-01-4	
(ylene (Total)	ND ug/	'kg	10.8	1		02/14/09 07:43	1330-20-7	
Dibromofluoromethane (S)	93 %		80-124	1		02/14/09 07:43	1868-53-7	
oluene-d8 (S)	106 %		58-145	1		02/14/09 07:43	2037-26-5	
-Bromofluorobenzene (S)	89 %		61-131	1		02/14/09 07:43	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	7.3 %		0.10	1		02/13/09 18:18		

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-14 (16-17) Lab ID: 5023333012 Collected: 02/13/09 14:55 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	d: EPA 8260						
Acetone	ND ug/k	g	106	1		02/14/09 08:23	67-64-1	
Acrolein	ND ug/k	g	106	1		02/14/09 08:23	107-02-8	
Acrylonitrile	ND ug/k	g	106	1		02/14/09 08:23	107-13-1	
Benzene	ND ug/k	g	5.3	1		02/14/09 08:23	71-43-2	
Promobenzene	ND ug/k	g	5.3	1		02/14/09 08:23	108-86-1	
Promochloromethane	ND ug/k	9	5.3	1		02/14/09 08:23	74-97-5	
Iromodichloromethane	ND ug/k	Q Q	5.3	1		02/14/09 08:23	75-27-4	
romoform	ND ug/k	_	5.3	1		02/14/09 08:23	75-25-2	
Iromomethane	ND ug/k	_	5.3	1		02/14/09 08:23	74-83-9	
-Butanone (MEK)	ND ug/k	-	26.5	1		02/14/09 08:23	78-93-3	
-Butylbenzene	ND ug/k	_	5.3	1		02/14/09 08:23	104-51-8	
ec-Butylbenzene	ND ug/k	_	5.3	1		02/14/09 08:23		
ert-Butylbenzene	ND ug/k	_	5.3	1		02/14/09 08:23		
Carbon disulfide	ND ug/k	_	10.6	1		02/14/09 08:23		
Carbon tetrachloride	ND ug/k	-	5.3	1		02/14/09 08:23		
Chlorobenzene	ND ug/k		5.3	1		02/14/09 08:23		
Chloroethane	ND ug/k	_	5.3	1		02/14/09 08:23		
hloroform	ND ug/k	_	5.3	1		02/14/09 08:23		
hloromethane		_	5.3	1		02/14/09 08:23		
	ND ug/k	-	5.3 5.3	1				
-Chlorotoluene	ND ug/k	_		•		02/14/09 08:23		
-Chlorotoluene	ND ug/k	_	5.3	1		02/14/09 08:23		
bromochloromethane	ND ug/k	_	5.3	1		02/14/09 08:23		
,2-Dibromoethane (EDB)	ND ug/k	_	5.3	1		02/14/09 08:23		
ibromomethane	ND ug/k	-	5.3	1		02/14/09 08:23		
,2-Dichlorobenzene	ND ug/k	_	5.3	1		02/14/09 08:23		
,3-Dichlorobenzene	ND ug/k	g	5.3	1		02/14/09 08:23		
,4-Dichlorobenzene	ND ug/k	g.	5.3	1		02/14/09 08:23		
ans-1,4-Dichloro-2-butene	ND ug/k	g	106	1		02/14/09 08:23	110-57-6	
Pichlorodifluoromethane	ND ug/k	ig.	5.3	1		02/14/09 08:23	75-71-8	
,1-Dichloroethane	ND ug/k	g	5.3	1		02/14/09 08:23	75-34-3	
,2-Dichloroethane	ND ug/k	g	5.3	1		02/14/09 08:23	107-06-2	
,1-Dichloroethene	ND ug/k	g	5.3	1		02/14/09 08:23	75-35-4	
is-1,2-Dichloroethene	7.3 ug/k	g	5.3	1		02/14/09 08:23	156-59-2	
ans-1,2-Dichloroethene	ND ug/k	g	5.3	1		02/14/09 08:23	156-60-5	
,2-Dichloropropane	ND ug/k	g	5.3	1		02/14/09 08:23	78-87-5	
,3-Dichloropropane	ND ug/k	g	5.3	1		02/14/09 08:23	142-28-9	
,2-Dichloropropane	ND ug/k	g	5.3	1		02/14/09 08:23	594-20-7	
1-Dichloropropene	ND ug/k	_	5.3	1		02/14/09 08:23	563-58-6	
is-1,3-Dichloropropene	ND ug/k	_	5.3	1		02/14/09 08:23	10061-01-5	
ans-1,3-Dichloropropene	ND ug/k	-	5.3	1		02/14/09 08:23		
thylbenzene	ND ug/k	_	5.3	1		02/14/09 08:23		
thyl methacrylate	ND ug/k		10.6	1		02/14/09 08:23		
lexachloro-1,3-butadiene	ND ug/k	_	5.3	1		02/14/09 08:23		
-Hexane	ND ug/k	_	5.3	1		02/14/09 08:23		
-Hexanone	ND ug/k	-	106	1		02/14/09 08:23		
-nexanone odomethane	ND ug/k	_	106	1		02/14/09 08:23		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 50

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-14 (16-17) Lab ID: 5023333012 Collected: 02/13/09 14:55 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
sopropylberzene (Cumene)	ND ug	/kg	5.3	1		02/14/09 08:23	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.3	1		02/14/09 08:23	99-87-6	
Methylene chloride	ND ug	/kg	21.2	1		02/14/09 08:23	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.5	1		02/14/09 08:23	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.3	1		02/14/09 08:23	1634-04-4	
Vaphthalene	ND ug	/kg	5.3	1		02/14/09 08:23	91-20-3	
n-Propylbenzene	ND ug	/kg	5.3	1		02/14/09 08:23	103-65-1	
Styrene	ND ug	/kg	5.3	1		02/14/09 08:23	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/14/09 08:23	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/14/09 08:23	79-34-5	
etrachloroethene	31600 ug	/kg	2650	500		02/16/09 16:39	127-18-4	
oluene	ND ug	/kg	5.3	1		02/14/09 08:23	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.3	1		02/14/09 08:23	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.3	1		02/14/09 08:23	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.3	1		02/14/09 08:23	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.3	1		02/14/09 08:23	79-00-5	
richloroethene	15.4 ug	/kg	5.3	1		02/14/09 08:23	79-01-6	
richlorofluoromethane	ND ug	/kg	5.3	1		02/14/09 08:23	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.3	1		02/14/09 08:23	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.3	1		02/14/09 08:23	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.3	1		02/14/09 08:23	108-67-8	
/inyl acetate	ND ug	/kg	106	1		02/14/09 08:23	108-05-4	
/inyl chloride	ND ug	/kg	5.3	1		02/14/09 08:23	75-01-4	
(ylene (Total)	ND ug	/kg	10.6	1		02/14/09 08:23	1330-20-7	
Dibromofluoromethane (S)	94 %		80-124	1		02/14/09 08:23	1868-53-7	
oluene-d8 (S)	107 %		58-145	1		02/14/09 08:23	2037-26-5	
-Bromofluorobenzene (S)	83 %		61-131	1		02/14/09 08:23	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	5.8 %		0.10	1		02/13/09 18:18		

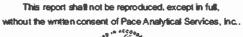
Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333


Sample: SB-14 (17-18) Lab ID: 5023333013 Collected: 02/13/09 15:00 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
1260 MSV 5030 Low Level	Analytical Meth	od: EPA 8260)					
Acetone	ND ug/	kg	115	1		02/14/09 08:59	67-64-1	
Acrolein	ND ug/	kg	115	1		02/14/09 08:59	107-02-8	
Acrylonitrile	ND ug/	kg	115	1		02/14/09 08:59	107-13-1	
Benzene	ND ug/	kg	5.8	1		02/14/09 08:59	71-43-2	
Bromobenzene	ND ug/	kg	5.8	1		02/14/09 08:59	108-86-1	
romochloromethane	ND ug/	ka	5.8	1		02/14/09 08:59	74-97-5	
Promodichloromethane	ND ug/		5.8	1		02/14/09 08:59	75-27-4	
lromoform	ND ug/	_	5.8	1		02/14/09 08:59	75-25-2	
iromomethane	ND ug/	_	5.8	1		02/14/09 08:59	74-83-9	
-Butanone (MEK)	ND ug/	-	28.8	1		02/14/09 08:59		
-Butylbenzene	ND ug/	_	5.8	1		02/14/09 08:59		
ec-Butylbenzene	ND ug/	_	5.8	1		02/14/09 08:59		
ert-Butylbenzene	ND ug/	_	5.8	1		02/14/09 08:59		
Carbon disulfide	ND ug/	_	11.5	1		02/14/09 08:59		
Carbon tetrachloride	ND ug/	-	5.8	1		02/14/09 08:59		
Chlorobenzene			5.8	1		02/14/09 08:59		
Chloroethane	ND ug/	_	5.8	1		02/14/09 08:59		
Chloroform	ND ug/	_	5.8	1		02/14/09 08:59		
	ND ug/	_						
hioromethane	ND ug/	-	5.8	1		02/14/09 08:59		
-Chlorotoluene	ND ug/	_	5.8	1		02/14/09 08:59		
-Chlorotoluene	ND ug/		5.8	1		02/14/09 08:59		
bromochloromethane	ND ug/	_	5.8	1		02/14/09 08:59		
,2-Dibromoethane (EDB)	ND ug/	_	5.8	1		02/14/09 08:59		
Pibromomethane	ND ug/	-	5.8	1		02/14/09 08:59		
,2-Dichlorobenzene	ND ug/	kg	5.8	1		02/14/09 08:59	95-50-1	
,3-Dichlorobenzene	ND ug/	kg	5.8	1		02/14/09 08:59	541-73-1	
,4-Dichlorobenzene	ND ug/	kg	5.8	1		02/14/09 08:59	106-46-7	
rans-1,4-Dichloro-2-butene	ND ug/	kg	115	1		02/14/09 08:59	110-57-6	
ichlorodifluoromethane	ND ug/	kg	5.8	1		02/14/09 08:59	75-71-8	
,1-Dichloroethane	ND ug/	kg	5.8	1		02/14/09 08:59	75-34-3	
,2-Dichloroethane	ND ug/	kg	5.8	1		02/14/09 08:59	107-06-2	
,1-Dichloroethene	ND ug/	kg	5.8	1		02/14/09 08:59	75-35-4	
is-1,2-Dichloroethene	ND ug/	kg	5.8	1		02/14/09 08:59	156-59-2	
ans-1,2-Dichloroethene	ND ug/	kg	5.8	1		02/14/09 08:59	156-60-5	
,2-Dichloropropane	ND ug/	-	5.8	1		02/14/09 08:59	78-87-5	
,3-Dichloropropane	ND ug/	_	5.8	1		02/14/09 08:59	142-28-9	
,2-Dichloropropane	ND ug/	_	5.8	1		02/14/09 08:59		
,1-Dichloropropene	ND ug/	_	5.8	1		02/14/09 08:59		
is-1,3-Dichloropropene	ND ug/	_	5.8	1		02/14/09 08:59		
ans-1,3-Dichloropropene	ND ug/	-	5.8	1		02/14/09 08:59		
thylbenzene	ND ug/	_	5.8	1		02/14/09 08:59		
thyl methacrylate	ND ug/		11.5	1		02/14/09 08:59		
lexachloro-1,3-butadiene	ND ug/	_	5.8	1		02/14/09 08:59		
	_	_	5.8	1		02/14/09 08:59		
-Hexane	ND ug/	-						
-Hexanone	ND ug/	Kg	115	1		02/14/09 08:59	9-01-19-D	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 28 of 50

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-14 (17-18) Lab ID: 5023333013 Collected: 02/13/09 15:00 Received: 02/13/09 16:58 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260	1					
sopropylberzene (Cumene)	ND ug	/kg	5.8	1		02/14/09 08:59	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.8	1		02/14/09 08:59	99-87-6	
Viethylene chloride	ND ug	/kg	23.0	1		02/14/09 08:59	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	28.8	1		02/14/09 08:59	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.8	1		02/14/09 08:59	1634-04-4	
Vaphthalene	ND ug	/kg	5.8	1		02/14/09 08:59	91-20-3	
-Propylbenzene	ND ug	/kg	5.8	1		02/14/09 08:59	103-65-1	
Styrene	ND ug	/kg	5.8	1		02/14/09 08:59	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.8	1		02/14/09 08:59	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.8	1		02/14/09 08:59	79-34-5	
etrachloroethene	41100 ug	/kg	2880	500		02/16/09 17:21	127-18-4	
oluene	ND ug	/kg	5.8	1		02/14/09 08:59	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.8	1		02/14/09 08:59	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.8	1		02/14/09 08:59	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.8	1		02/14/09 08:59	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.8	1		02/14/09 08:59	79-00-5	
richloroethene	27.6 ug	/kg	5.8	1		02/14/09 08:59	79-01-6	
richlorofluoromethane	ND ug	/kg	5.8	1		02/14/09 08:59	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.8	1		02/14/09 08:59	96-18-4	
,2,4-Trimethylbenzene	ND ug	/kg	5.8	1		02/14/09 08:59	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.8	1		02/14/09 08:59	108-67-8	
/inyl acetate	ND ug	/kg	115	1		02/14/09 08:59	108-05-4	
/inyl chloride	ND ug	/kg	5.8	1		02/14/09 08:59	75-01-4	
(ylene (Total)	ND ug	/kg	11.5	1		02/14/09 08:59	1330-20-7	
Dibromofluoromethane (S)	92 %		80-124	1		02/14/09 08:59	1868-53-7	
oluene-d8 (S)	108 %		58-145	1		02/14/09 08:59	2037-26-5	
-Bromofluorobenzene (S)	84 %		61-131	1		02/14/09 08:59	460-00-4	
Percent Moisture	Analytical Meth	od: ASTM D2	974-87					
Percent Moisture	13.2 %		0.10	1		02/13/09 18:18		

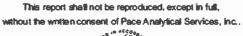
Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 318
Pace Analytical Services, Inc

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS


Project Michigan Plaza

Sample: SB-11	Lab ID: 5023333	014 Collected: 02/13/0	19 10:45	Received: 02/13/09 16:58 Matrix: Water	
Parameters	Results	Units Report Limit	DF	Prepared Analyzed CAS No.	Qua
3260 MSV	Analytical Method:	EPA 8260			
Acetone	ND ug/L	100	1	02/19/09 20:17 67-64-1	
Acrolein	ND ug/L	100	1	02/19/09 20:17 107-02-8	
Acrylonitrile	ND ug/L	100	1	02/19/09 20:17 107-13-1	
3enzene	ND ug/L	5.0	1	02/19/09 20:17 71-43-2	
3romobenzene	ND ug/L	5.0	1	02/19/09 20:17 108-86-1	
Bromochloromethane	ND ug/L	5.0	1	02/19/09 20:17 74-97-5	
3romodichloromethane	ND ug/L	5.0	1	02/19/09 20:17 75-27-4	
3romoform	ND ug/L	5.0	1	02/19/09 20:17 75-25-2	
3romomethane	ND ug/L	5.0	1	02/19/09 20:17 74-83-9	
2-Butanone (MEK)	ND ug/L	25.0	1	02/19/09 20:17 78-93-3	
n-Butylbenzene	ND ug/L	5.0	1	02/19/09 20:17 104-51-8	
ec-Butylbenzene	ND ug/L	5.0	1	02/19/09 20:17 135-98-8	
ert-Butylbenzene	ND ug/L	5.0	1	02/19/09 20:17 98-06-6	
Carbon disulfide	ND ug/L	10.0	1	02/19/09 20:17 75-15-0	
Carbon tetrachloride	ND ug/L	5.0	1	02/19/09 20:17 56-23-5	
Chlorobenzene	ND ug/L	5.0	1	02/19/09 20:17 108-90-7	
Chloroethane	ND ug/L	5.0	1	02/19/09 20:17 75-00-3	
Chloroform	ND ug/L	5.0	1	02/19/09 20:17 67-66-3	
Chloromethane	ND ug/L	5.0	1	02/19/09 20:17 74-87-3	
-Chlorotoluene	ND ug/L	5.0	1	02/19/09 20:17 95-49-8	
I-Chlorotoluene	ND ug/L	5.0	1	02/19/09 20:17 106-43-4	
Dibromochloromethane	ND ug/L	5.0	1	02/19/09 20:17 124-48-1	
.2-Dibromoethane (EDB)	ND ug/L	5.0	1	02/19/09 20:17 106-93-4	
Dibromomethane	ND ug/L	5.0	1	02/19/09 20:17 74-95-3	
.2-Dichlorobenzene	ND ug/L	5.0	1	02/19/09 20:17 95-50-1	
.3-Dichlorobenzene	ND ug/L	5.0	1	02/19/09 20:17 541-73-1	
.4-Dichlorobenzene	ND ug/L	5.0	1	02/19/09 20:17 106-46-7	
rans-1,4-Dichloro-2-butene	ND ug/L	100	1	02/19/09 20:17 110-57-6	
Dichlorodifluoromethane		5.0	1	02/19/09 20:17 75-71-8	
I.1-Dichloroethane	ND ug/L	5.0	1	02/19/09 20:17 75-71-8	
.2-Dichloroethane	ND ug/L	5.0	1	02/19/09 20:17 107-06-2	
.1-Dichloroethene	ND ug/L		-		
	ND ug/L	5.0	1	02/19/09 20:17 75-35-4	
is-1,2-Dichloroethene	632 ug/L	50.0	10	02/20/09 08:58 156-59-2	
rans-1,2-Dichloroethene	10.4 ug/L	5.0	1	02/19/09 20:17 156-60-5	
.2-Dichloropropane	ND ug/L	5.0	1	02/19/09 20:17 78-87-5	
.3-Dichloropropane	ND ug/L	5.0	1	02/19/09 20:17 142-28-9	
.2-Dichloropropane	ND ug/L	5.0	1	02/19/09 20:17 594-20-7	
,1-Dichloropropene	ND ug/L	5.0	1	02/19/09 20:17 563-58-6	
is-1,3-Dichloropropene	ND ug/L	5.0	1	02/19/09 20:17 10061-01-5	
rans-1,3-Dichloropropene	ND ug/L	5.0	1	02/19/09 20:17 10061-02-6	
thylbenzene	ND ug/L	5.0	1	02/19/09 20:17 100-41-4	
Ethyl methacrylate	ND ug/L	100	1	02/19/09 20:17 97-63-2	
lexachloro-1,3-butadiene	ND ug/L	5.0	1	02/19/09 20:17 87-68-3	
-Hexane	ND ug/L	5.0	1	02/19/09 20:17 110-54-3	
-Hexanone	ND ug/L	25.0	1	02/19/09 20:17 591-78-6	
odomethane	ND ug/L	10.0	1	02/19/09 20:17 74-88-4	
sopropylbenzene (Cumene)	ND ug/L	5.0	1	02/19/09 20:17 98-82-8	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 30 of 50

Reference 26 Page 319
Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023333

Sample: SB-11	Lab ID: 5023333014	Collected: 02/13/0	09 10:45	Received: 02/13/09 16:58	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	CAS No.	Qua
8260 MSV	Analytical Method: EPA	8260				
p-Isopropyttoluene	ND ug/L	5.0	1	02/19/09 20	:17 99-87-6	
Methylene chloride	ND ug/L	5.0	1	02/19/09 20	:17 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	25.0	1	02/19/09 20	:17 108-10-1	
Methyl-tert-butyl ether	ND ug/L	4.0	1	02/19/09 20	:17 1634-04-4	
Naphthalene	ND ug/L	5.0	1	02/19/09 20	:17 91-20-3	
n-Propylbenzene	ND ug/L	5.0	1	02/19/09 20	:17 103-65-1	
Styrene	ND ug/L	5.0	1	02/19/09 20	:17 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09 20	:17 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09 20	:17 79-34-5	
Tetrachloroethene	177 ug/L	5.0	1	02/19/09 20	:17 127-18-4	
Toluene	ND ug/L	5.0	1	02/19/09 20	:17 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	5.0	1	02/19/09 20	:17 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	5.0	1	02/19/09 20	:17 120-82-1	
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/19/09 20	:17 71-55-6	
1,1,2-Trichloroethane	ND ug/L	5.0	1	02/19/09 20	:17 79-00-5	
Trichloroethene	10,2 ug/L	5.0	1	02/19/09 20	:17 79-01-6	
Trichlorofluoromethane	ND ug/L	5.0	1	02/19/09 20	:17 75-69-4	
1,2,3-Trichloropropane	ND ug/L	5.0	1	02/19/09 20	:17 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	5.0	1	02/19/09 20	:17 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	5.0	1	02/19/09 20	:17 108-67-8	
Vinyl acetate	ND ug/L	10.0	1	02/19/09 20	:17 108-05-4	
Vinyl chloride	234 ug/L	2.0	1	02/19/09 20	:17 75-01-4	
Kylene (Total)	ND ug/L	10.0	1	02/19/09 20	:17 1330-20-7	
Dibromofluoromethane (S)	102 %	80-123	1	02/19/09 20	:17 1868-53-7	
4-Bromofluorobenzene (S)	107 %	70-126	1	02/19/09 20	:17 460-00-4	
Toluene-d8 (S)	106 %	80-116	1		:17 2037-26-5	

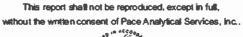
Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 320

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS


Project Michigan Plaza

Parameters 1260 MSV	Results Units				
260 MSV		Report Limit	DF	Prepared Analyzed	CAS No. Qu
	Analytical Method: EPA 8	260			
Acetone	ND ug/L	100	1	02/19/09 20:47	67-64-1
Acrolein	ND ug/L	100	1	02/19/09 20:47	107-02-8
Acrylonitrile	ND ug/L	100	1	02/19/09 20:47	107-13-1
Benzene	ND ug/L	5.0	1	02/19/09 20:47	71-43-2
Promobenzene	ND ug/L	5.0	1	02/19/09 20:47	108-86-1
Promochloromethane	ND ug/L	5.0	1	02/19/09 20:47	74-97-5
Promodichloromethane	ND ug/L	5.0	1	02/19/09 20:47	75-27-4
iromoform	ND ug/L	5.0	1	02/19/09 20:47	75-25-2
Promomethane	ND ug/L	5.0	1	02/19/09 20:47	74-83-9
l-Butanone (MEK)	ND ug/L	25.0	1	02/19/09 20:47	78-93-3
-Butylbenzene	ND ug/L	5.0	1	02/19/09 20:47	104-51-8
ec-Butylbenzene	ND ug/L	5.0	1	02/19/09 20:47	135-98-8
ert-Butylbenzene	ND ug/L	5.0	1	02/19/09 20:47	98-06-6
Carbon disulfide	ND ug/L	10.0	1	02/19/09 20:47	75-15-0
Carbon tetrachloride	ND ug/L	5.0	1	02/19/09 20:47	56-23-5
Chlorobenzene	ND ug/L	5.0	1	02/19/09 20:47	108-90-7
Chloroethane	ND ug/L	5.0	1	02/19/09 20:47	75-00-3
Chloroform	ND ug/L	5.0	1	02/19/09 20:47	
Chloromethane	ND ug/L	5.0	1	02/19/09 20:47	
-Chlorotoluene	ND ug/L	5.0	1	02/19/09 20:47	
-Chlorotoluene	ND ug/L	5.0	1	02/19/09 20:47	
Dibromochloromethane	ND ug/L	5.0	1	02/19/09 20:47	
.2-Dibromoethane (EDB)	ND ug/L	5.0	1	02/19/09 20:47	
Dibromomethane	ND ug/L	5.0	1	02/19/09 20:47	
.2-Dichlorobenzene	ND ug/L	5.0	1	02/19/09 20:47	
.3-Dichlorobenzene	ND ug/L	5.0	1	02/19/09 20:47	
.4-Dichlorobenzene	ND ug/L	5.0	1	02/19/09 20:47	
rans-1.4-Dichloro-2-butene	ND ug/L	100	1	02/19/09 20:47	
Dichlorodifluoromethane		5.0	1		
_	ND ug/L		1	02/19/09 20:47	
,1-Dichloroethane .2-Dichloroethane	ND ug/L	5.0 5.0	1	02/19/09 20:47	
	ND ug/L			02/19/09 20:47	
,1-Dichloroethene	ND ug/L	5.0	1	02/19/09 20:47	
is-1,2-Dichloroethene	535 ug/L	250	50	02/20/09 09:28	
rans-1,2-Dichloroethene	ND ug/L	5.0	1	02/19/09 20:47	
.2-Dichloropropane	ND ug/L	5.0	1	02/19/09 20:47	
.3-Dichloropropane	ND ug/L	5.0	1	02/19/09 20:47	
.2-Dichloropropane	ND ug/L	5.0	1	02/19/09 20:47	
,1-Dichloropropene	ND ug/L	5.0	1	02/19/09 20:47	
is-1,3-Dichloropropene	ND ug/L	5.0	1	02/19/09 20:47	
rans-1,3-Dichloropropene	ND ug/L	5.0	1	02/19/09 20:47	
thylbenzene	ND ug/L	5.0	1	02/19/09 20:47	
Ethyl methacrylate	ND ug/L	100	1	02/19/09 20:47	
lexachloro-1,3-butadiene	ND ug/L	5.0	1	02/19/09 20:47	87-68-3
-Hexane	ND ug/L	5.0	1	02/19/09 20:47	
-Hexanone	ND ug/L	25.0	1	02/19/09 20:47	
odomethane	ND ug/L	10.0	1	02/19/09 20:47	74-88-4

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 32 of 50

Page 321

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

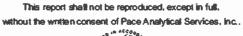
Project Michigan Plaza
Pace Project No.: 5023333

Sample: SB-13	Lab ID: 5023333015	Collected: 02/13/09 1	12:30	Received: 02/13/09 16:58 Matrix: Water
Parameters	Results Units	Report Limit [)F	Prepared Analyzed CAS No. Qua
8260 MSV	Analytical Method: EPA (3260		
p-Isoprapyttoluene	ND ug/L	5.0	1	02/19/09 20:47 99-87-6
Methylene chloride	ND ug/L	5.0	1	02/19/09 20:47 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	25.0	1	02/19/09 20:47 108-10-1
Methyl-tert-butyl ether	ND ug/L	4.0	1	02/19/09 20:47 1634-04-4
Naphthalene	ND ug/L	5.0	1	02/19/09 20:47 91-20-3
n-Propylbenzene	ND ug/L	5.0	1	02/19/09 20:47 103-65-1
Styrene	ND ug/L	5.0	1	02/19/09 20:47 100-42-5
1,1,1,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09 20:47 630-20-6
1,1,2,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09 20:47 79-34-5
Tetrachloroethene	8,4 ug/L	5.0	1	02/19/09 20:47 127-18-4
Toluene	ND ug/L	5.0	1	02/19/09 20:47 108-88-3
1,2,3-Trichlorobenzene	ND ug/L	5.0	1	02/19/09 20:47 87-61-6
1,2,4-Trichlorobenzene	ND ug/L	5.0	1	02/19/09 20:47 120-82-1
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/19/09 20:47 71-55-6
1,1,2-Trichloroethane	ND ug/L	5.0	1	02/19/09 20:47 79-00-5
Trichloroethene	ND ug/L	5.0	1	02/19/09 20:47 79-01-6
Trichlorofluoromethane	ND ug/L	5.0	1	02/19/09 20:47 75-69-4
1,2,3-Trichloropropane	ND ug/L	5.0	1	02/19/09 20:47 96-18-4
1,2,4-Trimethylbenzene	ND ug/L	5.0	1	02/19/09 20:47 95-63-6
1,3,5-Trimethylbenzene	ND ug/L	5.0	1	02/19/09 20:47 108-67-8
/inyl acetate	ND ug/L	10.0	1	02/19/09 20:47 108-05-4
√inyl chloride	2240 ug/L	100 5	50	02/20/09 09:28 75-01-4
Kylene (Total)	ND ug/L	10.0	1	02/19/09 20:47 1330-20-7
Dibromofluoromethane (S)	102 %	80-123	1	02/19/09 20:47 1868-53-7
I-Bromofluorobenzene (S)	97 %	70-126	1	02/19/09 20:47 460-00-4
Toluene-d8 (S)	97 %	80-116	1	02/19/09 20:47 2037-26-5

Page 322

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS


Project Michigan Plaza
Pace Project No.: 5023333

Sample: SB-12	Lab ID: 5023333016	Collected: 02/13/0	9 13:30	Received:	02/13/09 16:58	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV	Analytical Method: EPA	8260					
Acetone	ND ug/L	100	1		02/19/09 21:1	7 67-64-1	
Acrolein	ND ug/L	100	1		02/19/09 21:1	7 107-02-8	
Acrylonitrile	ND ug/L	100	1		02/19/09 21:1	7 107-13-1	
Benzene	ND ug/L	5.0	1		02/19/09 21:1	7 71-43-2	
Bromobenzene	ND ug/L	5.0	1		02/19/09 21:1	7 108-86-1	
3romochloromethane	ND ug/L	5.0	1		02/19/09 21:1	7 74-97-5	
3romodichloromethane	ND ug/L	5.0	1		02/19/09 21:1	7 75-27-4	
3romoform	ND ug/L	5.0	1		02/19/09 21:1	7 75-25-2	
3romomethane	ND ug/L	5.0	1		02/19/09 21:1	7 74-83-9	
2-Butanone (MEK)	ND ug/L	25.0	1		02/19/09 21:1	7 78-93-3	
n-Butylbenzene	ND ug/L	5.0	1		02/19/09 21:1		
sec-Butylbenzene	ND ug/L	5.0	1		02/19/09 21:1		
ert-Butylbenzene	ND ug/L	5.0	1		02/19/09 21:1		
Carbon disulfide	ND ug/L	10.0	1		02/19/09 21:1		
Carbon tetrachloride	ND ug/L	5.0	1		02/19/09 21:1		
Chlorobenzene	ND ug/L	5.0	1		02/19/09 21:1		
Chloroethane	ND ug/L	5.0	1		02/19/09 21:1		
Chloroform	ND ug/L	5.0	1		02/19/09 21:1		
	_	5.0	1		02/19/09 21:1		
Chloromethane	ND ug/L		•				
-Chlorotoluene	ND ug/L	5.0	1		02/19/09 21:1		
-Chlorotoluene	ND ug/L	5.0	•		02/19/09 21:1		
Dibromochloromethane	ND ug/L	5.0	1		02/19/09 21:1		
,2-Dibromoethane (EDB)	ND ug/L	5.0	1		02/19/09 21:1		
Dibromomethane	ND ug/L	5.0	1		02/19/09 21:1		
,2-Dichlorobenzene	ND ug/L	5.0	1		02/19/09 21:1		
I,3-Dichlorobenzene	ND ug/L	5.0	1		02/19/09 21:1		
I,4-Dichlorobenzene	ND ug/L	5.0	1		02/19/09 21:1		
rans-1,4-Dichloro-2-butene	ND ug/L	100	1		02/19/09 21:1		
Dichlorodifluoromethane	ND ug/L	5.0	1		02/19/09 21:1		
.1-Dichloroethane	ND ug/L	5.0	1		02/19/09 21:1		
.2-Dichloroethane	ND ug/L	5.0	1		02/19/09 21:1	7 107-06-2	
I,1-Dichloroethene	5.7 ug/L	5.0	1		02/19/09 21:1	7 75-35-4	
cis-1,2-Dichloroethene	6800 ug/L	250	50		02/20/09 09:5	9 156-59-2	
rans-1,2-Dichloroethene	28.4 ug/L	5.0	1		02/19/09 21:1	7 156-60-5	
,2-Dichloropropane	ND ug/L	5.0	1		02/19/09 21:1	7 78-87-5	
,3-Dichloropropane	ND ug/L	5.0	1		02/19/09 21:1	7 142-28-9	
2,2-Dichloropropane	ND ug/L	5.0	1		02/19/09 21:1	7 594-20-7	
.1-Dichloropropene	ND ug/L	5.0	1		02/19/09 21:1	7 563-58-6	
is-1,3-Dichloropropene	ND ug/L	5.0	1		02/19/09 21:1	7 10061-01-5	
rans-1,3-Dichloropropene	ND ug/L	5.0	1			7 10061-02-6	
Ethylbenzene	ND ug/L	5.0	1		02/19/09 21:1		
Ethyl methacrylate	ND ug/L	100	1		02/19/09 21:1		
lexachloro-1,3-butadiene	ND ug/L	5.0	1		02/19/09 21:1		
-Hexane	ND ug/L	5.0	1		02/19/09 21:1		
2-Hexanone	ND ug/L	25.0	1		02/19/09 21:1		
odomethane	ND ug/L	10.0	1		02/19/09 21:1		
sopropylberzene (Cumene)	ND ug/L	5.0	1		02/19/09 21:1		

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 34 of 50

Page 323
ace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

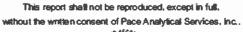
Project Michigan Plaza
Pace Project No.: 5023333

Sample: SB-12	Lab ID: 5023333	3016 Collected: 02/13/	09 13:30	Received: 02/13/09 16:	58 Matrix: Water	
Parameters	Results	Units Report Limit	DF	Prepared Analy.	zed CAS No.	Qua
8260 MSV	Analytical Method:	EPA 8260				
p-Isopropyttoluene	ND ug/L	5.0	1	02/19/09	21:17 99-87-6	
Methylene chloride	ND ug/L	5.0	1	02/19/09	21:17 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	25.0	1	02/19/09	21:17 108-10-1	
Methyl-tert-butyl ether	ND ug/L	4.0	1	02/19/09	21:17 1634-04-4	
Naphthalene	ND ug/L	5.0	1	02/19/09	21:17 91-20-3	
n-Propylbenzene	ND ug/L	5.0	1	02/19/09	21:17 103-65-1	
Styrene	ND ug/L	5.0	1	02/19/09	21:17 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09	21:17 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09	21:17 79-34-5	
Tetrachloroethene	33.5 ug/L	5.0	1	02/19/09	21:17 127-18-4	
Toluene	ND ug/L	5.0	1	02/19/09	21:17 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	5.0	1	02/19/09	21:17 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	5.0	1	02/19/09	21:17 120-82-1	
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/19/09	21:17 71-55-6	
1,1,2-Trichloroethane	ND ug/L	5.0	1	02/19/09	21:17 79-00-5	
Trichloroethene	11,0 ug/L	5.0	1	02/19/09	21:17 79-01-6	
Trichlorofluoromethane	ND ug/L	5.0	1	02/19/09	21:17 75-69-4	
1,2,3-Trichloropropane	ND ug/L	5.0	1	02/19/09	21:17 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	5.0	1	02/19/09	21:17 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	5.0	1	02/19/09	21:17 108-67-8	
Vinyl acetate	ND ug/L	10.0	1	02/19/09	21:17 108-05-4	
Vinyl chloride	9010 ug/L	100	50	02/20/09	09:59 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	02/19/09	21:17 1330-20-7	
Dibromofluoromethane (S)	115 %	80-123	1	02/19/09	21:17 1868-53-7	
4-Bromofluorobenzene (S)	98 %	70-126	1	02/19/09	21:17 460-00-4	
Toluene-d8 (S)	87 %	80-116	1	02/19/09	21:17 2037-26-5	

Page 324

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS


Project Michigan Plaza

Sample: SB-14	Lab ID: 5023333017	Collected: 02/13/09 15	:10 Received: 02/13/09 16:58 Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qua
3260 MSV	Analytical Method: EPA l	3260	
Acetone	ND ug/L	100 1	02/19/09 21:47 67-64-1
Acrolein	ND ug/L	100 1	02/19/09 21:47 107-02-8
Acrylonitrile	ND ug/L	100 1	02/19/09 21:47 107-13-1
Benzene	ND ug/L	5.0 1	02/19/09 21:47 71-43-2
3romobenzene	ND ug/L	5.0 1	02/19/09 21:47 108-86-1
3romochloromethane	ND ug/L	5.0 1	02/19/09 21:47 74-97-5
3romodichloromethane	ND ug/L	5.0 1	02/19/09 21:47 75-27-4
Bromoform	ND ug/L	5.0 1	02/19/09 21:47 75-25-2
3romomethane	ND ug/L	5.0 1	02/19/09 21:47 74-83-9
2-Butanone (MEK)	ND ug/L	25.0 1	02/19/09 21:47 78-93-3
n-Butylbenzene	ND ug/L	5.0 1	02/19/09 21:47 104-51-8
sec-Butylbenzene	ND ug/L	5.0 1	02/19/09 21:47 135-98-8
ert-Butylbenzene	ND ug/L	5.0 1	02/19/09 21:47 98-06-6
Carbon disulfide	ND ug/L	10.0 1	02/19/09 21:47 75-15-0
Carbon tetrachloride	ND ug/L	5.0 1	02/19/09 21:47 56-23-5
Chlorobenzene		5.0 1	02/19/09 21:47 108-90-7
	ND ug/L		
Chloroethane	ND ug/L	5.0 1	02/19/09 21:47 75-00-3
Chloroform	ND ug/L	5.0 1	02/19/09 21:47 67-66-3
Chloromethane	ND ug/L	5.0 1	02/19/09 21:47 74-87-3
-Chlorotoluene	ND ug/L	5.0 1	02/19/09 21:47 95-49-8
-Chlorotoluene	ND ug/L	5.0 1	02/19/09 21:47 106-43-4
Dibromochloromethane	ND ug/L	5.0 1	02/19/09 21:47 124-48-1
.2-Dibromoethane (EDB)	ND ug/L	5.0 1	02/19/09 21:47 106-93-4
Dibromomethane	ND ug/L	5.0 1	02/19/09 21:47 74-95-3
.2-Dichlorobenzene	ND ug/L	5.0 1	02/19/09 21:47 95-50-1
1,3-Dichlorobenzene	ND ug/L	5.0 1	02/19/09 21:47 541-73-1
,4-Dichlorobenzene	ND ug/L	5.0 1	02/19/09 21:47 106-46-7
rans-1,4-Dichloro-2-butene	ND ug/L	100 1	02/19/09 21:47 110-57-6
Dichlorodifluoromethane	ND ug/L	5.0 1	02/19/09 21:47 75-71-8
.1-Dichloroethane	ND ug/L	5.0 1	02/19/09 21:47 75-34-3
,2-Dichloroethane	ND ug/L	5.0 1	02/19/09 21:47 107-06-2
I.1-Dichloroethene	ND ug/L	5.0 1	02/19/09 21:47 75-35-4
is-1,2-Dichloroethene	176 ug/L	5.0 1	02/19/09 21:47 156-59-2
rans-1,2-Dichlomethene	ND ug/L	5.0 1	02/19/09 21:47 156-60-5
.2-Dichloropropane	ND ug/L	5.0 1	02/19/09 21:47 78-87-5
.3-Dichloropropane	ND ug/L	5.0 1	02/19/09 21:47 142-28-9
2.2-Dichloropropane	ND ug/L	5.0 1	02/19/09 21:47 594-20-7
,1-Dichloropropene	ND ug/L	5.0 1	02/19/09 21:47 563-58-6
is-1,3-Dichloropropene	ND ug/L	5.0 1	02/19/09 21:47 10061-01-5
rans-1,3-Dichloropropene	ND ug/L	5.0 1	02/19/09 21:47 10061-01-3
• •	ND ug/L	5.0 1	02/19/09 21:47 10061-02-6
Ethylbenzene Ethyl exathografoto	**		
Ethyl methacrylate	ND ug/L	100 1	02/19/09 21:47 97-63-2
lexachloro-1,3-butadiene	ND ug/L	5.0 1	02/19/09 21:47 87-68-3
-Hexane	ND ug/L	5.0 1	02/19/09 21:47 110-54-3
-Hexanone	ND ug/L	25.0 1	02/19/09 21:47 591-78-6
odomethane	ND ug/L	10.0 1	02/19/09 21:47 74-88-4
sopropylbenzene (Cumene)	ND ug/L	5.0 1	02/19/09 21:47 98-82-8

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 36 of 50

Page 325 ce Analytical Services, Inc

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5023333

Sample: SB-14	Lab ID: 5023333017	Collected: 02/13/09	15:10	Received: 02/13/09 16:58 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. (Qual
8260 MSV	Analytical Method: EPA	3260			
p-Isoprapyltoluene	ND ug/L	5.0	1	02/19/09 21:47 99-87-6	
Methylene chloride	ND ug/L	5.0	1	02/19/09 21:47 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	25.0	1	02/19/09 21:47 108-10-1	
Methyl-tert-butyl ether	ND ug/L	4.0	1	02/19/09 21:47 1634-04-4	
Naphthalene	ND ug/L	5.0	1	02/19/09 21:47 91-20-3	
n-Propylbenzene	ND ug/L	5.0	1	02/19/09 21:47 103-65-1	
Styrene	ND ug/L	5.0	1	02/19/09 21:47 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09 21:47 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	5.0	1	02/19/09 21:47 79-34-5	
Tetrachloroethene	5.8 ug/L	5.0	1	02/19/09 21:47 127-18-4	
Toluene	ND ug/L	5.0	1	02/19/09 21:47 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	5.0	1	02/19/09 21:47 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	5.0	1	02/19/09 21:47 120-82-1	
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/19/09 21:47 71-55-6	
1,1,2-Trichloroethane	ND ug/L	5.0	1	02/19/09 21:47 79-00-5	
Trichloroethene	ND ug/L	5.0	1	02/19/09 21:47 79-01-6	
Trichlorofluoromethane	ND ug/L	5.0	1	02/19/09 21:47 75-69-4	
1,2,3-Trichloropropane	ND ug/L	5.0	1	02/19/09 21:47 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	5.0	1	02/19/09 21:47 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	5.0	1	02/19/09 21:47 108-67-8	
/inyl acetate	ND ug/L	10.0	1	02/19/09 21:47 108-05-4	
√inyl chloride	251 ug/L	2.0	1	02/19/09 21:47 75-01-4	
(ylene (Total)	ND ug/L	10.0	1	02/19/09 21:47 1330-20-7	
Dibromofluoromethane (S)	114 %	80-123	1	02/19/09 21:47 1868-53-7	
I-Bromofluorobenzene (S)	98 %	70-126	1	02/19/09 21:47 460-00-4	
Toluene-d8 (S)	86 %	80-116	1	02/19/09 21:47 2037-26-5	

Page 326 ice Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333

Percent Moisture

QC Batch: PMST/3341 Analysis Method: AS TM D2974-87

%

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 5023333001, 5023333002, 5023333003, 5023333004, 5023333006, 5023333006, 5023333007, 5023333008,

5023333009, 5023333010, 5023333011, 50233333012, 50233333013

SAMPLE DUPLICATE: 263777 5023283002 Dup Max **Parameter** Units Result Result **RPD RPD** Qualifiers 20.8 5 % 20.6 Percent Moisture SAMPLE DUPLICATE: 263778 5023333013 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers % 13.2 5 Percent Moisture 12.5 5 SAMPLE DUPLICATE: 263779 5023198006 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers

16.1

16.8

5

Page 32 f e Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333

QC Batch: MSV/14391 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5030 Low

Associated Lab Samples: 5023333001, 5023333002, 5023333003, 5023333004, 5023333006, 5023333006, 5023333007, 5023333008,

5023333009, 5023333010, 5023333011

METHOD BLANK: 264102 Matrix: Solid

Associated Lab Samples: 5023333001, 5023333002, 5023333003, 5023333004, 5023333005, 5023333006, 5023333007, 5023333008,

5023333009, 5023333010, 50233333011, 50233333012, 5023333013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND ND	5.0	02/14/09 00:55	
1,1,1-Trichloroethane	ug/kg	ND	5.0	02/14/09 00:55	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	02/14/09 00:55	
1,1,2-Trichloroethane	ug/kg	ND	5.0	02/14/09 00:55	
1,1-Dichloroethane	ug/kg	ND	5.0	02/14/09 00:55	
1,1-Dichloroethene	ug/kg	ND	5.0	02/14/09 00:55	
1,1-Dichloropropene	ug/kg	ND	5.0	02/14/09 00:55	
1,2,3-Trichloroberzene	ug/kg	ND	5.0	02/14/09 00:55	
1,2,3-Trichloropropane	ug/kg	ND	5.0	02/14/09 00:55	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	02/14/09 00:55	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	02/14/09 00:55	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	02/14/09 00:55	
1,2-Dichlorobenzene	ug/kg	ND	5.0	02/14/09 00:55	
1,2-Dichloroethane	ug/kg	ND	5.0	02/14/09 00:55	
1,2-Dichloropropane	ug/kg	ND	5.0	02/14/09 00:55	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	02/14/09 00:55	
1,3-Dichlorobenzene	ug/kg	ND	5.0	02/14/09 00:55	
1,3-Dichloropropane	ug/kg	ND	5.0	02/14/09 00:55	
1,4-Dichlorobenzene	ug/kg	ND	5.0	02/14/09 00:55	
2,2-Dichloropropane	ug/kg	ND	5.0	02/14/09 00:55	
2-Butanone (MEK)	ug/kg	ND	25.0	02/14/09 00:55	
2-Chlorotoluene	ug/kg	ND	5.0	02/14/09 00:55	
2-Hexanone	ug/kg	ND	100	02/14/09 00:55	
4-Chlorotoluene	ug/kg	ND	5.0	02/14/09 00:55	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	25.0	02/14/09 00:55	
Acetone	ug/kg	ND	100	02/14/09 00:55	
Acrolein	ug/kg	ND	100	02/14/09 00:55	
Acrylonitrile	ug/kg	ND	100	02/14/09 00:55	
Benzene	ug/kg	ND	5.0	02/14/09 00:55	
Bromobenzene	ug/kg	ND	5.0	02/14/09 00:55	
Bromochloromethane	ug/kg	ND	5.0	02/14/09 00:55	
Bromodichloromethane	ug/kg	ND	5.0	02/14/09 00:55	
Bromoform	ug/kg	ND	5.0	02/14/09 00:55	
Bromomethane	ug/kg	ND	5.0	02/14/09 00:55	
Carbon disulfide	ug/kg	ND	10.0	02/14/09 00:55	
Carbon tetrachloride	ug/kg	ND	5.0	02/14/09 00:55	
Chlorobenzene	ug/kg	ND	5.0	02/14/09 00:55	
Chloroethane	ug/kg	ND	5.0	02/14/09 00:55	
Chloroform	ug/kg	ND	5.0	02/14/09 00:55	
Chloromethane	ug/kg	ND	5.0	02/14/09 00:55	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	02/14/09 00:55	

Date: 02/25/2009 03:30 PM REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 328 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333

METHOD BLANK: 264102 Matrix: Solid

Associated Lab Samples: 5023333001, 5023333002, 5023333003, 5023333004, 5023333006, 5023333006, 5023333007, 5023333008,

5023333009, 5023333010, 5023333011, 50233333012, 5023333013

Parameter			Reporting Limit	Analyzed	Qualifiers
cis-1,3-Dichloropropene	ug/kg	ND	5.0	02/14/09 00:55	
Dibromochloromethane	ug/kg	ND	5.0	02/14/09 00:55	
Dibromomethane	ug/kg	ND	5.0	02/14/09 00:55	
Dichlorodifluoromethane	ug/kg	ND	5.0	02/14/09 00:55	
Ethyl methacrylate	ug/kg	ND	10.0	02/14/09 00:55	
Ethylbenzene	ug/kg	ND	5.0	02/14/09 00:55	
Hexachloro-1,3-butadiene	ug/kg	ND	5.0	02/14/09 00:55	
lodomethane	ug/kg	ND	100	02/14/09 00:55	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	02/14/09 00:55	
Methyl-tert-butyl ether	ug/kg	ND	5.0	02/14/09 00:55	
Methylene chloride	ug/kg	ND	20.0	02/14/09 00:55	
n-Butylbenzene	ug/kg	ND	5.0	02/14/09 00:55	
n-Hexane	ug/kg	ND	5.0	02/14/09 00:55	
n-Propylbenzene	ug/kg	ND	5.0	02/14/09 00:55	
Naphthalene	ug/kg	ND	5.0	02/14/09 00:55	
p-Isopropyttoluene	ug/kg	ND	5.0	02/14/09 00:55	
sec-Butylbenzene	ug/kg	ND	5.0	02/14/09 00:55	
Styrene	ug/kg	ND	5.0	02/14/09 00:55	
tert-Butylbenzene	ug/kg	ND	5.0	02/14/09 00:55	
Tetrachloroethene	ug/kg	ND	5.0	02/14/09 00:55	
Toluene	ug/kg	ND	5.0	02/14/09 00:55	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	02/14/09 00:55	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	02/14/09 00:55	
trans-1,4-Dichloro-2-butene	ug/kg	ND	100	02/14/09 00:55	
Trichloroethene	ug/kg	ND	5.0	02/14/09 00:55	
Trichlorofluoromethane	ug/kg	ND	5.0	02/14/09 00:55	
Vinyl acetate	ug/kg	ND	100	02/14/09 00:55	
Vinyl chloride	ug/kg	ND	5.0	02/14/09 00:55	
Xylene (Total)	ug/kg	ND	10.0	02/14/09 00:55	
4-Bromofluorobenzene (S)	%	102	61-131	02/14/09 00:55	
Dibromofluoromethane (S)	%	110	80-124	02/14/09 00:55	
Toluene-d8 (S)	%	98	58-145	02/14/09 00:55	

LABORATORY (CONTROL	SAMPLE:	264103
--------------	---------	---------	--------

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	50	49.6	99	65-124	
1,1,1-Trichloroethane	ug/kg	50	51.5	103	61-135	
1,1,2,2-Tetrachloroethane	ug/kg	50	50.3	101	66-124	
1,1,2-Trichloroethane	ug/kg	50	53.8	108	74-127	
1,1-Dichloroethane	ug/kg	50	46.1	92	62-132	
1,1-Dichloroethene	ug/kg	50	43.6	87	61-123	
1,1-Dichloropropene	ug/kg	50	47.7	95	74-128	
1,2,3-Trichlorobenzene	ug/kg	50	44.3	89	60-125	

Date: 02/25/2009 03:30 PM REPORT OF LABORATORY ANALYSIS

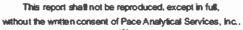
LABORATORY ANALYSIS Page 40 of 50

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. .

7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA


Project Michigan Plaza Pace Project No.: 5023333

ABORATORY CONTROL SAMPLE:	264103					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
2,3-Trichloropropane	ug/kg	50	48.7	97	61-120	
2,4-Trichloroberzene	ug/kg	50	40.5	81	58-126	
2,4-Trimethylbenzene	ug/kg	50	48.4	97	72-120	
2-Dibromoethane (EDB)	ug/kg	50	52.2	104	74-119	
2-Dichlorobenzene	ug/kg	50	50.3	101	75-117	
2-Dichloroethane	ug/kg	50	51.2	102	62-135	
2-Dichloropropane	ug/kg	50	49.8	100	74-124	
3,5-Trimethylbenzene	ug/kg	50	50.9	102	73-122	
3-Dichlorobenzene	ug/kg	50	48.2	96	73-120	
3-Dichloropropane	ug/kg	50	53.0	106	71-122	
4-Dichlorobenzene	ug/kg	50	46.5	93	72-118	
2-Dichloropropane	ug/kg	50	45.3	91	53-136	
-Butanone (MEK)	ug/kg	250	296	118	33-190	
-Chlorotoluene	ug/kg	50	45.8	92	72-122	
-Hexanone	ug/kg	250	303	121	44-168	
-Chlorotoluene	ug/kg	50	47.7	95	72-120	
-Methyl-2-pentanone (MIBK)	ug/kg	250	263	105	58-126	
cetone	ug/kg	250	272	109	30-190	
crolein	ug/kg	1000	1440	144	30-190	
crylonitrile	ug/kg	1000	1020	102	65-129	
enzene	ug/kg	50	51.1	102	76-123	
romobenzene	ug/kg	50	52.2	104	74-116	
romochloromethane	ug/kg	50	47.2	94	56-143	
romodichloromethane	ug/kg	50	52.2	104	67-123	
romoform	ug/kg	50	49.5	99	58-117	
romomethane	ug/kg	50	38.2	76	47-147	
arbon disulfide	ug/kg	100	91.7	92	56-141	
arbon tetrachloride	ug/kg	50	46.3	93	54-136	
hlorobenzene	ug/kg	50	49.3	99	75-115	
hloroethane	ug/kg	50	44.4	89	57-147	
hloroform	ug/kg	50	48.6	97	74-123	
hioromethane	ug/kg	50	40.9	82	31-155	
s-1.2-Dichloroethene	ug/kg	50	49.0	96	76-119	
s-1,3-Dichloropropene	ug/kg	50	47.6	95	56-110	
bromochloromethane	ug/kg	50	51.2	102	63-122	
ibromomethane	ug/kg	50	51.1	102	70-127	
ichlorodifluoromethane		50	41.8	84	30-170	
thyl methacrylate	ug/kg	50 50	52.2	104	58-126	
thylbenzene	ug/kg ug/kg	50	52.2 52.9	104	78-121	
exachloro-1,3-butadiene		50	46.2	92		
exacmoro-1,3-butadiene idomethane	ug/kg	100	46.2 93.1J	92 93	65-128 38-173	
	ug/kg	50			75-128	
opropylbenzene (Cumene)	ug/kg		47.3 111	95 111		
lethyl-tert-butyl ether	ug/kg	100 50		111	59-142	
lethylene chloride	ug/kg		50.2	100	30-170	
-Butylbenzene	ug/kg	50	42.3	85	70-123	
Hexane	ug/kg	50	53.6	107	76-143	
-Propylbenzene	ug/kg	50	51.4	103	70-126	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 41 of 50

Page 330
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

anapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333

LABORATORY CONTROL SAMPLE:	264103					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
p-Isopropyltoluene	ug/kg	50	42.9	86	65-125	
ec-Butylbenzene	ug/kg	50	46.8	94	72-125	
yrene	ug/kg	50	46.2	92	75-118	
t-Butylbenzene	ug/kg	50	42.9	86	61-114	
trachloroethene	ug/kg	50	44.4	89	63-117	
luene	ug/kg	50	51.4	103	72-123	
ns-1,2-Dichloroethene	ug/kg	50	47.2	94	70-122	
ns-1,3-Dichloropropene	ug/kg	50	45.2	90	55-107	
ns-1,4-Dichloro-2-butene	ug/kg	50	39.5J	79	49-127	
:hloroethene	ug/kg	50	51.1	102	74-121	
hlorofluoromethane	ug/kg	50	38.9	78	55-156	
yl acetate	ug/kg	200	135	67	46-127	
ryl chloride	ug/kg	50	42.5	85	50-146	
ene (Total)	ug/kg	150	155	104	77-120	
romofluorobenzene (S)	%			101	61-131	
romofluoromethane (S)	%			94	80-124	
uene-d8 (S)	%			105	58-145	

MATRIX SPIKE & MATRIX SPIK	E DUPLICAT	E: 26410	4		264105							
Parameter	56 Units	023333013 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
1,1,1,2-Tetrachloroethane	ug/kg	ND	57.6	57.6	34.7	32.0	60	56	20-133	8	20	
1,1,1-Trichloroethane	ug/kg	ND	57.6	57.6	39.0	37.8	68	66	27-142	3	20	
1,1.2.2-Tetrachloroethane	ug/kg	ND	57.6	57.6	34.7	28.3	60	49	20-159	20	20	
1,1,2-Trichloroethane	ug/kg	ND	57.6	57.6	43.0	38.5	75	67	20-155	11	20	
1,1-Dichloroethane	ug/kg	ND	57.6	57.6	39.2	35.7	68	62	31-141	9	20	
1,1-Dichloroethene	ug/kg	ND	57.6	57.6	40.6	37.7	70	65	23-132	8	20	
1,1-Dichloropropene	ug/kg	ND	57.6	57.6	33.4	30.8	58	53	20-146	8	20	
1,2,3-Trichlorobenzene	ug/kg	ND	57.6	57.6	5.5J	ND	10	0	20-140		20	J
1.2.3-Trichloropropane	ug/kg	ND	57.6	57.6	38.3	29.1	67	50	20-153	27	20	R1
1,2,4-Trichlorobenzene	ug/kg	ND	57.6	57.6	5.4J	ND	9	0	20-120		20	M0
1,2,4-Trimethylbenzene	ug/kg	ND	57.6	57.6	19.2	15.6	33	27	20-156	21	20	R1
1,2-Dibromoethane (EDB)	ug/kg	ND	57.6	57.6	36.3	33.3	63	58	20-143	9	20	
1,2-Dichlorobenzene	ug/kg	ND	57.6	57.6	14.2	11.8	25	21	20-133	18	20	
1,2-Dichloroethane	ug/kg	ND	57.6	57.6	40.1	37.8	70	66	30-143	6	20	
1,2-Dichloropropane	ug/kg	ND	57.6	57.6	36.8	34.4	64	60	30-140	7	20	
1,3,5-Trimethylbenzene	ug/kg	ND	57.6	57.6	26.6	22.5	46	39	20-143	17	20	
1,3-Dichlorobenzene	ug/kg	ND	57.6	57.6	16.6	13.7	29	24	20-136	19	20	
1.3-Dichloropropane	ug/kg	ND	57.6	57.6	41.1	37.2	71	65	30-144	10	20	
1,4-Dichlorobenzene	ug/kg	ND	57.6	57.6	15.3	12.6	27	22	30-135	20	20	M0
2,2-Dichloropropane	ug/kg	ND	57.6	57.6	32.8	33.3	57	58	30-143	2	20	
2-Butanone (MEK)	ug/kg	ND	288	288	310	284	108	99	30-190	9	20	
2-Chlorotoluene	ug/kg	ND	57.6	57.6	27.1	22.7	47	39	30-170	18	20	
2-Hexanone	ug/kg	ND	288	288	243	216	84	75	30-170	12	20	
4-Chlorotoluene	ug/kg	ND	57.6	57.6	22.5	18.5	39	32	30-143	19	20	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	288	288	230	210	80	73	30-144	9	20	

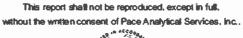
Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 42 of 50

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA


Project Michigan Plaza Pace Project No.: 5023333

MATRIX SPIKE & MATRIX SPI	KE DUPLICATE	264104	•		264105							
Parameter	502 Units	23333013 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Acetone	ug/kg	ND -	288	288	309	274	107	95	30-180	12	20	
Acrolein	ug/kg	ND	1150	1150	1190	1140	103	99	30-180	4	20	
Acrylonitrile	ug/kg	ND	1150	1150	903	841	78	73	30-141	7	20	
Benzene	ug/kg	ND	57.6	57.6	42.7	39.5	74	69	50-135	8	20	
Bromobenzene	ug/kg	ND	57.6	57.6	20.4	18.1	35	31	30-125	12	20	
Promochloromethane	ug/kg	ND	57.6	57.6	40.6	37.1	70	64	30-159	9	20	
Promodichloromethane	ug/kg	ND	57.6	57.6	36.2	33.5	63	58	30-141	8	20	
3romoform	ug/kg	ND	57.6	57.6	37.6	33.3	65	58	30-135	12	20	
Bromomethane	ug/kg	ND	57.6	57.6	36.5	35.2	63	61	30-137	3	20	
Carbon disulfide	ug/kg	ND	115	115	81.1	72.0	70	63	30-156	12	20	
Carbon tetrachloride	ug/kg	ND	57.6	57.6	32.5	32.2	56	56	30-130	1	20	
Chlorobenzene	ug/kg	ND	57.6	57.6	27.0	24.1	47	42	30-137	11	20	
Chloroethane	ug/kg	ND	57.6	57.6	45.4	42.1	79	73	35-143	7	20	
Chloroform	ug/kg	ND	57.6	57.6	40.7	37.5	69	64	30-136	8	20	
Chloromethane	ug/kg	ND	57.6	57.6	44.4	40.6	77	70	28-134	9	20	
is-1,2-Dichloroethene	ug/kg	ND	57.6	57.6	44.4	40.2	68	61	30-141	10	20	
is-1,3-Dichloropropene	ug/kg	ND	57.6	57.6	34.7	32.3	60	56	30-126	7	20	
bromochloromethane	ug/kg	ND	57.6	57.6	44.1	41.3	77	72	30-129	7	20	
ibromomethane	ug/kg	ND	57.6	57.6	36.7	33.4	64	58	30-153	9	20	
Dichlorodifluoromethane	ug/kg	ND	57.6	57.6	40.8	38.5	71	67	30-150	_	20	
thyl methacrylate	ug/kg	ND	57.6	57.6	30.3	28.8	53	50	30-170		20	
thylbenzene	ug/kg	ND	57.6	57.6	28.6	26.0	50	45	50-110	9	20	
lexachloro-1,3-butadiene	ug/kg	ND	57.6	57.6	12.9	11.0	22	19	30-138	16		MO
odomethane	ug/kg	ND	115	115	77.2J	70.83	67	61	30-180	10	20	IVIO
sopropylbenzene (Cumene)	ug/kg ug/kg	ND	57.6	57.6	16.9	15.2	29	26	50-150	10		мо
		ND	115	115	98.0	93.7	85	81	40-149	4	20	IVIO
Nethyl-tert-butyl ether	ug/kg	ND	57.6	57.6	41.1	38.8	71	67	30-163	6	20	
/lethylene.chloride i-Butylbenzene	ug/kg ug/kg	ND	57.6	57.6	10.9	9.3	19	16	40-152	15		мо
-Botyloenzens -Hexane		ND	57.6	57.6	29.3	26.7	51	46	40-155		20	IVIO
-nexane -Propylbenzene	ug/kg	ND	57.6	57.6	29.3	23.4	47	41	40-155	_	20	
* *	ug/kg			57.6						13		140
laphthalene	ug/kg	ND	57.6 57.6	57.6	ND 24.3	ND 21.4	0 42	0 37	50-128 40-167	40	20 20	MO
-Isopropyltoluene	ug/kg	ND ND	57.6	57.6	20.3	18.5	35	32	40-168	13 9		м
ec-Butylbenzene	ug/kg									_		MO
Styrene	ug/kg	ND ND	57.6	57.6 57.6	18.8	16.7	33 42	29 37	30-141 40-144	12 13	20 20	
ert-Butylbenzene	ug/kg		57.6		24.3	21.4						140
etrachloroethene	ug/kg	41100	57.6	57.6	8050	7470	-57328	-58325	40-155	7		MO
oluene	ug/kg	ND	57.6	57.6	38.9	35.8	67	61	50-149	8	20	
rans-1,2-Dichloroethene	ug/kg	ND	57.6	57.6	41.3	38.1	72	66	40-140		20	
ans-1,3-Dichloropropene	ug/kg	ND	57.6	57.6	29.4	28.3	51	49	40-130		20	
rans-1,4-Dichloro-2-butene	ug/kg	ND	57.6	57.6	22.1J	20.9J	38	36	30-150		20	
richloroethene	ug/kg	27.6	57.6	57.6	72.8	68.4	78	71	40-153			
richlorofluoromethane	ug/kg	ND	57.6	57.6	38.5	36.5	67	63	43-140			
/inyl acetate	ug/kg	ND	230	230	17.6J	15.53	8	7	30-120			MO
/inyl chloride	ug/kg	ND	57.6	57.6	43.9	40.9	76	71	36-137			
(ylene (Total)	ug/kg	ND	173	173	79.2	72.2	46	42	50-143			
I-Bromofluorobenzene (S)	%						88	91	61-131		20	
Dibromofluoromethane (S)	%						91	90	80-124		20	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 43 of 50

Page 332 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 264104 264105

MSD MS 5023333013 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual % Toluene-d8 (S) 114 114 58-145 20

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 333 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

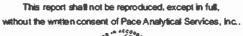
QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333

QC Batch: MSV/14503 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5023333014, 5023333015, 5023333016, 5023333017

METHOD BLANK: 266024 Matrix: Water


Associated Lab Samples: 5023333014, 5023333015, 5023333016, 5023333017

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	02/19/09 19:46	
1,1,1-Trichloroethane	ug/L	ND	5.0	02/19/09 19:46	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	02/19/09 19:46	
1,1,2-Trichloroethane	ug/L	ND	5.0	02/19/09 19:46	
1,1-Dichloroethane	ug/L	ND	5.0	02/19/09 19:46	
1,1-Dichloroethene	ug/L	ND	5.0	02/19/09 19:46	
1,1-Dichloropropene	ug/L	ND	5.0	02/19/09 19:46	
1,2,3-Trichloroberzene	ug/L	ND	5.0	02/19/09 19:46	
1,2,3-Trichloropropane	ug/L	ND	5.0	02/19/09 19:46	
1,2,4-Trichloroberzene	ug/L	ND	5.0	02/19/09 19:46	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	02/19/09 19:46	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	02/19/09 19:46	
1,2-Dichlorobenzene	ug/L	ND	5.0	02/19/09 19:46	
1,2-Dichloroethane	ug/L	ND	5.0	02/19/09 19:46	
1,2-Dichloropropane	ug/L	ND	5.0	02/19/09 19:46	
1.3.5-Trimethylbenzene	ug/L	ND	5.0	02/19/09 19:46	
1,3-Dichlorobenzene	ug/L	ND	5.0	02/19/09 19:46	
1,3-Dichloropropane	ug/L	ND	5.0	02/19/09 19:46	
1,4-Dichlorobenzene	ug/L	ND	5.0	02/19/09 19:46	
2,2-Dichloropropane	ug/L	ND	5.0	02/19/09 19:46	
2-Butanone (MEK)	ug/L	ND	25.0	02/19/09 19:46	
2-Chlorotoluene	ug/L	ND	5.0	02/19/09 19:46	
2-Hexanone	ug/L	ND	25.0	02/19/09 19:46	
4-Chlorotoluene	ug/L	ND	5.0	02/19/09 19:46	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	02/19/09 19:46	
Acetone	ug/L	ND	100	02/19/09 19:46	
Acrolein	ug/L	ND	100	02/19/09 19:46	
Acrylonitrile	ug/L	ND	100	02/19/09 19:46	
Benzene	ug/L	ND	5.0	02/19/09 19:46	
Bromobenzene	ug/L	ND	5.0	02/19/09 19:46	
Bromochloromethane	ug/L	ND	5.0	02/19/09 19:46	
Bromodichloromethane	ug/L	ND	5.0	02/19/09 19:46	
Bromoform	ug/L	ND	5.0	02/19/09 19:46	
Bromomethane	ug/L	ND	5.0	02/19/09 19:46	
Carbon disulfide	ug/L	ND	10.0	02/19/09 19:46	
Carbon tetrachloride	ug/L	ND	5.0	02/19/09 19:46	
Chlorobenzene	ug/L	ND	5.0	02/19/09 19:46	
Chloroethane	ug/L	ND	5.0	02/19/09 19:46	
Chloroform	ug/L	ND	5.0	02/19/09 19:46	
Chloromethane	ug/L	ND	5.0	02/19/09 19:46	
cis-1,2-Dichloroethene	ug/L	ND	5.0	02/19/09 19:46	
cis-1,3-Dichloropropene	ug/L	ND	5.0	02/19/09 19:46	
Dibromochloromethane	ug/L	ND	5.0	02/19/09 19:46	

Date: 02/25/2009 03:30 PM REF

REPORT OF LABORATORY ANALYSIS

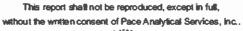
Page 45 of 50

Page 334 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333


METHOD BLANK: 266024 Matrix: Water
Associated Lab Samples: 5023333014, 50233333015, 50233333016, 5023333017

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	5.0	02/19/09 19:46	
Dichlorodifluoromethane	ug/L	ND	5.0	02/19/09 19:46	
Ethyl methacrylate	ug/L	ND	100	02/19/09 19:46	
Ethylbenzene	ug/L	ND	5.0	02/19/09 19:46	
lexachloro-1,3-butadiene	ug/L	ND	5.0	02/19/09 19:46	
odomethane	ug/L	ND	10.0	02/19/09 19:46	
sopropylbenzene (Cumene)	ug/L	ND	5.0	02/19/09 19:46	
Viethyl-tert-butyl ether	ug/L	ND	4.0	02/19/09 19:46	
Methylene chloride	ug/L	ND	5.0	02/19/09 19:46	
n-Butylbenzene	ug/L	ND	5.0	02/19/09 19:46	
ı-Hexane	ug/L	ND	5.0	02/19/09 19:46	
i-Propylbenzene	ug/L	ND	5.0	02/19/09 19:46	
laphthalene	ug/L	ND	5.0	02/19/09 19:46	
-Isopropyttoluene	ug/L	ND	5.0	02/19/09 19:46	
ec-Butylbenzene	ug/L	ND	5.0	02/19/09 19:46	
Styrene	ug/L	ND	5.0	02/19/09 19:46	
ert-Butylbenzene	ug/L	ND	5.0	02/19/09 19:46	
Tetrachloroethene	ug/L	ND	5.0	02/19/09 19:46	
l'oluene	ug/L	ND	5.0	02/19/09 19:46	
rans-1,2-Dichloroethene	ug/L	ND	5.0	02/19/09 19:46	
rans-1,3-Dichloropropene	ug/L	ND	5.0	02/19/09 19:46	
rans-1,4-Dichloro-2-butene	ug/L	ND	100	02/19/09 19:46	
Trichloroethene	ug/L	ND	5.0	02/19/09 19:46	
[richlorofluoromethane	ug/L	ND	5.0	02/19/09 19:46	
/inyl acetate	ug/L	ND	10.0	02/19/09 19:46	
/inyl chloride	ug/L	ND	2.0	02/19/09 19:46	
(ylene (Total)	ug/L	ND	10.0	02/19/09 19:46	
l-Bromofluorobenzene (S)	%	97	70-126	02/19/09 19:46	
Dibromofluoromethane (S)	%	102	80-123	02/19/09 19:46	
Toluene-d8 (S)	%	96	80-116	02/19/09 19:46	

LABORATORY CONTROL SAMPLE:	266025					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Canc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.0	98	69-130	_
1,1,1-Trichloroethane	ug/L	50	50.0	100	69-136	
1,1,2,2-Tetrachloroethane	ug/L	50	44.2	88	69-131	
1,1,2-Trichloroethane	ug/L	50	47.7	95	77-132	
1,1-Dichloroethane	ug/L	50	48.3	97	67-133	
1,1-Dichloroethene	ug/L	50	48.3	97	63-128	
1,1-Dichloropropene	ug/L	50	51.8	104	75-134	
1,2,3-Trichlorobenzene	ug/L	50	50.8	102	58-131	
1,2,3-Trichloropropane	ug/L	50	47.5	95	60-131	
1,2,4-Trichlorobenzene	ug/L	50	49.9	100	60-130	
1,2,4-Trimethylbenzene	ug/L	50	44.6	89	73-130	

Date: 02/25/2009 03:30 PM REPORT OF LABORATORY ANALYSIS

Page 46 of 50

Page 335 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023333

	E: 266025					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qu	alifier
1,2-Dibromoethane (EDB)	ug/L	50	55.3	111	75-126	
1,2-Dichlorobenzene	ug/L	50	48.7	97	76-124	
,2-Dichloroethane	ug/L	50	53.3	107	69-139	
1,2-Dichloropropane	ug/L	50	54.6	109	76-129	
,3,5-Trimethylbenzene	ug/L	50	47.3	95	74-130	
.3-Dichlorobenzene	ug/L	50	48.7	97	76-125	
,3-Dichloropropane	ug/L	50	51.0	102	74-126	
,4-Dichlorobenzene	ug/L	50	43.7	87	75-122	
,2-Dichloropropane	ug/L	50	40.8	82	53-144	
-Butanone (MEK)	ug/L	250	329	132	47-189	
-Chlorotoluene	ug/L	50	50.1	100	72-128	
-Hexanone	ug/L	250	343	137	57-167	
-Chlorotoluene	ug/L	50	50.2	100	73-124	
-Methyl-2-pentanone (MIBK)	ug/L	250	266	106	61-135	
cetone	ug/L	250	437	175	30-170 L3	
crolein	ug/L	1000	118	12	30-170 L0	
crylonitrile	ug/L	1000	1030	103	67-136	
enzene	ug/L	50	51.4	103	78-127	
romobenzene	ug/L	50	46.7	93	62-139	
romochloromethane	ug/L	50	54.3	109	54-162	
romodichloromethane	ug/L	50	53.1	106	69-133	
romoform	ug/L	50	52.8	106	60-127	
romoionn romomethane	ug/L	50	71.2	142	30-170	
arbon disulfide	ug/L	100	89.6	90	58-152	
arbon tetrachloride	_	50	51.5	103	62-143	
aroon retractionoe hiorobenzene	ug/L ug/L	50	50.1	100	75-123	
	-	50	54.9	110	56-153	
thloroethane thloroform	ug/L	50 50	54.9 52.2	104	74-131	
niorotom hioromethane	ug/L	50 50	52.2 43.4	87	74-131 35-147	
	ug/L					
is-1,2-Dichloroethene	ug/L	50 50	50.2 47.1	100 94	74-128 58-123	
is-1,3-Dichloropropene	ug/L					
ibromochloromethane ibromomethane	ug/L	50	49.1 56.2	98	66-131	
ichlorodifluoromethane	ug/L	50 50	30.2 44.6	112 89	73-133 30-170	
	ug/L					
thyl methacrylate	ug/L	50 50	43.4J 48.9	87 98	59-138	
thylbenzene	ug/L				81-126	
exachloro-1,3-butadiene	ug/L	50	46.6	93	70-130	
domethane	ug/L	100	168	168	41-170	
opropylbenzene (Cumene)	ug/L	50	49.8	100	80-130	
ethyl-tert-butyl ether	ug/L	100	104	104	66-147	
lethylene chloride	ug/L	50	50.0	100	32-164	
Butylbenzene	ug/L	50	44.7	89	68-135	
Hexane	ug/L	50	50.8	102	69-157	
Propylbenzene	ug/L	50	51.2	102	71-132	
laphthalene	ug/L	50	47.4	95	61-135	
-Isopropyltoluene	ug/L	50	45.4	91	66-131	
ec-Butylbenzene	ug/L	50	50.4	101	73-130	
tyrene	ug/L	50	47.6	95	74-128	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 47 of 50

Indianapolis, IN 46268 (317)875-5894

Project Michigan Plaza Pace Project No.: 5023333

LABORATORY CONTROL SAMPLE:

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						200
tert-Butylbenzene	ug/L	50	49.0	98	63-117	
Tetrachloroethene	ug/L	50	25.0	50	60-119	LO
Toluene	ug/L	50	49.2	98	75-129	
trans-1,2-Dichloroethene	ug/L	50	51.0	102	71-126	
trans-1,3-Dichtoropropene	ug/L	50	42.4	85	54-123	
trans-1,4-Dichloro-2-butene	ug/L	50	42.1J	84	47-141	
Trichloroethene	ug/L	50	60.8	122	74-130	
Trichlorofluoromethane	ug/L	50	51.0	102	62-150	
Vinyl acetate	ug/L	200	74.2	37	41-145	LO
Vinyl chloride	ug/L	50	46.3	93	55-141	
Xylene (Total)	ug/L	150	146	98	76-132	
4-Bromofluorobenzene (S)	%			98	70-126	
Dibromofluoromethane (S)	%			102	80-123	
Toluene-d8 (S)	%			96	80-116	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	TE: 26602	6		266027							
Parameter	5 Units	023333017 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
1,1,1.2-Tetrachloroethane	ug/L	ND	50	50	50.6	49.5	101	99	55-131	2	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	64.6	61.5	129	123	64-143	5	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	55.2	51.5	110	103	64-142	7	20	
,1,2-Trichloroethane	ug/L	ND	50	50	50.0	47.9	100	96	71-143	4	20	
,1-Dichloroethane	ug/L	ND	50	50	61.3	59.6	123	119	68-139	3	20	
,1-Dichloroethene	ug/L	ND	50	50	63.4	60.8	125	120	55-140	4	20	
,1-Dichloropropene	ug/L	ND	50	50	63.7	57.2	127	114	66-140	11	20	
.2.3-Trichlorobenzene	ug/L	ND	50	50	47.9	46.7	96	93	33-140	2	20	
.2.3-Trichloropropane	ug/L	ND	50	50	50.3	46.7	101	93	58-133	8	20	
.2.4-Trichlorobenzene	ug/L	ND	50	50	44.6	43.3	89	87	28-140	3	20	
.2.4-Trimethylbenzene	ug/L	ND	50	50	44.8	39.3	90	79	39-146	13	20	
.2-Dibromoethane (EDB)	ug/L	ND	50	50	52.3	47.9	105	96	67-134	9	20	
,2-Dichlorobenzene	ug/L	ND	50	50	48.7	43.0	97	86	48-137	12	20	
.2-Dichloroethane	ug/L	ND	50	50	66.1	62.5	132	125	63-148	6	20	
.2-Dichloropropane	ug/L	ND	50	50	59.0	57.6	118	115	70-136	2	20	
.3.5-Trimethylbenzene	ug/L	ND	50	50	48.2	43.5	96	87	39-145	10	20	
,3-Dichlorobenzene	ug/L	ND	50	50	48.8	42.1	98	84	40-143	15	20	
,3-Dichloropropane	ug/L	ND	50	50	49.9	46.7	100	93	65-133	7	20	
,4-Dichlorobenzene	ug/L	ND	50	50	42.7	36.4	85	73	38-142	16	20	
,2-Dichloropropane	ug/L	ND	50	50	55.0	54.1	110	108	35-157	2	20	
-Butanone (MEK)	ug/L	ND	250	250	313	286	125	114	62-132	9	20	
-Chlorotoluene	ug/L	ND	50	50	49.8	45.9	100	92	44-143	8	20	
-Hexanone	ug/L	ND	250	250	270	244	108	98	61-141	10	20	
-Chlorotoluene	ug/L	ND	50	50	49.1	44.3	98	89	43-140	10	20	
-Methyl-2-pentanone (MIBK)	ug/L	ND	250	250	262	241	105	96	57-135	9	20	
cetone	ug/L	ND	250	250	324	291	130	116	30-170	11	20	
korolein	ug/L	ND	1000	1000	684	660	68	66	30-170	4	20	
vervionitrile	uo/L	ND	1000	1000	1270	1180	127	118	66-137	8	20	

Date: 02/25/2009 03:30 PM

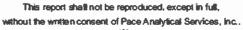
REPORT OF LABORATORY ANALYSIS

Page 48 of 50

Page 337

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA


Project Michigan Plaza
Pace Project No.: 5023333

MATRIX SPIKE & MATRIX SPI	KE DUPLICATE	26602	6		266027							
			MS	MSD								
	502	23333017	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
Benzene	ug/L	ND	50	50	63.4	60.0	127	120	63-141	6	20	
Bromobenzene	ug/L	ND	50	50	48.0	41.7	96	83	57-128	14	20	
Bromochloromethane	ug/L	ND	50	50	66.1	65.5	132	131	65-157	1	20	
3romodichloromethane	ug/L	ND	50	50	59.1	56.4	118	113	63-135	5	20	
Bromoform	ug/L	ND	50	50	52.7	50.5	105	101	58-124	4	20	
Bromomethane	ug/L	ND	50	50	87.8	92.2	176	184	30-170	5	20	MO
Carbon disulfide	ug/L	ND	100	100	116	106	116	106	46-162	9	20	
Carbon tetrachloride	ug/L	ND	50	50	62.5	57.5	125	115	54-145	8	20	
Chlorobenzene	ug/L	ND	50	50	52.3	46.9	105	94	56-133	11	20	
Chloroethane	ug/L	ND	50	50	75.0	72.5	150	145	54-157	3	20	
Chloroform	ug/L	ND	50	50	65.1	64.1	130	128	67-134	2	20	
Chloromethane	ug/L	ND	50	50	63.0	58.8	126	118	36-137	7	20	
is-1,2-Dichloroethene	ug/L	176	50	50	240	236	128	119	65-132	2	20	
ds-1,3-Dichloropropene	ug/L	ND	50	50	43.2	41.9	86	84	46-121	3	20	
bromochloromethane	ug/L	ND	50	50	47.2	44.7	94	89	64-124	5	20	
Dibromomethane	ug/L	ND	50	50	62.9	60.5	126	121	67-144	4	20	
Dichlorodifluoromethane	ug/L	ND	50	50	57.5	52.6	115	105	30-163	9	20	
Ethyl methacrylate	ug/L	ND	50	50	46.3J	44.5J	93	89	52-140		20	
Ethylbenzene	ug/L	ND	50	50	51.3	45.7	103	91	44-151	11	20	
lexachloro-1.3-butadiene	ug/L	ND	50	50	44.6	41.8	89	84	30-145	7	20	
odomethane	ug/L	ND	100	100	192	213	192	213	28-168	11	20	МО
sopropylbenzene (Cumene)	ug/L	ND	50	50	52.8	44.6	106	89	40-148	17	20	
Methyl-tert-butyl ether	ug/L	ND	100	100	131	127	131	127	52-156	3	20	
dethylene chloride	ug/L	ND	50	50	63.3	62.3	127	125	46-154	1	20	
n-Butylbenzene	ug/L	ND	50	50	44.3	35.6	89	71	27-153	22		R1
ı-Hexane	ug/L	ND	50	50	53.4	47.8	107	96	32-176	11	20	
-Propylbenzene	ug/L	ND	50	50	52.7	44.6	105	89	40-148	16	20	
Vaphthalene	ug/L	ND	50	50	46.4	45.5	93	91	44-138	2	20	
-Isopropyltoluene	ug/L	ND	50	50	46.8	39.5	94	79	34-146	17	20	
sec-Butylbenzene	ug/L	ND	50	50	51.3	43.1	103	86	38-150	18	20	
Styrene	ug/L	ND	50	50	48.3	43.5	97	87	38-141	10	20	
ert-Butylbenzene	ug/L	ND	50	50	51.8	43.0	104	86	32-133	19	20	
Tetrachloroethene	ug/L	5.8	50	50	27.0	23.9	42	36	25-146	12	20	
Toluene	ug/L	ND	50	50	46.7	42.8	93	85	59-142	9	20	
rans-1,2-Dichloroethene	ug/L	ND	50	50	64.7	61.4	128	122	60-137	5	20	
rans-1,3-Dichloropropene	ug/L	ND	50	50	43.4	40.7	87	81	43-117	6	20	
rans-1,4-Dichloro-2-butene	ug/L	ND	50	50	45.9J	38.4J	92	77	44-139	9	20	
rans-1,4-Diamore-2-ociene frichlomethene	ug/L	ND	50	50	63.1	57.8	120	109	61-137	9	20	
Trichlorofluoromethane	ug/L	ND	50	50	67.6	60.9	135	122	53-162	11	20	
/inyl acetate	ug/L	ND	200	200	219	212	110	106	24-132	4	20	
/inyl chloride	ug/L	251	50	50	323	300	145	98	51-144	8	20	
(viene (Total)	ug/L ug/L	ND	150	150	323 154	134	102	89	44-152		20	
kylene (10tal) I-Bromofluorobenzene (S)	ug≀∟ %	ND	130	190	134	134	99	96	70-126	14	20	
Dibromofluorouenzene (S)	70 %						113	115	80-123		20	

Date: 02/25/2009 03:30 PM

REPORT OF LABORATORY ANALYSIS

Page 49 of 50

Indianapolis, IN 46268 (317)875-5894

QUALIFIERS

Project Michigan Plaza Pace Project No.: 5023333

DEFINITIONS

DF - Dilution Factor, If reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobertzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

ANALYTE QUALIFIERS

MO

.1	Analyte d	letected I	helow n	poorting I	limit	therefore	requit is a	n estimate.
	WILE ALE A	JOIOCIOU I		aher mid i		MIGIGICAG I	rosuit is ai	1 03W11210.

- LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in L3

associated samples. Results unaffected by high bias.

Matrix spike recovery was outside laboratory control limits.

R1 RPD value was outside control limits.

Date: 02/25/2009 03:30 PM

CHAIN-OF-CUSTODY / Analytical Request Document. The Chein-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Communic D.	The state of the s	irrocce incorrustion;	110502
Company Mundell + Associates		Attention:	000011
Address 110 Sowth Downay	Capy To:	Company My WM CLI 4 ASSOCI.	REGULATORY AGENCY
Indy in thezia	2		I NPDES I GROUND WATER I" DRINKING WATER
Nec		Pace Quote Reference	F UST F RCRA F OTHER
\$30-10P	Project Name: M 10	Pace Project Manager:	She Location
Requested PLE Date TATE DAY	Project Number NO 1046	Page Profite 9:	STATE:
Water	er: normal turn		Requested Analysis Filtered (VIN)
Section D Required Clent Information MATRIX J. CODE	Taper of	Freservatives Y	5070333
	WWW CCONPOSITE CONFOSITE ENDONNE ENDON		(AVA)
SAMPLE ID ON Millor (A.Z. 0-9 /) Art (A.Z. 0-9 /) Art (A.Z. 0-9 /) Sample IDs MUST BE UNIQUE Tileaus Other	ರ≩ಹ್ಟರ		Chlorine (
	EJAMAS DATE THE STATE THE STAT	# OF CC	Sesidual de Contra de Cont
(9-5) 11-85	SA 6 6000 213 LDC		CC
SB-11 (8-91)	ا (م	×	€00
58-11 (12-13.)	0 2 13 10	دخ	003
=	5	×	500
-13 (9-	5		7,00
12 10-1	5	X	500
(g -+1) 51-45	7(13 12	X	200
1	5	X	015
10 - 12 13 - 14	5 3	×××	000
SB-12 / 19	0131		000
FD-1	5/13	_	0.0
ADDITIONAL COMMENTS	RELINGUISMED BY / AFFILATION DATE	F	DATE TAME SAMPLE CONDITIONS
	Saudisherb/m+A 2/12	3 1606 -1-12N	2/13 160620 1 14 24
		Mada De	201
	SAMPLER NAME AND SIGNATURE	ATURE	Jeju Ju
210010	S DRIGINAL PRINT Name of SAMPLER:	10	Crayogh (ANA) Crayogh (ANA) Goelved (ANA) Goelved (ANA)
	MAN TO SHELL AND THE	1 N N N N N N N N N N N N N N N N N N N	1

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

185088 DRINKING WATER OTHER GROUND WATER I REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/M) NPOES F Site Location STATE T- UST invoice information; Company Name; Pace Ovole Reference: Pace Project Monager: Pace Profes III. Section C Address Section B Required Project information Aurohase Order No.: reject Number: holed Name Report To: Copy To: Pace Analytical Section A Required Clent Information: Requested Due Date/TAT; Company Address:

	ra eli y		_	-		Re	ęf	eı	ŗe	n	C	e _	2	6		Ę	ag	јę		34	1 0	
ω.		Z Lab LO				W.CD	9								SMC	1	,				(N/A) U) 50))
5033333		Pace Project No./Lab LD				7.5	- C 6								SAMPLE CONDITIONS	2					Y/N) id Col	Settle
509			O.Es	-	40	6110									SAMP	4	,				NVA) (DSAIC	
	(N/V) er	Residual Chloni	H			6	1							\exists		33				0	, bi du	Ten
			F		F	0	0								TIME	(68		Ī				60
														1	DATE	5/L)						2/3
															LATION	200	-					DATE Signed 2
N/A	1 18	eT sieylanA			L					Н					ACCEPTED BY / AFFILIATION	0880			ы		2	DATE
Preservatives		Other Methenot Na ₂ S ₂ O ₃ NaOH HCI	X												ACCEPTED	Joya-				r	H WEBB	a algueth
ď	eu	# OF CONTAINE HUO ₂ H ₂ SO ₄	-			3								1	THAIR	000		1			SACA	Dial
		SAMPLE TEMP A	10		-	[0	-					+	+	-		+	+		URE	ER:	ER N
	COMPOSITE	TIME	3 1330	3-4-6	1495	552	5 1510]	DATE	3/13		1		AND SIGNATURE	ame of SAMPLER:	URE of SAMPLER:
COLLECTED	NO O	TIME SATE	7	2113	2/13		2/13							-	LATION	YYW!		i		SAMPLER NAME A	PRINTRA	SIGNATU
S	COMPOSITE	ת באם											1		RELINGUISHED BY / AFFILIATION	38/20				SAA		
(anic	C=CRAB C=CC		Ţ	2	D	Q	S	Ü							MOURS	MA					Ļ	
	(see min coopes 중도 중 교 정 정	₹₽₽ MATTRIX CODE	4	8	36	\$L	3							-	REL	Solahler					ORIGINAL	
Martix Codes	Drinking Water Water Water Product Soft-Solid Off	Arriver Arriver DE Trissue Other		(4)	(+1-,	1-18)									MENTS	TURN	by and		7			
Section D Required Clent Information	SAMPLEID	(A-Z, 0-9 /) Sample IDs MUST BE LINIQUE	SB-12	SB-14 113-	28-14 (16	58-14 (17	88-14								ADDITIONAL COMMENTS	11-10kg	MPI STA	5				
N &		# MSTI	-	7	m	4	S)	•	~	80	6	2	=	2		1108	3	2				
															-	N	17		_			

F-ALL-O-020rev.07, 15-Nay-2007

"unportant Note: By appling this form you are accepting Pacat's NeT 30 day payment terms and agreeing to lais charges of 1.5% per month for any produces not pack within 30 days.

Sample Condition Upon Receipt Page 341

Pace Analytical Client Name	Mi	Ω	te	117 <u>4850CF</u>	roject # <u>5023333</u>
Courier: Fed Ex UPS USPS Cike				00	
Custody Seal on Cooler/Box Present:	10 AC		Seals	intact: yes	no li
Packing Material: Bubble Wrap Bubble	Bags	No	one 9	Other	
Thermometer Used (23456)	Type of	fice:/	Wet	Blue None	Samples on ice, cooling process has begun
Cooler Temperature Temp should be above freezing to 5°C	Biologi	ical T	issue	is Frozen: Yes No Comments:	Date and initials of person examining contents:
Chain of Custody Present:	ATTES [⊃No	DN/A	1.	
Chain of Custody Filled Out:	Ales [□No	□N/A	2.	
Chain of Custody Relinquished:	Dives [⊃No	□n/a	3.	
Sampler Name & Signature on COC:	ZIVes (□No	□N/A	4.	
Samples Arrived within Hold Time:	EYes [□No	□N/A	5.	
Short Hold Time Analysis (<72hr):	ZIY85 [□No	□n/a	6.	
Rush Turn Around Time Requested:	Tyes [⊃No	□N/A	7.	
Sufficient Volume:	Yes I	□No	□n/a	8.	
Correct Containers Used:	Pres (□No	□n/A	9.	
-Pace Containers Used:	Ø Res □	□No	□N/A		
Containers Intact:	A Pres [□No	□n/a	10.	
Filtered volume received for Dissolved tests	□Yes 1	□No ∢	DIVA	11.	
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix:	Gros !	INO SC	□N/A	12.	
All containers needing preservation have been checked.	□Yes [□No	ZNA	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yee [- Com	58 St. (C-1)	
exceptions: VOA, poliform, TOC, O&G, WI-DRO (water)	□Yes [∃No		Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes [∃No	NIK	14.	
Headspace in VOA Vials (>6mm):	□Yes \	HO	□N/A	15.	
Trip Blank Present:	□Yes (□No	KINA	16.	
Trip Blank Custody Seals Present	□Yes 〔]No	DAD)		
Pace Trip Blank Lot # (if purchased):	-				-107
Client Notification/ Resolution:					Field Data Required? Y / N
Person Contacted:			Date/	Time:	

Comments/ Resolution: Date: 2 Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Page 342 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

February 11, 2009

Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

RE: Project: Michigan Plaza

Pace Project No.: 5023037

Dear Leena Lothe:

Enclosed are the analytical results for sample(s) received by the laboratory on February 06, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raedra Zuckowoth

Phaedra Zucksworth

phaedra.zucksworth@pacelabs.com Project Manager

Illinois/NELAC Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky Certification #: 0042 Ohio VAP: CL0065 Pennsylvania: 68-00791

West Virginia Certification #: 330

Enclosures

02/06/09 11:30

Page 343 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

SAMPLE SUMMARY

02/05/09 16:57

Project Michigan Plaza
Pace Project No.: 5023037

SB-6 (14-15)

5023037006

Lab ID Sample ID Matrix **Date Collected Date Received** 5023037001 SB-5 (3-4) Solid 02/05/09 16:58 02/06/09 11:30 5023037002 SB-5 (9-10) Solid 02/05/09 17:00 02/06/09 11:30 5023037003 SB-5 (15-16) Solid 02/05/09 17:02 02/06/09 11:30 Solid 5023037004 SB-6 (5-6) 02/05/09 16:30 02/06/09 11:30 SB-6 (7-8) Solid 02/05/09 16:55 5023037005 02/06/09 11:30

Solid

Page 344
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

SAMPLE ANALYTE COUNT

Project

Michigan Plaza

Pace Project No.:

5023037

Lab ID	Sample ID	Method	Analysts	Analytes Reported
5023037001	SB-5 (3-4)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023037002	SB-5 (9-10)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023037003	SB-5 (15-16)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023037004	SB-6 (5-6)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023037005	SB-6 (7-8)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73
5023037006	SB-6 (14-15)	ASTM D2974-87	RAK	1
		EPA 8260	ALA	73

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-5 (3-4) Collected: 02/05/09 16:58 Received: 02/06/09 11:30 Matrix: Solid Lab ID: 5023037001

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260)					
Acetone	ND ug/l	kg	118	1		02/06/09 21:35	67-64-1	
Acrolein	ND ug/l	kg	118	1		02/06/09 21:35	107-02-8	
Acrylonitrile	ND ug/l	kg	118	1		02/06/09 21:35	107-13-1	
Benzene	ND ug/l	kg	5.9	1		02/06/09 21:35	71-43-2	
Bromobenzene	ND ug/l	kg	5.9	1		02/06/09 21:35	108-86-1	
3romochloromethane	ND ug/l	kg	5.9	1		02/06/09 21:35	74-97-5	
Promodichloromethane	ND ug/l	kg	5.9	1		02/06/09 21:35	75-27-4	
romoform	ND ug/l	_	5.9	1		02/06/09 21:35	75-25-2	
romomethane	ND ug/l	_	5.9	1		02/06/09 21:35	74-83-9	
-Butanone (MEK)	ND ug/l	-	29.5	1		02/06/09 21:35	78-93-3	
-Butylbenzene	ND ug/l	_	5.9	1		02/06/09 21:35	104-51-8	
ec-Butylbenzene	ND ug/l	_	5.9	1		02/06/09 21:35		
ert-Butylbenzene	ND ug/l	_	5.9	1		02/06/09 21:35		
Carbon disulfide	ND ug/l	_	11.8	1		02/06/09 21:35		
Carbon tetrachloride	ND ug/l	-	5.9	1		02/06/09 21:35		
Chlorobenzene	ND ug/l	_	5.9	1		02/06/09 21:35		
Chloroethane	ND ug/l	_	5.9	1		02/06/09 21:35		
Chloroform	ND ug/l	_	5.9	1		02/06/09 21:35		
hloromethane	ND ug/l	_	5.9	1		02/06/09 21:35		
-Chlorotoluene	ND ug/l	-	5.9	1		02/06/09 21:35		
-Chlorotoluene	ND ug/l	_	5.9	1		02/06/09 21:35		
Pibromochloromethane	ND ug/l	_	5.9	1		02/06/09 21:35		
,2-Dibromoethane (EDB)	ND ug/l	_	5.9	1		02/06/09 21:35		
• • •	-	_		1				
Dibromomethane	ND ug/l	-	5.9 5.9	1		02/06/09 21:35 02/06/09 21:35		
,2-Dichlorobenzene	ND ug/l	_						
,3-Dichlorobenzene	ND ug/l	_	5.9	1		02/06/09 21:35		
,4-Dichlorobenzene	ND ug/l	_	5.9	1		02/06/09 21:35		
ans-1,4-Dichloro-2-butene	ND ug/l	_	118	1		02/06/09 21:35		
Ochlorodifluoromethane	ND ug/l	-	5.9	1		02/06/09 21:35		
,1-Dichloroethane	ND ug/l	_	5.9	1		02/06/09 21:35		
,2-Dichloroethane	ND ug/l	_	5.9	1		02/06/09 21:35		
,1-Dichloroethene	ND ug/l	_	5.9	1		02/06/09 21:35		
is-1,2-Dichloroethene	ND ug/l	_	5.9	1		02/06/09 21:35		
ans-1,2-Dichloroethene	ND ug/l	-	5.9	1		02/06/09 21:35		
,2-Dichloropropane	ND ug/l	_	5.9	1		02/06/09 21:35		
,3-Dichloropropane	ND ug/l	_	5.9	1		02/06/09 21:35		
,2-Dichloropropane	ND ug/l	_	5.9	1		02/06/09 21:35		
,1-Dichloropropene	ND ug/l	kg	5.9	1		02/06/09 21:35	563-58-6	
is-1,3-Dichloropropene	ND ug/l	kg	5.9	1		02/06/09 21:35	10061-01-5	
ans-1,3-Dichloropropene	ND ug/l	kg	5.9	1		02/06/09 21:35	10061-02-6	
thylbenzene	ND ug/l	kg	5.9	1		02/06/09 21:35	100-41-4	
thyl methacrylate	ND ug/l	kg	11.8	1		02/06/09 21:35		
lexachloro-1,3-butadiene	ND ug/l	kg	5.9	1		02/06/09 21:35	87-68-3	
-Hexane	ND ug/l	kg	5.9	1		02/06/09 21:35	110-54-3	
-Hexanone	ND ug/l	kg	118	1		02/06/09 21:35	591-78-6	
xdomethane	ND ug/l	ka	118	1		02/06/09 21:35	74-88-4	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 4 of 26

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. .

Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-5 (3-4) Lab ID: 5023037001 Collected: 02/05/09 16:58 Received: 02/06/09 11:30 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
							•	
8260 MSV 5030 Low Level	Analytical Met	nod: EPA 826	0					
sopropylbenzene (Cumene)	ND ug	/kg	5.9	1		02/06/09 21:35	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.9	1		02/06/09 21:35	99-87-6	
Methylene chloride	ND ug	/kg	23.6	1		02/06/09 21:35	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	29.5	1		02/06/09 21:35	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.9	1		02/06/09 21:35	1634-04-4	
Vaphthalene	ND ug	/kg	5.9	1		02/06/09 21:35	91-20-3	
-Propylbenzene	ND ug	/kg	5.9	1		02/06/09 21:35	103-65-1	
Styrene	ND ug	/kg	5.9	1		02/06/09 21:35	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.9	1		02/06/09 21:35	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.9	1		02/06/09 21:35	79-34-5	
etrachloroethene	ND ug	/kg	5.9	1		02/06/09 21:35	127-18-4	
oluene	ND ug	/kg	5.9	1		02/06/09 21:35	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.9	1		02/06/09 21:35	87-61-6	
.2,4-Trichlorobenzene	ND ug	/kg	5.9	1		02/06/09 21:35	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.9	1		02/06/09 21:35	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.9	1		02/06/09 21:35	79-00-5	
richloroethene	ND ug	/kg	5.9	1		02/06/09 21:35	79-01-6	
richlorofluoromethane	ND ug	/kg	5.9	1		02/06/09 21:35	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.9	1		02/06/09 21:35	96-18-4	
.2,4-Trimethylbenzene	ND ug	/kg	5.9	1		02/06/09 21:35	95-63-6	
.3,5-Trimethylbenzene	ND ug	/kg	5.9	1		02/06/09 21:35	108-67-8	
/inyl acetate	ND ug	_	118	1		02/06/09 21:35	108-05-4	
'inyl chloride	ND ug	_	5.9	1		02/06/09 21:35	75-01-4	
ylene (Total)	ND ug	/kg	11.8	1		02/06/09 21:35	1330-20-7	
Pibromofluoromethane (S)	109 %	-	80-124	1		02/06/09 21:35	1868-53-7	
oluene-d8 (S)	92 %		58-145	1		02/06/09 21:35	2037-26-5	
-Bromofluorobenzene (S)	95 %		61-131	1		02/06/09 21:35		
ercent Moisture	Analytical Met	nod: ASTM D	2974-87					
Percent Moisture	15.2 %		0.10	1		02/06/09 15:46		

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-5 (9-10) Collected: 02/05/09 17:00 Received: 02/06/09 11:30 Matrix: Solid Lab ID: 5023037002

Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Method: EPA 82	60					
Acetone	ND ug/kg	121	1		02/06/09 22:12	67-64-1	
Acrolein	ND ug/kg	121	1		02/06/09 22:12	107-02-8	
Acrylonitrile	ND ug/kg	121	1		02/06/09 22:12	107-13-1	
3enzene	ND ug/kg	6.1	1		02/06/09 22:12	71-43-2	
3romobenzene	ND ug/kg	6.1	1		02/06/09 22:12	108-86-1	
3romochloromethane	ND ug/kg	6.1	1		02/06/09 22:12	74-97-5	
3romodichloromethane	ND ug/kg	6.1	1		02/06/09 22:12	75-27-4	
Bromoform	ND ug/kg	6.1	1		02/06/09 22:12	75-25-2	
Bromomethane	ND ug/kg	6.1	1		02/06/09 22:12	74-83-9	
-Butanone (MEK)	ND ug/kg	30.3	1		02/06/09 22:12	78-93-3	
n-Butylbenzene	ND ug/kg	6.1	1		02/06/09 22:12	104-51-8	
sec-Butylbenzene	ND ug/kg	6.1	1		02/06/09 22:12		
ert-Butylbenzene	ND ug/kg	6.1	1		02/06/09 22:12		
Carbon disulfide	ND ug/kg	12.1	1		02/06/09 22:12		
Carbon tetrachloride	ND ug/kg	6.1	1		02/06/09 22:12		
Chlorobenzene	ND ug/kg	6.1	1		02/06/09 22:12		
Chloroethane	ND ug/kg	6.1	1		02/06/09 22:12		
Chloroform	ND ug/kg	6.1	1		02/06/09 22:12		
Chloromethane	ND ug/kg	6.1	1		02/06/09 22:12		
-Chlorotoluene	ND ug/kg	6.1	1		02/06/09 22:12		
-Chlorotoluene	ND ug/kg	6.1	1		02/06/09 22:12		
Pibromochloromethane	ND ug/kg	6.1	1		02/06/09 22:12		
,2-Dibromoethane (EDB)	ND ug/kg	6.1	1		02/06/09 22:12		
ibromomethane		6.1	1		02/06/09 22:12		
	ND ug/kg	6.1	1		02/06/09 22:12		
,2-Dichlorobenzene	ND ug/kg	 ·					
,3-Dichlorobenzene	ND ug/kg	6.1	1		02/06/09 22:12		
,4-Dichlorobenzene	ND ug/kg	6.1	1		02/06/09 22:12		
rans-1,4-Dichloro-2-butene	ND ug/kg	121	•		02/06/09 22:12		
Dichlorodifluoromethane	ND ug/kg	6.1	1		02/06/09 22:12		
,1-Dichloroethane	ND ug/kg	6.1	1		02/06/09 22:12		
,2-Dichloroethane	ND ug/kg	6.1	1		02/06/09 22:12		
,1-Dichloroethene	ND ug/kg	6.1	1		02/06/09 22:12		
is-1,2-Dichloroethene	ND ug/kg	6.1	1		02/06/09 22:12		
rans-1,2-Dichloroethene	ND ug/kg	6.1	1		02/06/09 22:12		
,2-Dichloropropane	ND ug/kg	6.1	1		02/06/09 22:12		
,3-Dichloropropane	ND ug/kg	6.1	1		02/06/09 22:12		
2,2-Dichloropropane	ND ug/kg	6.1	1		02/06/09 22:12		
,1-Dichloropropene	ND ug/kg	6.1	1		02/06/09 22:12		
is-1,3-Dichloropropene	ND ug/kg	6.1	1		02/06/09 22:12		
rans-1,3-Dichloropropene	ND ug/kg	6.1	1		02/06/09 22:12		
Ethylbenzene	ND ug/kg	6.1	1		02/06/09 22:12		
thyl methacrylate	ND ug/kg	12.1	1		02/06/09 22:12		
lexachloro-1,3-butadiene	ND ug/kg	6.1	1		02/06/09 22:12		
-Hexane	ND ug/kg	6.1	1		02/06/09 22:12		
-Hexanone	ND ug/kg	121	1		02/06/09 22:12	591-78-6	
odomethane	ND ug/kg	121	1		02/06/09 22:12	74-88-4	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 26

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. .

Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-5 (9-10) Lab ID: 5023037002 Collected: 02/05/09 17:00 Received: 02/06/09 11:30 Matrix: Solid

Results reported on a "dry-weigh		Halla	Dened Limit	DF	Descend	å noti med	CAC No	A
Parameters	Results —	Units	Report Limit	Dr	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
sopropylberzene (Cumene)	ND ug	/kg	6.1	1		02/06/09 22:12	98-82-8	
p-Isopropyttoluene	ND ug	ı/kg	6.1	1		02/06/09 22:12	99-87-6	
Methylene chloride	ND ug	/kg	24.2	1		02/06/09 22:12	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	ı/kg	30.3	1		02/06/09 22:12	108-10-1	
Methyl-tert-butyl ether	ND ug	ı/kg	6.1	1		02/06/09 22:12	1634-04-4	
Naphthalene	ND ug	/kg	6.1	1		02/06/09 22:12	91-20-3	
-Propylbenzene	ND ug	ı/kg	6.1	1		02/06/09 22:12	103-65-1	
Styrene	ND ug	/kg	6.1	1		02/06/09 22:12	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	r/kg	6.1	1		02/06/09 22:12	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	6.1	1		02/06/09 22:12	79-34-5	
etrachloroethene	ND ug		6.1	1		02/06/09 22:12	127-18-4	
oluene	ND ug	ı/kg	6.1	1		02/06/09 22:12	108-88-3	
.2.3-Trichlorobenzene	ND ug	ı/kg	6.1	1		02/06/09 22:12	87-61-6	
.2,4-Trichlorobenzene	ND ug	ı/kg	6.1	1		02/06/09 22:12	120-82-1	
,1,1-Trichloroethane	ND ug	ı/kg	6.1	1		02/06/09 22:12	71-55-6	
,1,2-Trichloroethane	ND uo	/kg	6.1	1		02/06/09 22:12	79-00-5	
richloroethene	ND ug	ı/ko	6.1	1		02/06/09 22:12	79-01-6	
richlorofluoromethane	ND ug	ı/kg	6.1	1		02/06/09 22:12	75-69-4	
.2.3-Trichloropropane	ND ug	ı/kg	6.1	1		02/06/09 22:12	96-18-4	
.2.4-Trimethylbenzene	ND ug	ı/kg	6.1	1		02/06/09 22:12	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	6.1	1		02/06/09 22:12	108-67-8	
/inyl acetate	ND ug	_	121	1		02/06/09 22:12	108-05-4	
/inyl chloride	ND ug	_	6.1	1		02/06/09 22:12	75-01-4	
(ylene (Total)	ND ug	ı/ka	12.1	1		02/06/09 22:12	1330-20-7	
Dibromofluoromethane (S)	106 %	-	80-124	1		02/06/09 22:12	1868-53-7	
oluene-d8 (S)	94 %		58-145	1		02/06/09 22:12	2037-26-5	
-Bromofluorobenzene (S)	94 %		61-131	1		02/06/09 22:12	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	17.5 %		0.10	1		02/06/09 15:47		

Date: 02/11/2009 03:06 PM

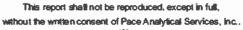
REPORT OF LABORATORY ANALYSIS

7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037


Sample: SB-5 (15-16) Lab ID: 5023037003 Collected: 02/05/09 17:02 Received: 02/06/09 11:30 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV 5030 Low Level	Analytical Meth	od: EPA 8260)				•	
Acetone	ND ug/	kg	107	1		02/06/09 22:48	67-64-1	
Acrolein	ND ug/	kg	107	1		02/06/09 22:48	107-02-8	
Acrylonitrile	ND ug/	kg	107	1		02/06/09 22:48	107-13-1	
lenzene	ND ug/	kg	5.4	1		02/06/09 22:48	71-43-2	
Bromobenzene	ND ug/	kg	5.4	1		02/06/09 22:48	108-86-1	
romochloromethane	ND ug/	kg	5.4	1		02/06/09 22:48	74-97-5	
3romodichloromethane	ND ug/		5.4	1		02/06/09 22:48	75-27-4	
lromoform .	ND ug/	_	5.4	1		02/06/09 22:48	75-25-2	
iromomethane	ND ug/	_	5.4	1		02/06/09 22:48	74-83-9	
-Butanone (MEK)	ND ug/	-	26.8	1		02/06/09 22:48		
-Butylbenzene	ND ug/	_	5.4	1		02/06/09 22:48		
ec-Butylbenzene	ND ug/	_	5.4	1		02/06/09 22:48		
ert-Butylbenzene	ND ug/	_	5.4	1		02/06/09 22:48		
Carbon disulfide	ND ug/	_	10.7	1		02/06/09 22:48		
Carbon tetrachloride	ND ug/	-	5.4	1		02/06/09 22:48		
Chlorobenzene			5.4	1		02/06/09 22:48		
Chloroethane	ND ug/	_	5.4	1		02/06/09 22:48		
Chloroform	ND ug/	_	5.4	1		02/06/09 22:48		
	ND ug/	_						
hloromethane	ND ug/	-	5.4	1		02/06/09 22:48		
-Chlorotoluene	ND ug/	_	5.4	1		02/06/09 22:48		
-Chlorotoluene	ND ug/	_	5.4	1		02/06/09 22:48		
Dibromochloromethane	ND ug/	_	5.4	1		02/06/09 22:48		
,2-Dibromoethane (EDB)	ND ug/	_	5.4	1		02/06/09 22:48		
ibromomethane	ND ug/	kg	5.4	1		02/06/09 22:48		
,2-Dichlorobenzene	ND ug/	kg	5.4	1		02/06/09 22:48	95-50-1	
,3-Dichlorobenzene	ND ug/	kg	5.4	1		02/06/09 22:48	541-73-1	
,4-Dichlorobenzene	ND ug/	kg	5.4	1		02/06/09 22:48	106-46-7	
rans-1,4-Dichloro-2-butene	ND ug/	kg	107	1		02/06/09 22:48	110-57-6	
Dichlorodifluoromethane	ND ug/	kg	5.4	1		02/06/09 22:48	75-71-8	
,1-Dichloroethane	ND ug/	kg	5.4	1		02/06/09 22:48	75-34-3	
,2-Dichloroethane	ND ug/	kg	5.4	1		02/06/09 22:48	107-06-2	
,1-Dichloroethene	ND ug/	kg	5.4	1		02/06/09 22:48	75-35-4	
is-1,2-Dichloroethene	ND ug/	kg	5.4	1		02/06/09 22:48	156-59-2	
ans-1,2-Dichloroethene	ND ug/	_	5.4	1		02/06/09 22:48	156-60-5	
,2-Dichloropropane	ND ug/	-	5.4	1		02/06/09 22:48	78-87-5	
,3-Dichloropropane	ND ug/	_	5.4	1		02/06/09 22:48		
,2-Dichloropropane	ND ug/	_	5.4	1		02/06/09 22:48		
,1-Dichloropropene	ND ug/	_	5.4	1		02/06/09 22:48		
is-1,3-Dichloropropene	ND ug/		5.4	1		02/06/09 22:48		
ans-1,3-Dichloropropene	ND ug/	-	5.4	1		02/06/09 22:48		
* *	_	_	5.4	1		02/06/09 22:48		
thylbenzene thyl methacrylate	ND ug/		10.7	1		02/06/09 22:48		
•	ND ug/	_	5.4	1				
lexachloro-1,3-butadiene	ND ug/	_				02/06/09 22:48		
-Hexane	ND ug/	-	5.4	1		02/06/09 22:48		
-Hexanone	ND ug/	KG	107	1		02/06/09 22:48	291-19-6	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 26

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-5 (15-16) Lab ID: 5023037003 Collected: 02/05/09 17:02 Received: 02/06/09 11:30 Matrix: Solid

Results reported on a "dry-weigh								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Met	nod: EPA 826	0					
sopropylberzene (Cumene)	ND ug	/kg	5.4	1		02/06/09 22:48	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.4	1		02/06/09 22:48	99-87-6	
Methylene chloride	ND ug	/kg	21.5	1		02/06/09 22:48	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.8	1		02/06/09 22:48	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.4	1		02/06/09 22:48	1634-04-4	
Vaphthalene	ND ug	/kg	5.4	1		02/06/09 22:48	91-20-3	
-Propylbenzene	ND ug	/kg	5.4	1		02/06/09 22:48	103-65-1	
Styrene	ND ug	/kg	5.4	1		02/06/09 22:48	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.4	1		02/06/09 22:48	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.4	1		02/06/09 22:48	79-34-5	
etrachloroethene	ND ug		5.4	1		02/06/09 22:48	127-18-4	
oluene	ND ug	/kg	5.4	1		02/06/09 22:48	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.4	1		02/06/09 22:48	87-61-6	
.2,4-Trichlorobenzene	ND ug	/kg	5.4	1		02/06/09 22:48	120-82-1	
.1.1-Trichloroethane	ND ug	/kg	5.4	1		02/06/09 22:48	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.4	1		02/06/09 22:48	79-00-5	
richloroethene	ND ug	/kg	5.4	1		02/06/09 22:48	79-01-6	
richlorofluoromethane	ND ug	/kg	5.4	1		02/06/09 22:48	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.4	1		02/06/09 22:48	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.4	1		02/06/09 22:48	95-63-6	
,3,5-Trimethylbenzene	ND ug	/kg	5.4	1		02/06/09 22:48	108-67-8	
/inyl acetate	ND ug	_	107	1		02/06/09 22:48	108-05-4	
/inyl chloride	ND ug	_	5.4	1		02/06/09 22:48	75-01-4	
(ylene (Total)	ND ug	/kg	10.7	1		02/06/09 22:48	1330-20-7	
Dibromofluoromethane (S)	116 %	-	80-124	1		02/06/09 22:48	1868-53-7	
oluene-d8 (S)	93 %		58-145	1		02/06/09 22:48	2037-26-5	
-Bromofluorobenzene (S)	96 %		61-131	1		02/06/09 22:48	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	6.8 %		0.10	1		02/06/09 15:47		

Date: 02/11/2009 03:06 PM

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037


Sample: SB-6 (5-6) Collected: 02/05/09 16:30 Received: 02/06/09 11:30 Matrix: Solid Lab ID: 5023037004

Results reported on a "dry-weigh								
Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260)					
Acetone	ND ug	/kg	106	1		02/06/09 23:24	67-64-1	
Acrolein	ND ug	/kg	106	1		02/06/09 23:24	107-02-8	
Acrylonitrile	ND ug	/kg	106	1		02/06/09 23:24	107-13-1	
Benzene	ND ug	/kg	5.3	1		02/06/09 23:24	71-43-2	
Iromobenzene	ND ug	/kg	5.3	1		02/06/09 23:24	108-86-1	
romochloromethane	ND ug	/kg	5.3	1		02/06/09 23:24	74-97-5	
romodichloromethane	ND ug	/kg	5.3	1		02/06/09 23:24	75-27-4	
romoform	ND ug	/kg	5.3	1		02/06/09 23:24	75-25-2	
romomethane	ND ug	_	5.3	1		02/06/09 23:24	74-83-9	
-Butanone (MEK)	ND ug		26.6	1		02/06/09 23:24	78-93-3	
-Butylbenzene	ND ug	_	5.3	1		02/06/09 23:24	104-51-8	
ec-Butylbenzene	ND ug	. =	5.3	1		02/06/09 23:24		
ert-Butylbenzene	ND ug	. =	5.3	1		02/06/09 23:24		
Carbon disulfide	ND ug	_	10.6	1		02/06/09 23:24		
Carbon tetrachloride	ND ug	-	5.3	1		02/06/09 23:24		
Chlorobenzene	ND ug	_	5.3	1		02/06/09 23:24		
Chloroethane	ND ug		5.3	1		02/06/09 23:24		
hloroform	ND ug	_	5.3	1		02/06/09 23:24		
hloromethane		. =	5.3	1				
***************************************	ND ug	-		1		02/06/09 23:24		
-Chlorotoluene	ND ug	_	5.3	•		02/06/09 23:24		
-Chlorotoluene	ND ug	_	5.3	1		02/06/09 23:24		
bromochloromethane	ND ug	_	5.3	1		02/06/09 23:24		
,2-Dibromoethane (EDB)	ND ug	_	5.3	1		02/06/09 23:24		
ibromomethane	ND ug		5.3	1		02/06/09 23:24		
,2-Dichlorobenzene	ND ug	/kg	5.3	1		02/06/09 23:24	95-50-1	
,3-Dichlorobenzene	ND ug	/kg	5.3	1		02/06/09 23:24	541-73-1	
,4-Dichlorobenzene	ND ug	/kg	5.3	1		02/06/09 23:24	106-46-7	
ans-1,4-Dichloro-2-butene	ND ug	/kg	106	1		02/06/09 23:24	110-57-6	
ichlorodifluoromethane	ND ug	/kg	5.3	1		02/06/09 23:24	75-71-8	
,1-Dichloroethane	ND ug	/kg	5.3	1		02/06/09 23:24	75-34-3	
,2-Dichloroethane	ND ug	/kg	5.3	1		02/06/09 23:24	107-06-2	
,1-Dichloroethene	ND ug	/kg	5.3	1		02/06/09 23:24	75-35-4	
is-1,2-Dichloroethene	ND ug	/kg	5.3	1		02/06/09 23:24	156-59-2	
ans-1,2-Dichloroethene	ND ug	/kg	5.3	1		02/06/09 23:24	156-60-5	
,2-Dichloropropane	ND ug	. —	5.3	1		02/06/09 23:24	78-87-5	
3-Dichloropropane	ND ug	_	5.3	1		02/06/09 23:24	142-28-9	
2-Dichloropropane	ND ug	_	5.3	1		02/06/09 23:24		
1-Dichloropropene	ND ug	_	5.3	1		02/06/09 23:24		
is-1,3-Dichloropropene	ND ug	4	5.3	1		02/06/09 23:24		
ans-1,3-Dichloropropene	ND ug	. —	5.3	1		02/06/09 23:24		
thylbenzene	ND ug	_	5.3	1		02/06/09 23:24		
thyl methacrylate	ND ug		10.6	1		02/06/09 23:24		
lexachloro-1,3-butadiene	ND ug	_	5.3	1		02/06/09 23:24		
	_	_	5.3 5.3	1		02/06/09 23:24		
-Hexane -Hexanone	ND ug	-	5.3 106	1				
• CT-873 ATTC 3F109	ND ug	/INL	IUD			02/06/09 23:24	ລາ I • (Q− <i>D</i>)	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 26

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-6 (5-6) Lab ID: 5023037004 Collected: 02/05/09 16:30 Received: 02/06/09 11:30 Matrix: Solid

Results reported on a "dry-weigh Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
raiailleters	— — — —	UIRIS	- Kebon Cirili	Dr	гіераіво	Aleiyzed		
3260 MSV 5030 Low Level	Analytical Met	nod: EPA 826	0					
sopropylberzene (Cumene)	ND ug	/kg	5.3	1		02/06/09 23:24	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.3	1		02/06/09 23:24	99-87-6	
Methylene chloride	ND ug	/kg	21.3	1		02/06/09 23:24	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.6	1		02/06/09 23:24	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.3	1		02/06/09 23:24	1634-04-4	
laphthalene	ND ug	/kg	5.3	1		02/06/09 23:24	91-20-3	
-Propylbenzene	ND ug	/kg	5.3	1		02/06/09 23:24	103-65-1	
Styrene	ND ug	/kg	5.3	1		02/06/09 23:24	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/06/09 23:24	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.3	1		02/06/09 23:24	79-34-5	
etrachloroethene	5.9 ug	/kg	5.3	1		02/06/09 23:24	127-18-4	
oluene	ND ug	/kg	5.3	1		02/06/09 23:24	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.3	1		02/06/09 23:24	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.3	1		02/06/09 23:24	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.3	1		02/06/09 23:24	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.3	1		02/06/09 23:24	79-00-5	
richloroethene	ND ug	/kg	5.3	1		02/06/09 23:24	79-01-6	
richlorofluoromethane	ND ug	/kg	5.3	1		02/06/09 23:24	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.3	1		02/06/09 23:24	96-18-4	
.2,4-Trimethylbenzene	ND ug	/kg	5.3	1		02/06/09 23:24	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.3	1		02/06/09 23:24	108-67-8	
finyl acetate	ND ug	/kg	106	1		02/06/09 23:24	108-05-4	
/inyl chloride	ND ug	/kg	5.3	1		02/06/09 23:24	75-01-4	
(ylene (Total)	ND ug	/kg	10.6	1		02/06/09 23:24	1330-20-7	
Pibromofluoromethane (S)	121 %	-	80-124	1		02/06/09 23:24	1868-53-7	
oluene-d8 (S)	90 %		58-145	1		02/06/09 23:24	2037-26-5	
-Bromofluorobenzene (S)	95 %		61-131	1		02/06/09 23:24	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	6.1 %		0.10	1		02/06/09 15:47		

Date: 02/11/2009 03:06 PM

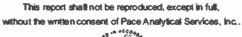
REPORT OF LABORATORY ANALYSIS

Page 353 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5023037


Sample: SB-6 (7-8) Lab ID: 5023037005 Collected: 02/05/09 16:55 Received: 02/06/09 11:30 Matrix: Solid

	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260 MSV 5030 Low Level	Analytical Method: EPA 8260						
cetone	ND ug/kg	104	1		02/07/09 00:01	67-64-1	
crolein	ND ug/kg	104	1		02/07/09 00:01	107-02-8	
crylonitrile	ND ug/kg	104	1		02/07/09 00:01	107-13-1	
enzene	ND ug/kg	5.2	1		02/07/09 00:01	71-43-2	
romobenzene	ND ug/kg	5.2	1		02/07/09 00:01	108-86-1	
romochloromethane	ND ug/kg	5.2	1		02/07/09 00:01	74-97-5	
romodichloromethane	ND ug/kg	5.2	1		02/07/09 00:01	75-27-4	
romoform	ND ug/kg	5.2	1		02/07/09 00:01	75-25-2	
romomethane	ND ug/kg	5.2	1		02/07/09 00:01	74-83-9	
-Butanone (MEK)	ND ug/kg	26.1	1		02/07/09 00:01	78-93-3	
-Butylbenzene	ND ug/kg	5.2	1		02/07/09 00:01	104-51-8	
ec-Butylbenzene	ND ug/kg	5.2	1		02/07/09 00:01	135-98-8	
ert-Butylbenzene	ND ug/kg	5.2	1		02/07/09 00:01	98-06-6	
arbon disulfide	ND ug/kg	10.4	1		02/07/09 00:01	75-15-0	
arbon tetrachloride	ND ug/kg	5.2	1		02/07/09 00:01		
hlorobenzene	ND ug/kg	5.2	1		02/07/09 00:01		
hloroethane	ND ug/kg	5.2	1		02/07/09 00:01		
hloroform	ND ug/kg	5.2	1		02/07/09 00:01		
hloromethane	ND ug/kg	5.2	1		02/07/09 00:01		
-Chlorotoluene	ND ug/kg	5.2	1		02/07/09 00:01		
-Chlorotoluene	ND ug/kg	5.2	1		02/07/09 00:01		
bromochloromethane	ND ug/kg	5.2	1		02/07/09 00:01		
,2-Dibromoethane (EDB)	ND ug/kg	5.2	1		02/07/09 00:01		
ibromomethane	ND ug/kg	5.2	1		02/07/09 00:01		
,2-Dichlorobenzene	ND ug/kg	5.2	1		02/07/09 00:01		
,3-Dichlorobenzene	ND ug/kg	5.2	1		02/07/09 00:01		
,3-Dichlorobenzene		5.2 5.2	1		02/07/09 00:01		
ans-1,4-Dichloro-2-butene	ND ug/kg ND ug/kg	104	1		02/07/09 00:01		
ichlorodifluoromethane		5.2	1				
	ND ug/kg	5.2	1		02/07/09 00:01 02/07/09 00:01		
,1-Dichloroethane	ND ug/kg		1				
,2-Dichloroethane	ND ug/kg	5.2	1		02/07/09 00:01 02/07/09 00:01		
,1-Dichloroethene	ND ug/kg	5.2 5.2	1				
s-1,2-Dichloroethene	ND ug/kg				02/07/09 00:01		
ans-1,2-Dichloroethene	ND ug/kg	5.2	1		02/07/09 00:01		
,2-Dichloropropane	ND ug/kg	5.2	1		02/07/09 00:01		
3-Dichloropropane	ND ug/kg	5.2	1		02/07/09 00:01		
2-Dichloropropane	ND ug/kg	5.2	1		02/07/09 00:01		
1-Dichloropropene	ND ug/kg	5.2	1		02/07/09 00:01		
s-1,3-Dichloropropene	ND ug/kg	5.2	1		02/07/09 00:01		
ans-1,3-Dichloropropene	ND ug/kg	5.2	1		02/07/09 00:01		
thylbenzene	ND ug/kg	5.2	1		02/07/09 00:01		
thyl methacrylate	ND ug/kg	10.4	1		02/07/09 00:01		
exachloro-1,3-butadiene	ND ug/kg	5.2	1		02/07/09 00:01		
-Hexane	ND ug/kg	5.2	1		02/07/09 00:01		
-Hexanone	ND ug/kg	104	1		02/07/09 00:01	591-78-6	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 26

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-6 (7-8) Lab ID: 5023037005 Collected: 02/05/09 16:55 Received: 02/06/09 11:30 Matrix: Solid

Results reported on a "dry-weigh		1.131	5			A A	0.0	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
sopropylberzene (Cumene)	ND ug	/kg	5.2	1		02/07/09 00:01	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.2	1		02/07/09 00:01	99-87-6	
Viethylene chloride	ND ug	/kg	20.9	1		02/07/09 00:01	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	26.1	1		02/07/09 00:01	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.2	1		02/07/09 00:01	1634-04-4	
Vaphthalene	ND ug	/kg	5.2	1		02/07/09 00:01	91-20-3	
-Propylbenzene	ND ug	/kg	5.2	1		02/07/09 00:01	103-65-1	
Styrene	ND ug	/kg	5.2	1		02/07/09 00:01	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.2	1		02/07/09 00:01	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.2	1		02/07/09 00:01	79-34-5	
etrachloroethene	6.5 ug	/kg	5.2	1		02/07/09 00:01	127-18-4	
oluene	ND ug	/kg	5.2	1		02/07/09 00:01	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.2	1		02/07/09 00:01	87-61-6	
.2.4-Trichlorobenzene	ND ug	/kg	5.2	1		02/07/09 00:01	120-82-1	
,1,1-Trichloroethane	ND ug	/kg	5.2	1		02/07/09 00:01	71-55-6	
,1,2-Trichloroethane	ND ug	/kg	5.2	1		02/07/09 00:01	79-00-5	
richloroethene	ND ug	/kg	5.2	1		02/07/09 00:01	79-01-6	
richlorofluoromethane	ND ug	/kg	5.2	1		02/07/09 00:01	75-69-4	
.2.3-Trichloropropane	ND ug	/kg	5.2	1		02/07/09 00:01	96-18-4	
.2.4-Trimethylbenzene	ND ug	/kg	5.2	1		02/07/09 00:01	95-63-6	
.3.5-Trimethylbenzene	ND ug	/kg	5.2	1		02/07/09 00:01	108-67-8	
/inyl acetate	ND ug	/kg	104	1		02/07/09 00:01	108-05-4	
'inyl chloride	ND ug	/kg	5.2	1		02/07/09 00:01	75-01-4	
(ylene (Total)	ND ug	/kg	10.4	1		02/07/09 00:01	1330-20-7	
Dibromofluoromethane (S)	115 %		80-124	1		02/07/09 00:01	1868-53-7	
oluene-d8 (S)	92 %		58-145	1		02/07/09 00:01	2037-26-5	
-Bromofluorobenzene (S)	93 %		61-131	1		02/07/09 00:01	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	4.2 %		0.10	1		02/06/09 15:48		

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037


Sample: SB-6 (14-15) Lab ID: 5023037006 Collected: 02/05/09 16:57 Received: 02/06/09 11:30 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV 5030 Low Level	Analytical Metho	od: EPA 8260)					
Acetone	ND ug/l	kg	118	1		02/09/09 14:15	67-64-1	
Acrolein	ND ug/l	(Q	118	1		02/09/09 14:15	107-02-8	
Acrylonitrile	ND ug/l	κg	118	1		02/09/09 14:15	107-13-1	
Benzene	ND ug/l	kg.	5.9	1		02/09/09 14:15	71-43-2	
Bromobenzene	ND ug/l	«g	5.9	1		02/09/09 14:15	108-86-1	
3romochloromethane	ND ug/l	κg	5.9	1		02/09/09 14:15	74-97-5	
Promodichloromethane	ND ug/l	(Q	5.9	1		02/09/09 14:15	75-27-4	
lromoform .	ND ug/l	_	5.9	1		02/09/09 14:15	75-25-2	
iromomethane	ND ug/l	_	5.9	1		02/09/09 14:15	74-83-9	
-Butanone (MEK)	ND ug/l	-	29.5	1		02/09/09 14:15		
-Butylbenzene	ND ug/l	_	5.9	1		02/09/09 14:15		
ec-Butylbenzene	ND ug/l	_	5.9	1		02/09/09 14:15		
ert-Butylbenzene	ND ug/l	_	5.9	1		02/09/09 14:15		
Carbon disulfide	ND ug/l	_	11.8	1		02/09/09 14:15		
Carbon tetrachloride	ND ug/l	-	5.9	1		02/09/09 14:15		
Chlorobenzene	ND ug/l	_	5.9	1		02/09/09 14:15		
Chloroethane	ND ug/l	_	5.9	1		02/09/09 14:15		
Chloroform	ND ug/l	_	5.9	1		02/09/09 14:15		
Chloromethane		_	5.9	1		02/09/09 14:15		
-Chlorotoluene	ND ug/l	-	5.9	1		02/09/09 14:15		
-Chlorotoluene	ND ug/l	_	5.9	1		02/09/09 14:15		
-Chlorolololene Dromochloromethane	ND ug/i	_	5.9	1		02/09/09 14:15		
,2-Dibromoethane (EDB)	ND ug/l	_	5.9	1		02/09/09 14:15		
	ND ug/i	_						
Dibromomethane	ND ug/l	-	5.9	1		02/09/09 14:15		
,2-Dichlorobenzene	ND ug/l	_	5.9	1		02/09/09 14:15		
,3-Dichlorobenzene	ND ug/l	_	5.9	1		02/09/09 14:15		
,4-Dichlorobenzene	ND ug/l	_	5.9	1		02/09/09 14:15		
rans-1,4-Dichloro-2-butene	ND ug/l	_	118	1		02/09/09 14:15		
Ochlorodifluoromethane	ND ug/l	-	5.9	1		02/09/09 14:15		
,1-Dichloroethane	ND ug/l	©	5.9	1		02/09/09 14:15		
,2-Dichloroethane	ND ug/l	kg	5.9	1		02/09/09 14:15		
,1-Dichloroethene	ND ug/l	_	5.9	1		02/09/09 14:15		
is-1,2-Dichloroethene	ND ug/i	v g	5.9	1		02/09/09 14:15		
ans-1,2-Dichloroethene	ND ug/l	¢ g	5.9	1		02/09/09 14:15		
,2-Dichloropropane	ND ug/l	G.	5.9	1		02/09/09 14:15	78-87-5	
,3-Dichloropropane	ND ug/l	v g	5.9	1		02/09/09 14:15	142-28-9	
,2-Dichloropropane	ND ug/l	(g	5.9	1		02/09/09 14:15	594-20-7	
,1-Dichloropropene	ND ug/l	kg	5.9	1		02/09/09 14:15	563-58-6	
is-1,3-Dichloropropene	ND ug/l	kg	5.9	1		02/09/09 14:15	10061-01-5	
ans-1,3-Dichloropropene	ND ug/l	¢ g	5.9	1		02/09/09 14:15	10061-02-6	
thylbenzene	ND ug/i	κg	5.9	1		02/09/09 14:15	100-41-4	
thyl methacrylate	ND ug/l		11.8	1		02/09/09 14:15	97-63-2	
lexachloro-1,3-butadiene	ND ug/l	_	5.9	1		02/09/09 14:15	87-68-3	
-Hexane	ND ug/l	_	5.9	1		02/09/09 14:15		
-Hexanone	ND ug/l	-	118	1		02/09/09 14:15		
odomethane	ND ug/l	_	118	1		02/09/09 14:15		

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 14 of 26

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza Pace Project No.: 5023037

Sample: SB-6 (14-15) Lab ID: 5023037006 Collected: 02/05/09 16:57 Received: 02/06/09 11:30 Matrix: Solid

Results reported on a "dry-weigh		Halla	Dened Limit	DF	Descend	å noti med	CAC No	A
Parameters	Results	Units	Report Limit	Dr	Prepared	Analyzed	CAS No.	Qua
8260 MSV 5030 Low Level	Analytical Met	nod: EPA 826	0					
sopropylberzene (Cumene)	ND ug	/kg	5.9	1		02/09/09 14:15	98-82-8	
p-Isopropyttoluene	ND ug	/kg	5.9	1		02/09/09 14:15	99-87-6	
Methylene chloride	ND ug	/kg	23.6	1		02/09/09 14:15	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND ug	/kg	29.5	1		02/09/09 14:15	108-10-1	
Methyl-tert-butyl ether	ND ug	/kg	5.9	1		02/09/09 14:15	1634-04-4	
Naphthalene	ND ug	/kg	5.9	1		02/09/09 14:15	91-20-3	
-Propylbenzene	ND ug	/kg	5.9	1		02/09/09 14:15	103-65-1	
Styrene	ND ug	/kg	5.9	1		02/09/09 14:15	100-42-5	
,1,1,2-Tetrachloroethane	ND ug	/kg	5.9	1		02/09/09 14:15	630-20-6	
,1,2,2-Tetrachloroethane	ND ug	/kg	5.9	1		02/09/09 14:15	79-34-5	
etrachloroethene	26.4 ug		5.9	1		02/09/09 14:15	127-18-4	
oluene	ND ug	_	5.9	1		02/09/09 14:15	108-88-3	
.2.3-Trichlorobenzene	ND ug	/kg	5.9	1		02/09/09 14:15	87-61-6	
.2.4-Trichlorobenzene	ND ug	_	5.9	1		02/09/09 14:15	120-82-1	
,1,1-Trichloroethane	ND ug	-	5.9	1		02/09/09 14:15	71-55-6	
.1,2-Trichloroethane	ND ug	/ka	5.9	1		02/09/09 14:15	79-00-5	
richlorgethene	ND ug	_	5.9	1		02/09/09 14:15	79-01-6	
richlorofluoromethane	ND ug	_	5.9	1		02/09/09 14:15	75-69-4	
.2.3-Trichloropropane	ND ug	_	5.9	1		02/09/09 14:15	96-18-4	
.2,4-Trimethylbenzene	ND ug	-	5.9	1		02/09/09 14:15	95-63-6	
.3.5-Trimethylbenzene	ND ug	_	5.9	1		02/09/09 14:15	108-67-8	
/inyl acetate	ND ug	_	118	1		02/09/09 14:15	108-05-4	
'inyl chloride	ND ug	_	5.9	1		02/09/09 14:15	75-01-4	
(ylene (Total)	ND ug	_	11.8	1		02/09/09 14:15	1330-20-7	
Dibromofluoromethane (S)	98 %	-	80-124	1		02/09/09 14:15	1868-53-7	
oluene-d8 (S)	97 %		58-145	1		02/09/09 14:15	2037-26-5	
-Bromofluorobenzene (S)	94 %		61-131	1		02/09/09 14:15		
ercent Moisture	Analytical Met	nod: ASTM D	2974-87					
Percent Moisture	15.2 %		0.10	1		02/06/09 15:48		

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project

Michigan Plaza

Pace Project No.:

5023037

QC Batch:

PMST/3325

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

26.3

Dry Weight/Percent Moisture

Associated Lab Samples: 5023037001, 5023037002, 5023037003, 5023037004, 5023037005, 5023037006

20.7

9.6

SAMPLE DUPLICATE: 260926

5022980001

Dup

Max

Parameter

Units

Units

Result

RPD

RPD

Qualifiers 5 R2

SAMPLE DUPLICATE: 260927

5022966001 Result

Result

Dup Result

RPD

Max RPD

5

Parameter

Percent Moisture

Percent Moisture

%

10.1

5

Qualifiers

Date: 02/11/2009 03:06 PM

Page 358 e Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023037

QC Batch: MSV/14277 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5030 Low

Associated Lab Samples: 5023037001, 5023037002, 5023037003, 5023037004, 5023037005


METHOD BLANK: 261298 Matrix: Solid

Associated Lab Samples: 5023037001, 5023037002, 5023037003, 5023037004, 5023037005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	02/06/09 14:17	
1,1,1-Trichloroethane	ug/kg	ND	5.0	02/06/09 14:17	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	02/06/09 14:17	
1,1,2-Trichloroethane	ug/kg	ND	5.0	02/06/09 14:17	
1,1-Dichloroethane	ug/kg	ND	5.0	02/06/09 14:17	
1,1-Dichloroethene	ug/kg	ND	5.0	02/06/09 14:17	
1,1-Dichloropropene	ug/kg	ND	5.0	02/06/09 14:17	
1,2,3-Trichloroberzene	ug/kg	ND	5.0	02/06/09 14:17	
1,2,3-Trichloropropane	ug/kg	ND	5.0	02/06/09 14:17	
1,2,4-Trichloroberizene	ug/kg	ND	5.0	02/06/09 14:17	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	02/06/09 14:17	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	02/06/09 14:17	
1,2-Dichlorobenzene	ug/kg	ND	5.0	02/06/09 14:17	
1,2-Dichloroethane	ug/kg	ND	5.0	02/06/09 14:17	
1,2-Dichloropropane	ug/kg	ND	5.0	02/06/09 14:17	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	02/06/09 14:17	
1,3-Dichlorobenzene	ug/kg	ND	5.0	02/06/09 14:17	
1,3-Dichloropropane	ug/kg	ND	5.0	02/06/09 14:17	
1,4-Dichlorobenzene	ug/kg	ND	5.0	02/06/09 14:17	
2,2-Dichloropropane	ug/kg	ND	5.0	02/06/09 14:17	
2-Butanone (MEK)	ug/kg	ND	25.0	02/06/09 14:17	
2-Chlorotoluene	ug/kg	ND	5.0	02/06/09 14:17	
2-Hexanone	ug/kg	ND	100	02/06/09 14:17	
4-Chlorotoluene	ug/kg	ND	5.0	02/06/09 14:17	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	25.0	02/06/09 14:17	
Acetone	ug/kg	ND	100	02/06/09 14:17	
Acrolein	ug/kg	ND	100	02/06/09 14:17	
Acrylonitrile	ug/kg	ND	100	02/06/09 14:17	
Benzene	ug/kg	ND	5.0	02/06/09 14:17	
Bromobenzene	ug/kg	ND	5.0	02/06/09 14:17	
Bromochloromethane	ug/kg	ND	5.0	02/06/09 14:17	
Bromodichloromethane	ug/kg	ND	5.0	02/06/09 14:17	
Bromoform	ug/kg	ND	5.0	02/06/09 14:17	
Bromomethane	ug/kg	ND	5.0	02/06/09 14:17	
Carbon disulfide	ug/kg	ND	10.0	02/06/09 14:17	
Carbon tetrachloride	ug/kg	ND	5.0	02/06/09 14:17	
Chlorobenzene	ug/kg	ND	5.0	02/06/09 14:17	
Chloroethane	ug/kg	ND	5.0	02/06/09 14:17	
Chloroform	ug/kg	ND	5.0	02/06/09 14:17	
Chloromethane	ug/kg	ND	5.0	02/06/09 14:17	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	02/06/09 14:17	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	02/06/09 14:17	
Dibromochloromethane	ug/kg	ND	5.0	02/06/09 14:17	

Date: 02/11/2009 03:06 PM REPORT OF LABORATORY ANALYSIS

Page 17 of 26

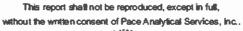
Page 359 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023037

METHOD BLANK: 261298 Matrix: Solid


Associated Lab Samples: 5023037001, 5023037002, 5023037003, 5023037004, 5023037005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND ·	5.0	02/06/09 14:17	
Dichlorodifluoromethane	ug/kg	ND	5.0	02/06/09 14:17	
Ethyl methacrylate	ug/kg	ND	10.0	02/06/09 14:17	
Ethylbenzene	ug/kg	ND	5.0	02/06/09 14:17	
Hexachloro-1,3-butadiene	ug/kg	ND	5.0	02/06/09 14:17	
lodomethane	ug/kg	ND	100	02/06/09 14:17	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	02/06/09 14:17	
Methyl-tert-butyl ether	ug/kg	ND	5.0	02/06/09 14:17	
Methylene chloride	ug/kg	ND	20.0	02/06/09 14:17	
n-Butylbenzene	ug/kg	ND	5.0	02/06/09 14:17	
n-Hexane	ug/kg	ND	5.0	02/06/09 14:17	
n-Propylbenzene	ug/kg	ND	5.0	02/06/09 14:17	
Naphthalene	ug/kg	ND	5.0	02/06/09 14:17	
p-Isopropyltoluene	ug/kg	ND	5.0	02/06/09 14:17	
sec-Butylbenzene	ug/kg	ND	5.0	02/06/09 14:17	
Styrene	ug/kg	ND	5.0	02/06/09 14:17	
tert-Butylbenzene	ug/kg	ND	5.0	02/06/09 14:17	
Tetrachloroethene	ug/kg	ND	5.0	02/06/09 14:17	
Toluene	ug/kg	ND	5.0	02/06/09 14:17	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	02/06/09 14:17	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	02/06/09 14:17	
trans-1,4-Dichloro-2-butene	ug/kg	ND	100	02/06/09 14:17	
Trichloroethene	ug/kg	ND	5.0	02/06/09 14:17	
Trichlorofluoromethane	ug/kg	ND	5.0	02/06/09 14:17	
Vinyl acetate	ug/kg	ND	100	02/06/09 14:17	
Vinyl chloride	ug/kg	ND	5.0	02/06/09 14:17	
Xylene (Total)	ug/kg	ND	10.0	02/06/09 14:17	
4-Bromofluorobenzene (S)	%	94	61-131	02/06/09 14:17	
Dibromofluoromethane (S)	%	125	80-124	02/06/09 14:17	S3
Toluene-d8 (S)	%	92	58-145	02/06/09 14:17	

LABORATORY CONTROL SAMPLE:	261299					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	50	48.7	97	65-124	
1,1,1-Trichloroethane	ug/kg	50	50.7	101	61-135	
1,1,2,2-Tetrachloroethane	ug/kg	50	51.8	104	66-124	
1,1,2-Trichloroethane	ug/kg	50	49.0	98	74-127	
1,1-Dichloroethane	ug/kg	50	50.6	101	62-132	
1,1-Dichloroethene	ug/kg	50	55.5	111	61-123	
1,1-Dichloropropene	ug/kg	50	52.2	104	74-128	
1,2,3-Trichlorobenzene	ug/kg	50	49.1	98	60-125	
1,2,3-Trichloropropane	ug/kg	50	45.2	90	61-120	
1,2,4-Trichlorobenzene	ug/kg	50	47.5	95	58-126	
1,2,4-Trimethylbenzene	ug/kg	50	50.4	101	72-120	

Date: 02/11/2009 03:06 PM REPORT OF LABORATORY ANALYSIS

Page 18 of 26

Pace Analytical www.pacelabs.com

Page 36U ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

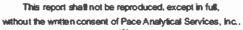
Project Michigan Plaza
Pace Project No.: 5023037

ABORATORY CONTROL SAMPL	E: 261299	261299					
Parameter		Spike	LCS	LCS	% Rec		
	Units	Conc.	Result	% Rec	Limits	Qualifier	
,2-Dibromoethane (EDB)	ug/kg	50	48.8	98	74-119		
,2-Dichlorobenzene	ug/kg	50	50.8	102	75-117		
,2-Dichloroethane	ug/kg	50	52.9	106	62-135		
,2-Dichloropropane	ug/kg	50	49.6	99	74-124		
,3,5-Trimethylbenzene	ug/kg	50	47.5	95	73-122		
,3-Dichlorobenzene	ug/kg	50	50.4	101	73-120		
,3-Dichloropropane	ug/kg	50	48.2	96	71-122		
4-Dichlorobenzene	ug/kg	50	50.2	100	72-118		
,2-Dichloropropane	ug/kg	50	43.3	87	53-136		
Butanone (MEK)	ug/kg	250	420	168	33-190		
-Chlorotoluene	ug/kg	50	52.1	104	72-122		
Hexanone	ug/kg	250	377	151	44-168		
-Chlorotoluene	ug/kg	50	44.7	89	72-120		
-Methyl-2-pentanone (MIBK)	ug/kg	250	246	98	58-126		
cetone	ug/kg	250	635	254	30-190	LO	
crolein	ug/kg	1000	1970	197	30-190	LO	
crylonitrile	ug/kg	1000	1070	107	65-129		
enzene	ug/kg	50	53.1	106	76-123		
romobenzene	ug/kg	50	56.8	114	74-116		
romochloromethane	ug/kg	50	54.2	108	56-143		
romodichloromethane	ug/kg	50	52.4	105	67-123		
romoform	ug/kg	50	47.3	95	58-117		
romomethane	ug/kg	50	48.7	97	47-147		
arbon disulfide	ug/kg	100	135	135	56-141		
arbon tetrachloride	ug/kg	50	50.9	102	54-136		
hlorobenzene	ug/kg	50	50.5	101	75-115		
hloroethane	ug/kg	50	59.0	118	57-147		
hloroform	ug/kg	50	52.5	105	74-123		
hioromethane	ug/kg	50	53.4	107	31-155		
s-1,2-Dichloroethene	ug/kg	50	53.6	107	76-119		
is-1,3-Dichloropropene	ug/kg	50	49.0	98	56-110		
bromochloromethane	ug/kg	50	49.3	99	63-122		
ibromomethane	ug/kg	50	55.5	111	70-127		
chlorodifluoromethane	ug/kg	50	53.0	106	30-170		
thyl methacrylate	ug/kg	50	46.4	93	58-126		
thy ibe nzene	ug/kg	50	48.7	97	78-121		
exachloro-1.3-butadiene	ug/kg	50	43.2	86	65-128		
domethane	ug/kg	100	96.5J	96	38-173		
opropylbenzene (Cumene)	ug/kg	50	50.0	100	75-128		
ethyl-tert-butyl ether		100	85.8	86	59-142		
ethylene chloride	ug/kg	50	57.1	114	30-170		
•	ug/kg			92			
-Butylbenzene	ug/kg	50	45.8		70-123 76-143		
Hexane	ug/kg	50	57.8	116			
-Propylbenzene	ug/kg	50	48.6	97	70-126		
aphthalene	ug/kg	50	45.1	90	60-128		
-Isopropyttoluene	ug/kg	50	43.9	88	65-125		
ec-Butylbenzene	ug/kg	50	48.1	96	72-125		

Date: 02/11/2009 03:06 PM

ug/kg

Styrene


REPORT OF LABORATORY ANALYSIS

47.3

75-118

50

Page 19 of 26

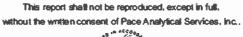
Page 361 e Analytical Services, In

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023037

LABORATORY CONTROL SAMPLE: 261299


Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						<u> </u>
tert-Butylbenzene	ug/kg	50	43.9	88	61-114	
Tetrachloroethene	ug/kg	50	38.3	77	63-117	
Toluene	ug/kg	50	50.5	101	72-123	
trans-1,2-Dichloroethene	ug/kg	50	55.4	111	70-122	
trans-1,3-Dichloropropene	ug/kg	50	42.0	84	55-107	
trans-1,4-Dichloro-2-butene	ug/kg	50	38.1J	76	49-127	
Trichloroethene	ug/kg	50	53.4	107	74-121	
Trichlorofluoromethane	ug/kg	50	52.1	104	55-156	
Vinyl acetate	ug/kg	200	170	85	46-127	
Vinyl chloride	ug/kg	50	50.5	101	50-146	
Xylene (Total)	ug/kg	150	142	95	77-120	
4-Bromofluorobenzene (S)	%			100	61-131	
Dibromofluoromethane (S)	%			96	80-124	
Toluene-d8 (S)	%			98	58-145	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	E: 26130	٥		261301							
			MS	MSD								
	50	022984003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,1,1,2-Tetrachloroethane	ug/kg	ND	63.1	63.1	40.7	44.2	64	70	20-133	-8	20	
1,1,1-Trichloroethane	ug/kg	ND	63.1	63.1	43.4	51.1	69	81	27-142	16	20	
,1,2,2-Tetrachloroethane	ug/kg	ND	63.1	63.1	43.0	43.1	68	68	20-159	0	20	
,1.2-Trichloroethane	ug/kg	ND	63.1	63.1	45.9	46.4	73	74	20-155	1	20	
,1-Dichloroethane	ug/kg	ND	63.1	63.1	53.0	58.0	84	92	31-141	9	20	
,1-Dichloroethene	ug/kg	ND	63.1	63.1	59.3	65.4	94	104	23-132	10	20	
.1-Dichloropropene	ug/kg	ND	63.1	63.1	54.0	58.7	86	93	20-146	8	20	
.2.3-Trichlorobenzene	ug/kg	ND	63.1	63.1	23.9	26.5	38	42	20-140	10	20	
.2.3-Trichloropropane	ug/kg	ND	63.1	63.1	36.8	36.5	58	58	20-153	1	20	
.2.4-Trichloroberzene	ug/kg	ND	63.1	63.1	24.5	26.8	39	42	20-120	9	20	
,2,4-Trimethylbenzene	ug/kg	ND	63.1	63.1	42.7	46.3	68	73	20-156	8	20	
.2-Dibromoethane (EDB)	ug/kg	ND	63.1	63.1	42.4	44.1	67	70	20-143	4	20	
,2-Dichlorobenzene	ug/kg	ND	63.1	63.1	39.4	41.6	62	66	20-133	5	20	
.2-Dichloroethane	ug/kg	ND	63.1	63.1	51.4	54.0	81	86	30-143	5	20	
.2-Dichloropropane	ug/kg	ND	63.1	63.1	50.3	54.0	80	86	30-140	7	20	
.3.5-Trimethylbenzene	ug/kg	ND	63.1	63.1	40.5	44.4	64	70	20-143	9	20	
,3-Dichlorobenzene	ug/kg	ND	63.1	63.1	40.5	43.9	64	70	20-136	8	20	
.3-Dichloropropane	ug/kg	ND	63.1	63.1	43.7	44.5	69	70	30-144	2	20	
,4-Dichlorobenzene	ug/kg	ND	63.1	63.1	39.6	41.4	63	66	30-135	4	20	
,2-Dichloropropane	ug/kg	ND	63.1	63.1	33.0	38.7	52	61	30-143	16	20	
-Butanone (MEK)	ug/kg	ND	315	315	264	259	84	82	30-190	2	20	
-Chlorotoluene	ug/kg	ND	63.1	63.1	44.8	48.2	71	76	30-170	7	20	
-Hexanone	ug/kg	ND	315	315	216	216	68	68	30-170	0	20	
-Chlorotoluene	ug/kg	ND	63.1	63.1	38.1	40.7	60	65	30-143	7	20	
-Methyl-2-pentanone (MIBK)	ug/kg	ND	315	315	205	206	65	65	30-144	1	20	
cetone	ug/kg	ND	315	315	319	306	96	92	30-180	4	20	
vorolein	ug/kg	ND	1260	1260	1850	1820	146	144	30-180	2	20	
Acrylonitrile	ug/kg	ND	1260	1260	912	914	72	72	30-141	0	20	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 20 of 26

Page 362 Analytical Services, In-

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023037

IATRIX SPIKE & MATRIX SPII	KE DUPLICATE:	26130	0		261301							
	502	2984003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
enzene	ug/kg	ND	63.1	63.1	53.5	57.0	85	90	50-135	6	20	
romobenzene	ug/kg	ND	63.1	63.1	48.6	51.7	77	82	30-125	6	20	
romochloromethane	ug/kg	ND	63.1	63.1	54.0	56.8	86	90	30-159	5	20	
romodichloromethane	ug/kg	ND	63.1	63.1	48.2	53.5	76	85	30-141	10	20	
romoform	ug/kg	ND	63.1	63.1	35.1	37.5	56	59	30-135	7	20	
romomethane	ug/kg	ND	63.1	63.1	52.6	59.0	83	93	30-137	11	20	
arbon disulfide	ug/kg	ND	126	126	146	162	116	128	30-156	10	20	
arbon tetrachloride	ug/kg	ND	63.1	63.1	41.6	49.4	66	78	30-130	17	20	
hlorobenzene	ug/kg	ND	63.1	63.1	47.0	50.1	75	79	30-137	6	20	
hloroethane	ug/kg	ND	63.1	63.1	62.4	67.5	99	107	35-143	8	20	
hloroform	ug/kg	ND	63.1	63.1	54.1	59.4	86	94	30-136	9	20	
hloromethane	ug/kg	ND	63.1	63.1	58.7	63.7	93	101	28-134	8	20	
is-1.2-Dichloroethene	ug/kg	ND	63.1	63.1	54.4	58.7	86	93	30-141	8	20	
ls-1,3-Dichloropropene	ug/kg	ND	63.1	63.1	38.2	40.3	61	64	30-126		20	
ibromochloromethane	ug/kg	ND	63.1	63.1	41.0	43.7	65	69	30-120	6	20	
bromomethane	ug/kg	ND	63.1	63.1	52.0	54.8	82	87	30-129	5	20	
ichlorodifluoromethane	ug/kg ug/kg	ND	63.1	63.1	59.5	65.8	94	104	30-150	10	20	
		ND	63.1	63.1	34.7	36.5	55	58	30-150	5	20	
thyl methacrylate	ug/kg											
thylbenzene	ug/kg	ND	63.1	63.1	45.9	48.9	73	78	50-150	6	20	
exachloro-1,3-butadiene	ug/kg	ND	63.1	63.1	27.0	29.9	43	47	30-138	10	20	
odomethane	ug/kg	ND	126	126	103J	112J	82	89	30-180		20	
opropylbenzene (Cumene)	ug/kg	ND	63.1	63.1	42.8	47.7	68	76	50-150	11	20	
lethyl-tert-butyl ether	ug/kg	ND	126	126	75.2	79.9	60	63	40-149	6	20	
lethylene chloride	ug/kg	ND	63.1	63.1	55.9	58.5	89	93	30-163	4	20	
-Butylbenzene	ug/kg	ND	63.1	63.1	35.8	39.2	57	62	40-152	9	20	
-Hexane	ug/kg	ND	63.1	63.1	48.8	54.7	77	87	40-155	11	20	
-Propylbenzene	ug/kg	ND	63.1	63.1	42.3	46.9	67	74	40-170	10	20	
laphthalene	ug/kg	ND	63.1	63.1	28.2	30.0	45	48	50-128	6	20	M0
-Isopropyttoluene	ug/kg	ND	63.1	63.1	37.3	41.8	59	66	40-167	11	20	
ec-Butylbenzene	ug/kg	ND	63.1	63.1	39.9	45.1	63	72	40-168	12	20	
tyrene	ug/kg	ND	63.1	63.1	42.0	44.9	67	71	30-141	7	20	
ert-Butylbenzene	ug/kg	ND	63.1	63.1	37.3	41.8	59	66	40-144	11	20	
etrachloroethene	ug/kg	ND	63.1	63.1	35.6	38.3	56	61	40-155	7	20	
oluene	ug/kg	ND	63.1	63.1	49.0	52.1	78	83	50-149	6	20	
ans-1,2-Dichloroethene	ug/kg	ND	63.1	63.1	58.1	64.9	92	103	40-140	11	20	
ans-1,3-Dichloropropene	ug/kg	ND	63.1	63.1	29.8	32.3	47	51	40-130	8	20	
ans-1,4-Dichloro-2-butene	ug/kg	ND	63.1	63.1	25J	25.8J	40	41	30-150	•	20	
richlomethene	ug/kg	ND	63.1	63.1	53.9	58.3	85	92	40-153	8	20	
richlorofluoromethane	ug/kg	ND	63.1	63.1	58.1	62.4	92	99	43-140			
inyl acetate	ug/kg ug/kg	ND	252	252	28.9J	34.83	11	14	30-120			МО
•												IVIU
inyl chloride	ug/kg	ND	63.1	63.1	57.4	62.8	91	99	36-137		20	
ylene (Total)	ug/kg	ND	189	189	133	145	70	77	50-143	_	20	
-Bromofluorobenzene (S)	%						102	101	61-131		20	
ibromofluoromethane (S)	%						102	101	80-124		20	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 21 of 26

Page 363 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

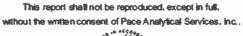
Project Michigan Plaza
Pace Project No.: 5023037

QC Batch: MSV/14295 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5030 Low

Associated Lab Samples: 5023037006

METHOD BLANK: 261735 Matrix: Solid


Associated Lab Samples: 5023037006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	02/09/09 13:01	
1,1,1-Trichloroethane	ug/kg	ND	5.0	02/09/09 13:01	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	02/09/09 13:01	
1,1,2-Trichloroethane	ug/kg	ND	5.0	02/09/09 13:01	
1,1-Dichloroethane	ug/kg	ND	5.0	02/09/09 13:01	
1,1-Dichloroethene	ug/kg	ND	5.0	02/09/09 13:01	
1,1-Dichloropropene	ug/kg	ND	5.0	02/09/09 13:01	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	02/09/09 13:01	
1,2,3-Trichloropropane	ug/kg	ND	5.0	02/09/09 13:01	
1,2,4-Trichloroberizene	ug/kg	ND	5.0	02/09/09 13:01	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	02/09/09 13:01	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	02/09/09 13:01	
1,2-Dichlorobenzene	ug/kg	ND	5.0	02/09/09 13:01	
1,2-Dichloroethane	ug/kg	ND	5.0	02/09/09 13:01	
1,2-Dichloropropane	ug/kg	ND	5.0	02/09/09 13:01	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	02/09/09 13:01	
1,3-Dichlorobenzene	ug/kg	ND	5.0	02/09/09 13:01	
1,3-Dichloropropane	ug/kg	ND	5.0	02/09/09 13:01	
1,4-Dichlorobenzene	ug/kg	ND	5.0	02/09/09 13:01	
2,2-Dichloropropane	ug/kg	ND	5.0	02/09/09 13:01	
2-Butanone (MEK)	ug/kg	ND	25.0	02/09/09 13:01	
2-Chlorotoluene	ug/kg	ND	5.0	02/09/09 13:01	
2-Hexanone	ug/kg	ND	100	02/09/09 13:01	
4-Chlorotoluene	ug/kg	ND	5.0	02/09/09 13:01	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	25.0	02/09/09 13:01	
Acetone	ug/kg	ND	100	02/09/09 13:01	
Acrolein	ug/kg	ND	100	02/09/09 13:01	
Acrylonitrile	ug/kg	ND	100	02/09/09 13:01	
Benzene	ug/kg	ND	5.0	02/09/09 13:01	
Bromobenzene	ug/kg	ND	5.0	02/09/09 13:01	
Bromochloromethane	ug/kg	ND	5.0	02/09/09 13:01	
Bromodichloromethane	ug/kg	ND	5.0	02/09/09 13:01	
Bromoform	ug/kg	ND	5.0	02/09/09 13:01	
Bromomethane	ug/kg	ND	5.0	02/09/09 13:01	
Carbon disulfide	ug/kg	ND	10.0	02/09/09 13:01	
Carbon tetrachloride	ug/kg	ND	5.0	02/09/09 13:01	
Chlorobenzene	ug/kg	ND	5.0	02/09/09 13:01	
Chloroethane	ug/kg	ND	5.0	02/09/09 13:01	
Chloroform	ug/kg	ND	5.0	02/09/09 13:01	
Chloromethane	ug/kg	ND	5.0	02/09/09 13:01	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	02/09/09 13:01	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	02/09/09 13:01	
Dibromochloromethane	ug/kg	ND	5.0	02/09/09 13:01	

Date: 02/11/2009 03:06 PM

REPORT OF LABORATORY ANALYSIS

Page 22 of 26

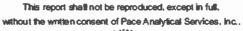
Page 364 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023037

METHOD BLANK: 261735 Matrix: Solid


Associated Lab Samples: 5023037006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dibromomethane	ug/kg	ND	5.0	02/09/09 13:01	
Dichlorodifluoromethane	ug/kg	ND	5.0	02/09/09 13:01	
Ethyl methacrylate	ug/kg	ND	10.0	02/09/09 13:01	
Ethylbenzene	ug/kg	ND	5.0	02/09/09 13:01	
Hexachloro-1,3-butadiene	ug/kg	ND	5.0	02/09/09 13:01	
lodomethane	ug/kg	ND	100	02/09/09 13:01	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	02/09/09 13:01	
Methyl-tert-butyl ether	ug/kg	ND	5.0	02/09/09 13:01	
Methylene chloride	ug/kg	ND	20.0	02/09/09 13:01	
n-Butylbenzene	ug/kg	ND	5.0	02/09/09 13:01	
n-Hexane	ug/kg	ND	5.0	02/09/09 13:01	
n-Propylbenzene	ug/kg	ND	5.0	02/09/09 13:01	
Naphthalene	ug/kg	ND	5.0	02/09/09 13:01	
p-Isopropyltoluene	ug/kg	ND	5.0	02/09/09 13:01	
sec-Butylbenzene	ug/kg	ND	5.0	02/09/09 13:01	
Styrene	ug/kg	ND	5.0	02/09/09 13:01	
tert-Butylbenzene	ug/kg	ND	5.0	02/09/09 13:01	
Tetrachloroethene	ug/kg	ND	5.0	02/09/09 13:01	
Toluene	ug/kg	ND	5.0	02/09/09 13:01	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	02/09/09 13:01	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	02/09/09 13:01	
trans-1,4-Dichloro-2-butene	ug/kg	ND	100	02/09/09 13:01	
Trichloroethene	ug/kg	ND	5.0	02/09/09 13:01	
Trichlorofluoromethane	ug/kg	ND	5.0	02/09/09 13:01	
Vinyl acetate	ug/kg	ND	100	02/09/09 13:01	
Vinyl chloride	ug/kg	ND	5.0	02/09/09 13:01	
Xylene (Total)	ug/kg	ND	10.0	02/09/09 13:01	
4-Bromofluorobenzene (S)	%	93	61-131	02/09/09 13:01	
Dibromofluoromethane (S)	%	103	80-124	02/09/09 13:01	
Toluene-d8 (S)	%	96	58-145	02/09/09 13:01	

LABORATORY CONTROL SAMPLE:	261736					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	50	39.5	79	65-124	
1,1,1-Trichloroethane	ug/kg	50	40.6	81	61-135	
1,1,2,2-Tetrachloroethane	ug/kg	50	32.8	66	66-124	
1,1,2-Trichloroethane	ug/kg	50	39.3	79	74-127	
1,1-Dichloroethane	ug/kg	50	37.8	76	62-132	
1,1-Dichloroethene	ug/kg	50	38.9	78	61-123	
1,1-Dichloropropene	ug/kg	50	40.2	80	74-128	
1,2,3-Trichlorobenzene	ug/kg	50	43.4	87	60-125	
1,2,3-Trichloropropane	ug/kg	50	35.1	70	61-120	
1,2,4-Trichlorobenzene	ug/kg	50	41.9	84	58-126	
1,2,4-Trimethylbenzene	ug/kg	50	40.7	81	72-120	

Date: 02/11/2009 03:06 PM REPORT OF LABORATORY ANALYSIS

Page 23 of 26

Pace Analytical *

Page 365 ice Anafrical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

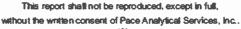
Project Michigan Plaza
Pace Project No.: 5023037

LABORATORY CONTROL SAMPLE: 261736 Spike LCS LCS % Rec Parameter Units Canc. Result % Rec Limits Qualifiers 1,2-Dibromoethane (EDB) ug/kg 50 41.7 83 74-119 1,2-Dichlorobenzene ug/kg 50 39.6 79 75-117 50 39.8 80 62-135 1,2-Dichloroethane ug/kg 50 40.0 80 74-124 1,2-Dichloropropane ug/kg 1.3.5-Trimethylbenzene 50 40.2 80 73-122 ug/kg 1,3-Dichlorobenzene ug/kg 50 40.5 81 73-120 38.2 50 76 71-122 1,3-Dichloropropane ug/kg 50 40.4 81 72-118 1,4-Dichlorobenzene ug/kg 50 39.6 79 53-136 2,2-Dichloropropane ug/kg 2-Butanone (MEK) ug/kg 250 304 122 33-190 2-Chlorotoluene ug/kg 50 39.8 80 72-122 2-Hexanone ug/kg 250 300 120 44-168 50 38.3 77 72-120 4-Chlorotoluene ug/kg 4-Methyl-2-pentanone (MIBK) ug/kg 250 190 76 58-126 Acetone ug/kg 250 354 142 30-190 Acrolein 1000 1550 155 30-190 ug/kg 1000 633 63 65-129 LO Acrylonitrile ug/kg Benzene 50 40.9 82 76-123 ug/kg 50 38.8 78 Bromohenzene ug/kg 74-116 79 Bromochloromethane 50 39.6 56-143 ug/kg 50 81 67-123 Bromodichloromethane ug/kg 40.4 Bromoform ug/kg 50 36.5 73 58-117 Bromomethane ug/kg 50 39.2 78 47-147 Carbon disulfide 100 89.9 90 56-141 ug/kg Carbon tetrachloride ug/kg 50 39.7 79 54-136 Chlorobenzene 39.0 ug/kg 50 78 75-115 Chloroethane ug/kg 50 45.0 90 57-147 Chloroform 50 39.7 79 74-123 ug/kg Chloromethane 50 32.8 66 31-155 ug/kg 50 40.8 82 76-119 cis-1,2-Dichloroethene ug/kg cis-1,3-Dichloropropene 50 39.3 79 56-110 ug/kg Dibromochloromethane ug/kg 50 42.5 85 63-122 Dibromomethane ug/kg 50 39.6 79 70-127 Dichlorodifluoromethane ug/kg 50 222 44 30-170 Ethyl methacrylate 50 34.4 69 58-126 ug/kg Ethylbenzene ug/kg 50 41.5 83 78-121 Hexachloro-1,3-butadiene 50 42.0 84 65-128 ug/kg lodomethane ug/kg 100 78.8J 79 38-173 Isopropylbenzene (Cumene) ug/kg 50 42.6 85 75-128 Methyl-tert-butyl ether 100 75.9 76 59-142 ug/kg 38.7 77 50 30-170 Methylene chloride ug/kg 50 42.3 85 n-Butylbenzene ug/kg 70-123 50 43.2 86 n-Hexane ug/kg 76-143 n-Propylbenzene ug/kg 50 40.8 **AO** 70-126 Naphthalene ug/kg 50 37.9 76 60-128 p-isopropyttoluene 50 42.0 84 65-125 ug/kg sec-Butylbenzene ug/kg 50 42.3 85 72-125

Date: 02/11/2009 03:06 PM

Styrene

REPORT OF LABORATORY ANALYSIS


40.4

75-118

50

ug/kg

Page 24 of 26

Page 366
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5023037

LABORATORY C	ONTROL	SAMPLE:	261736
--------------	--------	---------	--------

Demonstra	I laisa	Spike	LCS	LCS	% Rec	0
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
tert-Butylbenzene	ug/kg	50	39.3	79	61-114	
Tetrachloroethene	ug/kg	50	34.3	69	63-117	
Toluene	ug/kg	50	39.1	78	72-123	
trans-1,2-Dichlomethene	ug/kg	50	40.6	81	70-122	
trans-1,3-Dichloropropene	ug/kg	50	34.3	69	55-107	
trans-1,4-Dichloro-2-butene	ug/kg	50	32.2J	64	49-127	
Trichloroethene	ug/kg	50	40.6	81	74-121	
Trichlorofluoromethane	ug/kg	50	48.3	97	55-156	
Vinyl acetate	ug/kg	200	124	62	46-127	
Vinyl chloride	ug/kg	50	39.0	78	50-146	
Xylene (Total)	ug/kg	150	122	82	77-120	
4-Bromofluorobenzene (S)	%			99	61-131	
Dibromofluoromethane (S)	%			100	80-124	
Toluene-d8 (S)	%			96	58-145	

Date: 02/11/2009 03:06 PM

Page 367 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALIFIERS

Project Michigan Plaza Pace Project No.: 5023037

DEFINITIONS

DF - Dilution Factor, If reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobertzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

ANALYTE QUALIFIERS

LO Analyte recovery in the labor.	ory control sample (LCS) was outside QC limits.
-----------------------------------	---

M0 Matrix spike recovery was outside laboratory control limits.

R2 RPD value was outside control limits due to matrix interference

S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples.

Results unaffected by high bias.

Date: 02/11/2009 03:06 PM

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Pace Analytical

Page 368 Reference 26 1214384 Pace Project No./ Lab I.D. DRINKING WATER 5023037 BAMPLE CONDITIONS 4735 OTHER Sealed Coole 200 000 00 Received on Ice (Y/N) GROUND WATER €0'A Residual Chlorine (Y/N) Lomp in "C H REGULATORY AGENCY RCRA J. 16 19 16. 30c Requested Analysis Filtored (Y/N) TIME E Site Location STATE NPDES DATE UST ACCEPTED BY ! AFFILATION 09881,201 180] sisylanA PN/A Allenton: Acla Table Ofher Awsel Methanol Preservatives COSSEN HOPN HCI Invoice information; ONH Company Name OSZH Manager: Pace Prolite &: Section C Pace Quote Reference. Pace Project Devisende 1 Address: **© CONTAIN**ERS SAMPLER HAME AND SIGNATUR SAMPLE TEMP AT COLLECTION DATE 2/1/05 95.12 4.500 4.570 2.00 215th 4:58p 4:550 TIME COMPOSITE PATE COLLECTED RELINGUISHED BY (AFFILIATION TIME Project Name: Mich Plaze COMPOSITE Report TO, Lecture Lothic Project Number. Mot 64 6 DATE Required Project Information Chesia Saksinal 8 (9MOO=0 BASE (0=0) SAMPLE TYPE Purchase Order No.: D 3 (Hall of secon billey eee) MATRIX CODE Section B Copy To: \$ \$ \$ 4 8 9 \$ 8 5 P Matrix Codes Drinking Water Water Waste Viator Product Soil/Solid Please call Leens wheese HS 10 21 t 517-630-9065 Air Tissue Other W. O. 46719 ADDITIONAL COMMENTS 14-15 1-cnh 开 Downson But 3 dex (A-Z, 0-9 / ,-) Sanxole IDs MUST BE UNIQUE 507 · 843 3-6 15-16 SAMPLE ID (9-10 7--Munchel & Broce water Section A Required Client Information: Required Clark Information A17 - (p3 tp- Protect Requested Due Date/TAT: 9 53-6 5B-6 DA Wed S-52 Section D 5-85 mail To. 4 하 = 12 * MBTI 8

(NVA)

(N/A)

Crasoqy

F-ALL-Q-020rev.07, 15-May-2007

DATE Signed (WM/DDM): 2/K/DS

not paid a fatin 30 days

Proporters Note: By signing this form you are accopting Pacers NET 30 day payment livers and agreeing to late charges of 1,3% per morth to

Cient Dol.

MARKE

PRINT Name of SAMPLER. SIGHATURE of SAMPLER:

Reference 26 Page 369

Sample Condition Upon Receipt Client Name: Mundell Project # 5023037 Courier: Fed Ex UPS USPS Clent Commercial Pace Other Tracking #: Custody Seal on Cooler/Box Present: yes no Seals Intact - yes -no Packing Material: Bubble Wrap Bubble Bags None Dother Type of Ice: /Wet / Thermometer Used Blue None _____-Samples on ice, cooling process has begun Date and hittitis of person, examining Biological Tissue is Frozen: Yes No **Cooler Temperature** Comments: Temp should be above freezing to 6°C ENS DNO DNA 1. Chain of Custody Present: DYS DNO DNA Chain of Custody Filled Out: BY ON ONA Chain of Custody Relinquished: Sampler Name & Signature on COC: Samples Arrived within Hold Time: 1000 ONA Short Hold Time Analysis (<72hr): DYG DNO DNA 6. BYES DNO DNA 7. Rush Turn Around Time Requested: TYGE UNO UNA 8. Sufficient Volume: DYSS DNO DNA 9. Correct Containers Used: TYS DNO DNA -Pace Containers Used: ETYES ONO ONA 10-Containers Intact: DYS ONE TONA 11. Filtered volume received for Dissolved tests ETYOS UNO UNA 12. Sample Labels match COC: Sptl -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. DYes DNo DNA 13. All containers needing preservation are found to be in DYES DNo DIVA compliance with EPA recommendation. Lot # of added initial when □Yes ⊡No exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) completed preservative DYes ONO BRA 14. Samples checked for dechlorination: Headspace in VOA Vials (>6mm): Yes ONO BATA ☐Yes ☐No Trip Blank Present: □Yes □No □Nd Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Person Contacted: Comments/ Resolution: Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Page 370 Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

March 02, 2009

Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

RE: Project: Michigan Meadows

Pace Project No.: 5023501

Dear Leena Lothe:

Enclosed are the analytical results for sample(s) received by the laboratory on February 19, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raedra Zuckowoth

Phaedra Zucksworth

phaedra.zucksworth@pacelabs.com Project Manager

Illinois/NELAC Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky Certification #: 0042 Ohio VAP: CL0065 Pennsylvania: 68-00791

West Virginia Certification #: 330

Enclosures

Page 371
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268
(317)875-5894

SAMPLE SUMMARY

Project Michigan Meadows

Pace Project No.: 5023501

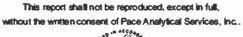
Lab ID	Sample ID	Matrix	Date Collected	Date Received
5023501001	SB-9 (24')	Water	02/16/09 16:00	02/19/09 13:33
5023501002	SB-8 (24')	Water	02/16/09 16:45	02/19/09 13:33
5023501003	SB-10 (24')	Water	02/17/09 10:05	02/19/09 13:33
5023501004	DUP	Water	02/16/09 08:00	02/19/09 13:33
5023501005	SB-9 (6-7")	Solid	02/16/09 15:46	02/19/09 13:33
5023501006	SB-9 (15-16')	Solid	02/16/09 15:52	02/19/09 13:33
5023501007	SB-9 (12-13")	Solid	02/16/09 15:50	02/19/09 13:33
5023501008	SB-8 (5-6')	Solid	02/16/09 17:00	02/19/09 13:33
5023501009	SB-8 (12-13")	Solid	02/16/09 17:02	02/19/09 13:33
5023501010	SB-8 (15-16')	Solid	02/16/09 17:10	02/19/09 13:33
5023501011	SB-10 (4-6')	Solid	02/17/09 10:20	02/19/09 13:33
5023501012	SB-10 (8-10")	Solid	02/17/09 10:25	02/19/09 13:33
5023501013	SB-10 (14-167)	Solid	02/17/09 10:30	02/19/09 13:33
5023501014	SB-15 (4-6')	Solid	02/17/09 13:00	02/19/09 13:33
5023501015	SB-15 (8-10")	Solid	02/17/09 13:10	02/19/09 13:33
5023501016	SB-15 (12-147)	Solid	02/17/09 13:15	02/19/09 13:33
5023501017	SB-16 (4-6')	Solid	02/17/09 13:45	02/19/09 13:33
5023501018	SB-16 (8-107)	Solid	02/17/09 13:50	02/19/09 13:33
5023501019	SB-16 (12-147)	Solid	02/17/09 13:55	02/19/09 13:33
5023501020	SB-17 (4-6")	Solid	02/17/09 15:00	02/19/09 13:33
5023501021	SB-17 (10-127)	Solid	02/17/09 15:05	02/19/09 13:33
5023501022	SB-17 (12-147)	Solid	02/17/09 15:10	02/19/09 13:33
5023501023	TRIP BLANK	Water	02/17/09 08:00	02/19/09 13:33

Page 372

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

SAMPLE ANALYTE COUNT

Project


Michigan Meadows

Pace Project No.: 5023501

Lab ID	Sample ID	Method	Analysts	Analytes Reported
5023501001	SB-9 (24')	EPA 8260	AMV	20
5023501002	SB-8 (24')	EPA 8260	AMV	20
5023501003	SB-10 (24')	EPA 8260	AMV	20
5023501004	DUP	EPA 8260	AMV	20
5023501005	SB-9 (6-7")	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501006	SB-9 (15-16')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501007	SB-9 (12-13')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501008	SB-8 (5-6')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501009	SB-8 (12-13')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501010	SB-8 (15-16')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501011	SB-10 (4-6')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501012	SB-10 (8-10')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501013	SB-10 (14-16)	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501014	SB-15 (4-6')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501015	SB-15 (8-10')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501016	SB-15 (12-14')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501017	SB-16 (4-6')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501018	SB-16 (8-10')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501019	SB-16 (12-14')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501020	SB-17 (4-6')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501021	SB-17 (10-12)	ASTM D2974-87	RAK	1

REPORT OF LABORATORY ANALYSIS

Page 3 of 37

Page 373
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

SAMPLE ANALYTE COUNT

Project

Michigan Meadows

Pace Project No.:

5023501

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 8260	JLF	20
5023501022	SB-17 (12-14')	ASTM D2974-87	RAK	1
		EPA 8260	JLF	20
5023501023	TRIP BLANK	EPA 8260	AMV	20

Page 374 e Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-9 (24')	Lab ID: 5023501001	Collected: 02/16/0	9 16:00	Received: 02/19/09 13:33 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qu
8260 MSV	Analytical Method: EPA 826	60		
Benzene	ND ug/L	5.0	1	02/24/09 13:18 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	02/24/09 13:18 56-23-5
Chloroform	ND ug/L	5.0	1	02/24/09 13:18 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	02/24/09 13:18 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	02/24/09 13:18 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	02/24/09 13:18 75-35-4
cis-1,2-Dichloroethene	284 ug/L	50.0	10	02/25/09 12:57 156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	02/24/09 13:18 156-60-5
Ethylbenzene	ND ug/L	5.0	1	02/24/09 13:18 100-41-4
Methylene chloride	ND ug/L	5.0	1	02/24/09 13:18 75-09-2
Naphthalene	ND ug/L	5.0	1	02/24/09 13:18 91-20-3
Tetrachloroethene	11.9 ug/L	5.0	1	02/24/09 13:18 127-18-4
Toluene	ND ug/L	5.0	1	02/24/09 13:18 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/24/09 13:18 71-55-6
Trichloroethene	7.3 ug/L	5.0	1	02/24/09 13:18 79-01-6
Vinyl chloride	4.0 ug/L	2.0	1	02/24/09 13:18 75-01-4
Xylene (Total)	ND ug/L	10.0	1	02/24/09 13:18 1330-20-7
Dibromofluoromethane (S)	100 %	80-123	1	02/24/09 13:18 1868-53-7
4-Bromofluorobenzene (S)	102 %	70-126	1	02/24/09 13:18 460-00-4
Toluene-d8 (S)	103 %	80-116	1	02/24/09 13:18 2037-26-5

Page 375 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-8 (24')	Lab ID: 5023501002	Collected: 02/16/0	9 16:45	Received: 02/19/09 13:33 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. (Qua
8260 MSV	Analytical Method: EPA 826	0			
Benzene	ND ug/L	5.0	1	02/24/09 13:52 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	02/24/09 13:52 56-23-5	
Chloroform	ND ug/L	5.0	1	02/24/09 13:52 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	02/24/09 13:52 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	02/24/09 13:52 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	02/24/09 13:52 75-35-4	
cis-1,2-Dichloroethene	159 ug/L	5.0	1	02/24/09 13:52 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	5.0	1	02/24/09 13:52 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	02/24/09 13:52 100-41-4	
Methylene chloride	ND ug/L	5.0	1	02/24/09 13:52 75-09-2	
Naphthalene	ND ug/L	5.0	1	02/24/09 13:52 91-20-3	
Tetrachloroethene	13.3 ug/L	5.0	1	02/24/09 13:52 127-18-4	
Toluene	ND ug/L	5.0	1	02/24/09 13:52 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/24/09 13:52 71-55-6	
Trichloroethene	ND ug/L	5.0	1	02/24/09 13:52 79-01-6	
Vinyl chloride	22.7 ug/L	2.0	1	02/24/09 13:52 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	02/24/09 13:52 1330-20-7	
Dibromofluoromethane (S)	103 %	80-123	1	02/24/09 13:52 1868-53-7	
4-Bromofluorobenzene (S)	101 %	70-126	1	02/24/09 13:52 460-00-4	
Toluene-d8 (S)	103 %	80-116	1	02/24/09 13:52 2037-26-5	

Page 376
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-10 (24')	Lab ID: 5023501003	Collected: 02/17/09	10:05	Received: 02/19/09 13	:33 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analy	zed CAS No.	Qual
8260 MSV	Analytical Method: EPA 82	60				
Benzene	ND ug/L	5.0	1	02/24/09	14:26 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	02/24/09	14:26 56-23-5	
Chloroform	ND ug/L	5.0	1	02/24/09	14:26 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	02/24/09	14:26 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	02/24/09	14:26 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	02/24/09	14:26 75-35-4	
cis-1,2-Dichloroethene	302 ug/L	5.0	1	02/24/09	14:26 156-59-2	E
trans-1,2-Dichloroethene	ND ug/L	5.0	1	02/24/09	14:26 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	02/24/09	14:26 100-41-4	
Methylene chloride	ND ug/L	5.0	1	02/24/09	14:26 75-09-2	
Naphthalene	ND ug/L	5.0	1	02/24/09	14:26 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	02/24/09	14:26 127-18-4	
Toluene	ND ug/L	5.0	1	02/24/09	14:26 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/24/09	14:26 71-55-6	
Trichloroethene	ND ug/L	5.0	1	02/24/09	14:26 79-01-6	
Vinyl chloride	ND ug/L	2.0	1	02/24/09	14:26 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	02/24/09	14:26 1330-20-7	
Dibromofluoromethane (S)	101 %	80-123	1	02/24/09	14:26 1868-53-7	
4-Bromofluorobenzene (S)	101 %	70-126	1	02/24/09	14:26 460-00-4	
Toluene-d8 (S)	102 %	80-116	1	02/24/09	14:26 2037-26-5	

Page 377
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: DUP	Lab ID: 5023501004	Collected: 02/16/0	00:80 90	Received: 0	2/19/09 13:33	Matrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MS V	Analytical Method: EPA	A 8260					
Benzene	ND ug/L	5.0	1		02/24/09 15:0	0 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1		02/24/09 15:0	0 56-23-5	
Chloroform	ND ug/L	5.0	1		02/24/09 15:0	0 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1		02/24/09 15:0	0 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1		02/24/09 15:0	0 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1		02/24/09 15:0	0 75-35-4	
cis-1,2-Dichloroethene	305 ug/L	5.0	1		02/24/09 15:0	0 156-59-2	E
trans-1,2-Dichloroethene	ND ug/L	5.0	1		02/24/09 15:0	0 156-60-5	
Ethylbenzene	ND ug/L	5.0	1		02/24/09 15:0	0 100-41-4	
Methylene chloride	ND ug/L	5.0	1		02/24/09 15:0	0 75-09-2	
Naphthalene	ND ug/L	5.0	1		02/24/09 15:0	0 91-20-3	
Tetrachloroethene	10.1 ug/L	5.0	1		02/24/09 15:0	0 127-18-4	
Toluene	ND ug/L	5.0	1		02/24/09 15:0	0 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1		02/24/09 15:0	0 71-55-6	
Trichloroethene	8.3 ug/L	5.0	1		02/24/09 15:0	0 79-01-6	
Vinyl chloride	3.5 ug/L	2.0	1		02/24/09 15:0	0 75-01-4	
Xylene (Total)	ND ug/L	10.0	1		02/24/09 15:0	0 1330-20-7	
Dibromofluoromethane (S)	99 %	80-123	1		02/24/09 15:0	0 1868-53-7	
4-Bramofluarobenzene (S)	102 %	70-126	1		02/24/09 15:0	0 460-00-4	
Toluene-d8 (S)	103 %	80-116	1		02/24/09 15:0	0 2037-26-5	

Page 378 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-9 (6-7') Lab ID: 5023501005 Collected: 02/16/09 15:46 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	/kg	5.2	1		02/23/09 16:41	71-43-2	
Carbon tetrachloride	ND ug	/kg	5.2	1		02/23/09 16:41	56-23-5	
Chloroform	ND ug	/kg	5.2	1		02/23/09 16:41	67-66-3	
1,1-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 16:41	75-34-3	
1,2-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 16:41	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 16:41	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 16:41	156-59-2	
trans-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 16:41	156-60-5	
Ethylbenzene	ND ug	/kg	5.2	1		02/23/09 16:41	100-41-4	
Methylene chloride	ND ug	ND ug/kg		1		02/23/09 16:41	75-09-2	
Naphthalene	ND ug	/kg	5.2	1		02/23/09 16:41	91-20-3	
Tetrachloroethene	6.5 ug	/kg	5.2	1		02/23/09 16:41	127-18-4	
Toluene	ND ug	/kg	5.2	1		02/23/09 16:41	108-88-3	
1,1.1-Trichloroethane	ND ug	/kg	5.2	1		02/23/09 16:41	71-55-6	
Trichloroethene	ND ug	/kg	5.2	1		02/23/09 16:41	79-01-6	
Vinyl chloride	ND ug	/kg	5.2	1		02/23/09 16:41	75-01-4	
Xylene (Total)	ND ug	/kg	10.4	1		02/23/09 16:41	1330-20-7	
Dibromofluoromethane (S)	104 %		80-124	1		02/23/09 16:41	1868-53-7	
Toluene-d8 (S)	102 %		58-145	1		02/23/09 16:41	2037-26-5	
4-Bromofluorobenzene (S)	99 %		61-131	1		02/23/09 16:41	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	4.1 %		0.10	1		02/23/09 19:01		

Page 379 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-9 (15-16') Lab ID: 5023501006 Collected: 02/16/09 15:52 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	/kg	5.2	1		02/23/09 17:13	71-43-2	
Carbon tetrachloride	ND ug	/kg	5.2	1		02/23/09 17:13	56-23-5	
Chloroform	ND ug	/kg	5.2	1		02/23/09 17:13	67-66-3	
1,1-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 17:13	75-34-3	
1,2-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 17:13	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 17:13	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 17:13	156-59-2	
trans-1,2-Dichtoroethene	ND ug	/kg	5.2	1		02/23/09 17:13	156-60-5	
Ethylbenzene	ND ug	/kg	5.2	1		02/23/09 17:13	100-41-4	
Methylene chloride	ND ug	/kg	20.8	1		02/23/09 17:13	75-09-2	
Naphthalene	ND ug	/kg	5.2	1		02/23/09 17:13	91-20-3	
Tetrachloroethene	18.3 ug	/kg	5.2	1		02/23/09 17:13	127-18-4	
Toluene	ND ug		5.2	1		02/23/09 17:13	108-88-3	
1,1,1-Trichloroethane	ND ug	/kg	5.2	1		02/23/09 17:13	71-55-6	
Trichloroethene	ND ug	/kg	5.2	1		02/23/09 17:13	79-01-6	
Vinyl chloride	ND ug	/kg	5.2	1		02/23/09 17:13	75-01-4	
Xylene (Total)	ND ug	/kg	10.4	1		02/23/09 17:13	1330-20-7	
Dibromofluoromethane (S)	105 %		80-124	1		02/23/09 17:13	1868-53-7	
Toluene-d8 (S)	100 %		58-145	1		02/23/09 17:13	2037-26-5	
4-Bromofluorobenzene (S)	99 %		61-131	1		02/23/09 17:13	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	3.7 %		0.10	1		02/23/09 19:01		

Date: 03/02/2009 11:25 AM

Page 380 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-9 (12-13') Lab ID: 5023501007 Collected: 02/16/09 15:50 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 8260)					
Benzene	ND ug	/kg	5.2	1		02/23/09 17:45	71-43-2	
Carbon tetrachloride	ND ug	/kg	5.2	1		02/23/09 17:45	56-23-5	
Chloroform	ND ug	/kg	5.2	1		02/23/09 17:45	67-66-3	
1,1-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 17:45	75-34-3	
1,2-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 17:45	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 17:45	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 17:45	156-59-2	
trans-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 17:45	156-60-5	
Ethylbenzene	ND ug	/kg	5.2	1		02/23/09 17:45	100-41-4	
Methylene chloride	ND ug	/kg	20.8	1		02/23/09 17:45	75-09-2	
Naphthalene	ND ug	/kg	5.2	1		02/23/09 17:45	91-20-3	
Tetrachloroethene	10.4 ug	/kg	5.2	1		02/23/09 17:45	127-18-4	
Toluene	ND ug	/kg	5.2	1		02/23/09 17:45	108-88-3	
1,1,1-Trichloroethane	ND ug	/kg	5.2	1		02/23/09 17:45	71-55-6	
Trichloroethene	ND ug	/kg	5.2	1		02/23/09 17:45	79-01-6	
Vinyl chloride	ND ug	/kg	5.2	1		02/23/09 17:45	75-01-4	
Xylene (Total)	ND ug	/kg	10.4	1		02/23/09 17:45	1330-20-7	
Dibromofluoromethane (S)	104 %		80-124	1		02/23/09 17:45	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 17:45	2037-26-5	
4-Bromofluorobenzene (S)	98 %		61-131	1		02/23/09 17:45	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D2	974-87					
Percent Moisture	3.8 %		0.10	1		02/23/09 19:01		

Page 381 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-8 (5-6') Lab ID: 5023501008 Collected: 02/16/09 17:00 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	nod: EPA 826	0					
Benzene	ND ug	/kg	5.2	1		02/23/09 19:23	71-43-2	
Carbon tetrachloride	ND ug	/kg	5.2	1		02/23/09 19:23	56-23-5	
Chloroform	ND ug	/kg	5.2	1		02/23/09 19:23	67-66-3	
1,1-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 19:23	75-34-3	
1,2-Dichloroethane	ND ug	/kg	5.2	1		02/23/09 19:23	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 19:23	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 19:23	156-59-2	
trans-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 19:23	156-60-5	
Ethylbenzene	ND ug	/kg	5.2	1		02/23/09 19:23	100-41-4	
Methylene chloride	ND ug	/kg	21.0	1		02/23/09 19:23	75-09-2	
Naphthalene	ND ug	/kg	5.2	1		02/23/09 19:23	91-20-3	
Tetrachloroethene	20.0 ug	/kg	5.2	1		02/23/09 19:23	127-18-4	
Toluene	ND ug	/kg	5.2	1		02/23/09 19:23	108-88-3	
1,1.1-Trichloroethane	ND ug	/kg	5.2	1		02/23/09 19:23	71-55-6	
Trichloroethene	ND ug	/kg	5.2	1		02/23/09 19:23	79-01-6	
Vinyl chloride	ND ug	/kg	5.2	1		02/23/09 19:23	75-01-4	
Xylene (Total)	ND ug	/kg	10.5	1		02/23/09 19:23	1330-20-7	
Dibromofluoromethane (S)	106 %	_	80-124	1		02/23/09 19:23	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 19:23	2037-26-5	
4-Bromofluorobenzene (S)	101 %		61-131	1		02/23/09 19:23	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	4.7 %		0.10	1		02/23/09 19:02		

Page 382 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-8 (12-13') Lab ID: 5023501009 Collected: 02/16/09 17:02 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	thod: EPA 8266)					
Benzene	ND uç	g/kg	5.1	1		02/23/09 19:59	71-43-2	
Carbon tetrachloride	ND uç	g/kg	5.1	1		02/23/09 19:59	56-23-5	
Chloroform	ND uç	g/kg	5.1	1		02/23/09 19:59	67-66-3	
1,1-Dichloroethane	ND uç	g/kg	5.1	1		02/23/09 19:59	75-34-3	
1,2-Dichloroethane	ND ug	g/kg	5.1	1		02/23/09 19:59	107-06-2	
1,1-Dichloroethene	ND uç	g/kg	5.1	1		02/23/09 19:59	75-35-4	
cis-1,2-Dichloroethene	ND ug	g/kg	5.1	1		02/23/09 19:59	156-59-2	
trans-1,2-Dichloroethene	ND ug	g/kg	5.1	1		02/23/09 19:59	156-60-5	
Ethylbenzene	ND uç	g/kg	5.1	1		02/23/09 19:59	100-41-4	
Methylene chloride	ND ug	g/kg	20.5	1		02/23/09 19:59	75-09-2	
Naphthalene	ND ug	g/kg	5.1	1		02/23/09 19:59	91-20-3	
Tetrachloroethene	73.9 uç	g/kg	5.1	1		02/23/09 19:59	127-18-4	
Toluene	ND ug	g/kg	5.1	1		02/23/09 19:59	108-88-3	
1,1,1-Trichloroethane	ND uç	g/kg	5.1	1		02/23/09 19:59	71-55-6	
Trichloroethene	ND ug	g/kg	5.1	1		02/23/09 19:59	79-01-6	
Vinyl chloride	ND ug	g/kg	5.1	1		02/23/09 19:59	75-01-4	
Xylene (Total)	ND uç	g/kg	10.3	1		02/23/09 19:59	1330-20-7	
Dibromofluoromethane (S)	104 %		80-124	1		02/23/09 19:59	1868-53-7	
Toluene-d8 (S)	101 %	,	58-145	1		02/23/09 19:59	2037-26-5	
4-Bromofluorobenzene (S)	98 %	•	61-131	1		02/23/09 19:59	460-00-4	
Percent Moisture	Analytical Met	thod: ASTM D2	2974-87					
Percent Moisture	2.7 %)	0.10	1		02/23/09 19:02		

Date: 03/02/2009 11:25 AM

Page 383 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-8 (15-16') Lab ID: 5023501010 Collected: 02/16/09 17:10 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Meth	od: EPA 8260)					
Benzene	ND ug/	/kg	5.2	1		02/23/09 20:33	71-43-2	
Carbon tetrachloride	ND ug/	/kg	5.2	1		02/23/09 20:33	56-23-5	
Chloroform	ND ug/	/kg	5.2	1		02/23/09 20:33	67-66-3	
1,1-Dichloroethane	ND ug/	/kg	5.2	1		02/23/09 20:33	75-34-3	
1,2-Dichloroethane	ND ug/	/kg	5.2	1		02/23/09 20:33	107-06-2	
1,1-Dichloroethene	ND ug/	/kg	5.2	1		02/23/09 20:33	75-35-4	
cis-1,2-Dichloroethene	ND ug/	/kg	5.2	1		02/23/09 20:33	156-59-2	
trans-1,2-Dichloroethene	ND ug/	/kg	5.2	1		02/23/09 20:33	156-60-5	
Ethylbenzene	ND ug/	/kg	5.2	1		02/23/09 20:33	100-41-4	
Methylene chloride	ND ug/	/kg	20.7	1		02/23/09 20:33	75-09-2	
Naphthalene	ND ug/	/kg	5.2	1		02/23/09 20:33	91-20-3	
Tetrachloroethene	168 ug/	/kg	5.2	1		02/23/09 20:33	127-18-4	
Toluene	ND ug/	/kg	5.2	1		02/23/09 20:33	108-88-3	
1,1.1-Trichloroethane	ND ug/	/kg	5.2	1		02/23/09 20:33	71-55-6	
Trichloroethene	ND ug/	/kg	5.2	1		02/23/09 20:33	79-01-6	
Vinyl chloride	ND ug/	/kg	5.2	1		02/23/09 20:33	75-01-4	
Xylene (Total)	ND ug/	/kg	10.3	1		02/23/09 20:33	1330-20-7	
Dibromofluoromethane (S)	104 %		80-124	1		02/23/09 20:33	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 20:33	2037-26-5	
4-Bramofluarobenzene (S)	97 %		61-131	1		02/23/09 20:33	460-00-4	
Percent Moisture	Analytical Meth	iod: ASTM D2	2974-87					
Percent Moisture	3.3 %		0.10	1		02/23/09 19:02		

Page 384 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-10 (4-6") Lab ID: 5023501011 Collected: 02/17/09 10:20 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	j/kg	5.2	1		02/23/09 21:05	71-43-2	
Carbon tetrachloride	ND ug	ı/kg	5.2	1		02/23/09 21:05	56-23-5	
Chloroform	ND ug	ı/kg	5.2	1		02/23/09 21:05	67-66-3	
1,1-Dichloroethane	ND ug	ı/kg	5.2	1		02/23/09 21:05	75-34-3	
1,2-Dichloroethane	ND ug	ı/kg	5.2	1		02/23/09 21:05	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 21:05	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 21:05	156-59-2	
trans-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 21:05	156-60-5	
Ethylbenzene	ND ug	r/kg	5.2	1		02/23/09 21:05	100-41-4	
Methylene chloride	ND ug	/kg	20.8	1		02/23/09 21:05	75-09-2	
Naphthalene	ND ug	ı/kg	5.2	1		02/23/09 21:05	91-20-3	
Tetrachloroethene	18.1 ug	ı/kg	5.2	1		02/23/09 21:05	127-18-4	
Toluene	ND ug		5.2	1		02/23/09 21:05	108-88-3	
1,1,1-Trichloroethane	ND ug	r/kg	5.2	1		02/23/09 21:05	71-55-6	
Trichloroethene	ND ug	ı/kg	5.2	1		02/23/09 21:05	79 -01-6	
Vinyl chloride	ND ug	/kg	5.2	1		02/23/09 21:05	75-01-4	
Xylene (Total)	ND ug	ı/kg	10.4	1		02/23/09 21:05	1330-20-7	
Dibromofluoromethane (S)	105 %		80-124	1		02/23/09 21:05	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 21:05	2037-26-5	
4-Bromofluorobenzene (S)	97 %		61-131	1		02/23/09 21:05	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	4.0 %		0.10	1		02/23/09 19:02		

Page 385 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-10 (8-10') Lab ID: 5023501012 Collected: 02/17/09 10:25 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826)					
Benzene	ND uç	g/kg	5.2	1		02/23/09 21:37	71-43-2	
Carbon tetrachloride	ND uç	g/kg	5.2	1		02/23/09 21:37	56-23-5	
Chloroform	ND ug	g/kg	5.2	1		02/23/09 21:37	67-66-3	
1,1-Dichloroethane	ND uç	g/kg	5.2	1		02/23/09 21:37	75-34-3	
1,2-Dichloroethane	ND ug	g/kg	5.2	1		02/23/09 21:37	107-06-2	
1,1-Dichloroethene	ND uç	g/kg	5.2	1		02/23/09 21:37	75-35-4	
cis-1,2-Dichloroethene	ND ug	g/kg	5.2	1		02/23/09 21:37	156-59-2	
trans-1,2-Dichloroethene	ND ug	g/kg	5.2	1		02/23/09 21:37	156-60-5	
Ethylbenzene	ND uç	g/kg	5.2	1		02/23/09 21:37	100-41-4	
Methylene chloride	ND ug	g/kg	20.7	1		02/23/09 21:37	75-09-2	
Naphthalene	ND ug	g/kg	5.2	1		02/23/09 21:37	91-20-3	
Tetrachloroethene	23.4 uç	g/kg	5.2	1		02/23/09 21:37	127-18-4	
Toluene	ND ug	g/kg	5.2	1		02/23/09 21:37	108-88-3	
1,1,1-Trichloroethane	ND uç	g/kg	5.2	1		02/23/09 21:37	71-55-6	
Trichloroethene	ND ug	g/kg	5.2	1		02/23/09 21:37	79-01-6	
Vinyl chloride	ND ug	g/kg	5.2	1		02/23/09 21:37	75-01-4	
Xylene (Total)	ND uç	g/kg	10.4	1		02/23/09 21:37	1330-20-7	
Dibromofluoromethane (S)	106 %	 !	80-124	1		02/23/09 21:37	1868-53-7	
Toluene-d8 (S)	102 %	1	58-145	1		02/23/09 21:37	2037-26-5	
4-Bromofluorobenzene (S)	101 %	,	61-131	1		02/23/09 21:37	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM Da	2974-87					
Percent Moisture	3.5 %	ı	0.10	1		02/23/09 19:03		

Date: 03/02/2009 11:25 AM

Page 386 ice Anafrical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-10 (14-16') Lab ID: 5023501013 Collected: 02/17/09 10:30 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	ı/kg	5.2	1		02/23/09 22:10	71-43-2	
Carbon tetrachloride	ND ug	ı/kg	5.2	1		02/23/09 22:10	56-23-5	
Chloroform	ND ug	/kg	5.2	1		02/23/09 22:10	67-66-3	
1,1-Dichloroethane	ND ug	ı/kg	5.2	1		02/23/09 22:10	75-34-3	
1,2-Dichloroethane	ND ug	ı/kg	5.2	1		02/23/09 22:10	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 22:10	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 22:10	156-59-2	
trans-1,2-Dichtoroethene	ND ug	/kg	5.2	1		02/23/09 22:10	156-60-5	
Ethylbenzene	ND ug	r/kg	5.2	1		02/23/09 22:10	100-41-4	
Methylene chloride	ND ug	/kg	20.9	1		02/23/09 22:10	75-09-2	
Naphthalene	ND ug	r/kg	5.2	1		02/23/09 22:10	91-20-3	
Tetrachloroethene	85.8 ug	/kg	5.2	1		02/23/09 22:10	127-18-4	
Toluene	ND ug		5.2	1		02/23/09 22:10	108-88-3	
1,1.1-Trichloroethane	ND ug	r/kg	5.2	1		02/23/09 22:10	71-55-6	
Trichloroethene	ND ug	ı/kg	5.2	1		02/23/09 22:10	79 -01-6	
Vinyl chloride	ND ug	/kg	5.2	1		02/23/09 22:10	75-01-4	
Xylene (Total)	ND ug	ı/kg	10.5	1		02/23/09 22:10	1330-20-7	
Dibromofluoromethane (S)	105 %		80-124	1		02/23/09 22:10	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 22:10	2037-26-5	
4-Bromofluorobenzene (S)	99 %		61-131	1		02/23/09 22:10	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	4.4 %		0.10	1		02/23/09 19:03		

Page 387 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-15 (4-6") Lab ID: 5023501014 Collected: 02/17/09 13:00 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	thod: EPA 826	0					
Benzene	ND uç	g/kg	5.4	1		02/24/09 13:03	71-43-2	
Carbon tetrachloride	ND uç	g/kg	5.4	1		02/24/09 13:03	56-23-5	
Chloroform	ND ug	g/kg	5.4	1		02/24/09 13:03	67-66-3	
1,1-Dichloroethane	ND uç	g/kg	5.4	1		02/24/09 13:03	75-34-3	
1,2-Dichloroethane	ND ug	g/kg	5.4	1		02/24/09 13:03	107-06-2	
1,1-Dichloroethene	ND uç	g/kg	5.4	1		02/24/09 13:03	75-35-4	
cis-1,2-Dichloroethene	ND ug	g/kg	5.4	1		02/24/09 13:03	156-59-2	
trans-1,2-Dichloroethene	ND ug	g/kg	5.4	1		02/24/09 13:03	156-60-5	
Ethylbenzene	ND ug	g/kg	5.4	1		02/24/09 13:03	100-41-4	
Methylene chloride	ND ug	g/kg	21.6	1		02/24/09 13:03	75-09-2	
Naphthalene	ND ug	g/kg	5.4	1		02/24/09 13:03	91-20-3	
Tetrachloroethene	110 uç	g/kg	5.4	1		02/24/09 13:03	127-18-4	
Toluene	ND ug	g/kg	5.4	1		02/24/09 13:03	108-88-3	
1,1,1-Trichloroethane	ND uç	g/kg	5.4	1		02/24/09 13:03	71-55-6	
Trichloroethene	ND ug	g/kg	5.4	1		02/24/09 13:03	79-01-6	
Vinyl chloride	ND ug	g/kg	5.4	1		02/24/09 13:03	75-01-4	
Xylene (Total)	ND uç	g/kg	10.8	1		02/24/09 13:03	1330-20-7	
Dibromofluoromethane (S)	104 %		80-124	1		02/24/09 13:03	1868-53-7	
Toluene-d8 (S)	99 %	,	58-145	1		02/24/09 13:03	2037-26-5	
4-Bromofluorobenzene (S)	98 %	•	61-131	1		02/24/09 13:03	460-00-4	
Percent Moisture	Analytical Met	thod: ASTM Da	2974-87					
Percent Moisture	7.3 %	•	0.10	1		02/23/09 19:03		

Date: 03/02/2009 11:25 AM

Page 388 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-15 (8-10') Lab ID: 5023501015 Collected: 02/17/09 13:10 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	j/kg	5.2	1		02/23/09 18:01	71-43-2	
Carbon tetrachloride	ND ug	ı/kg	5.2	1		02/23/09 18:01	56-23-5	
Chloroform	ND ug	ı/kg	5.2	1		02/23/09 18:01	67-66-3	
1,1-Dichloroethane	ND ug	ı/kg	5.2	1		02/23/09 18:01	75-34-3	
1,2-Dichloroethane	ND ug	ı/kg	5.2	1		02/23/09 18:01	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 18:01	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 18:01	156-59-2	
trans-1,2-Dichloroethene	ND ug	/kg	5.2	1		02/23/09 18:01	156-60-5	
Ethylbenzene	ND ug	ı/kg	5.2	1		02/23/09 18:01	100-41-4	
Methylene chloride	ND ug	ı/kg	20.8	1		02/23/09 18:01	75-09-2	
Naphthalene	ND ug	/kg	5.2	1		02/23/09 18:01	91-20-3	
Tetrachloroethene	130 ug	/kg	5.2	1		02/23/09 18:01	127-18-4	
Toluene	ND ug		5.2	1		02/23/09 18:01	108-88-3	
1,1,1-Trichloroethane	ND ug	r/kg	5.2	1		02/23/09 18:01	71-55-6	
Trichloroethene	ND ug	ı/kg	5.2	1		02/23/09 18:01	79-01-6	
Vinyl chloride	ND ug	/kg	5.2	1		02/23/09 18:01	75-01-4	
Xylene (Total)	ND ug	ı/kg	10.4	1		02/23/09 18:01	1330-20-7	
Dibromofluoromethane (S)	103 %	_	80-124	1		02/23/09 18:01	1868-53-7	
Toluene-d8 (S)	100 %		58-145	1		02/23/09 18:01	2037-26-5	
4-Bromofluorobenzene (S)	100 %		61-131	1		02/23/09 18:01	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	4.0 %		0.10	1		02/23/09 19:03		

Page 389 ce Anafrical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-15 (12-14') Lab ID: 5023501016 Collected: 02/17/09 13:15 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826)					
Benzene	ND uç	g/kg	5.2	1		02/23/09 19:05	71-43-2	
Carbon tetrachloride	ND uç	g/kg	5.2	1		02/23/09 19:05	56-23-5	
Chloroform	ND ug	g/kg	5.2	1		02/23/09 19:05	67-66-3	
1,1-Dichloroethane	ND uç	g/kg	5.2	1		02/23/09 19:05	75-34-3	
1,2-Dichloroethane	ND ug	g/kg	5.2	1		02/23/09 19:05	107-06-2	
1,1-Dichloroethene	ND ug	g/kg	5.2	1		02/23/09 19:05	75-35-4	
cis-1,2-Dichloroethene	ND uç	g/kg	5.2	1		02/23/09 19:05	156-59-2	
trans-1,2-Dichloroethene	ND ug	g/kg	5.2	1		02/23/09 19:05	156-60-5	
Ethylbenzene	ND uç	g/kg	5.2	1		02/23/09 19:05	100-41-4	
Methylene chloride	ND ug	g/kg	20.7	1		02/23/09 19:05	75-09-2	
Naphthalene	ND ug	g/kg	5.2	1		02/23/09 19:05	91-20-3	
Tetrachloroethene	7640 uç	g/kg	130	25		02/24/09 18:53	127-18-4	
Toluene	ND uç	g/kg	5.2	1		02/23/09 19:05	108-88-3	
1,1,1-Trichloroethane	ND uç	g/kg	5.2	1		02/23/09 19:05	71-55-6	
Trichloroethene	11.7 ug	g/kg	5.2	1		02/23/09 19:05	79-01-6	
Vinyl chloride	ND ug		5.2	1		02/23/09 19:05	75-01-4	
Xylene (Total)	ND uç	g/kg	10.4	1		02/23/09 19:05	1330-20-7	
Dibromofluoromethane (S)	104 %		80-124	1		02/23/09 19:05	1868-53-7	
Toluene-d8 (S)	99 %	1	58-145	1		02/23/09 19:05	2037-26-5	
4-Bromofluorobenzene (S)	98 %	,	61-131	1		02/23/09 19:05	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	3.6 %	ı	0.10	1		02/23/09 19:03		

Date: 03/02/2009 11:25 AM

Page 390 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-16 (4-6") Lab ID: 5023501017 Collected: 02/17/09 13:45 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	/kg	5.8	1		02/23/09 19:39	71-43-2	
Carbon tetrachloride	ND ug	/kg	5.8	1		02/23/09 19:39	56-23-5	
Chloroform	ND ug	/kg	5.8	1		02/23/09 19:39	67-66-3	
1,1-Dichloroethane	ND ug	/kg	5.8	1		02/23/09 19:39	75-34-3	
1,2-Dichloroethane	ND ug	/kg	5.8	1		02/23/09 19:39	107-06-2	
1,1-Dichloroethene	ND ug	/kg	5.8	1		02/23/09 19:39	75-35-4	
cis-1,2-Dichloroethene	ND ug	/kg	5.8	1		02/23/09 19:39	156-59-2	
rans-1,2-Dichloroethene	ND ug	/kg	5.8	1		02/23/09 19:39	156-60-5	
Ethylbenzene	ND ug	/kg	5.8	1		02/23/09 19:39	100-41-4	
Methylene chloride	ND ug	/kg	23.4	1		02/23/09 19:39	75-09-2	
Naphthalene	ND ug	/kg	5.8	1		02/23/09 19:39	91-20-3	
Tetrachloroethene	ND ug	/kg	5.8	1		02/23/09 19:39	127-18-4	
Toluene	ND ug	/kg	5.8	1		02/23/09 19:39	108-88-3	
1,1,1-Trichloroethane	ND ug		5.8	1		02/23/09 19:39	71-55-6	
Trichloroethene	ND ug	/kg	5.8	1		02/23/09 19:39	79-01-6	
/inyl chloride	ND ug		5.8	1		02/23/09 19:39	75-01-4	
Kylene (Total)	ND ug	/kg	11.7	1		02/23/09 19:39	1330-20-7	
Dibromofluoromethane (S)	103 %		80-124	1		02/23/09 19:39	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 19:39	2037-26-5	
I-Bromofluorobenzene (S)	100 %		61-131	1		02/23/09 19:39	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	14.4 %		0.10	1		02/23/09 19:03		

Date: 03/02/2009 11:25 AM

Page 391 oce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-16 (8-10') Lab ID: 5023501018 Collected: 02/17/09 13:50 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	g/kg	5.6	1		02/23/09 20:15	71-43-2	
Carbon tetrachloride	ND ug	j/kg	5.6	1		02/23/09 20:15	56-23-5	
Chloroform	ND ug	j/kg	5.6	1		02/23/09 20:15	67-66-3	
1,1-Dichloroethane	ND ug	ı/kg	5.6	1		02/23/09 20:15	75-34-3	
1,2-Dichloroethane	ND ug	j/kg	5.6	1		02/23/09 20:15	107-06-2	
1,1-Dichloroethene	ND ug	r/kg	5.6	1		02/23/09 20:15	75-35-4	
cis-1,2-Dichloroethene	ND ug	j/kg	5.6	1		02/23/09 20:15	156-59-2	
trans-1,2-Dichloroethene	ND ug	j/kg	5.6	1		02/23/09 20:15	156-60-5	
Ethylbenzene	ND ug	/kg	5.6	1		02/23/09 20:15	100-41-4	
Methylene chloride	ND ug		22.5	1		02/23/09 20:15	75-09-2	
Naphthalene	ND uc		5.6	1		02/23/09 20:15	91-20-3	
Tetrachloroethene	11.1 ug	ı/kg	5.6	1		02/23/09 20:15	127-18-4	
Toluene	ND ug		5.6	1		02/23/09 20:15	108-88-3	
1,1,1-Trichloroethane	ND ug		5.6	1		02/23/09 20:15	71-55-6	
Trichloroethene	ND ug		5.6	1		02/23/09 20:15	79-01-6	
Vinyl chloride	ND ug	n/kg	5.6	1		02/23/09 20:15	75-01-4	
Xylene (Total)	ND ug		11.2	1		02/23/09 20:15	1330-20-7	
Dibromofluoromethane (S)	105 %		80-124	1		02/23/09 20:15	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 20:15	2037-26-5	
4-Bromofluorobenzene (S)	100 %		61-131	1		02/23/09 20:15	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	11.1 %		0.10	1		02/23/09 19:04		

Page 392 ice Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-16 (12-14') Lab ID: 5023501019 Collected: 02/17/09 13:55 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	g/kg	5.4	1		02/23/09 20:49	71-43-2	
Carbon tetrachloride	ND ug	j/kg	5.4	1		02/23/09 20:49	56-23-5	
Chloroform	ND ug	j/kg	5.4	1		02/23/09 20:49	67-66-3	
1,1-Dichloroethane	ND ug	j/kg	5.4	1		02/23/09 20:49	75-34-3	
1,2-Dichloroethane	ND ug	j/kg	5.4	1		02/23/09 20:49	107-06-2	
1,1-Dichloroethene	ND ug	n/kg	5.4	1		02/23/09 20:49	75-35-4	
cis-1,2-Dichloroethene	30.4 ug	j/kg	5.4	1		02/23/09 20:49	156-59-2	
trans-1,2-Dichloroethene	ND ug	j/kg	5.4	1		02/23/09 20:49	156-60-5	
Ethylbenzene	ND ug	/kg	5.4	1		02/23/09 20:49	100-41-4	
Methylene chloride	ND ug	j/kg	21.8	1		02/23/09 20:49	75-09-2	
Naphthalene	ND ug	r/kg	5.4	1		02/23/09 20:49	91-20-3	
Tetrachloroethene	91.0 ug	j/kg	5.4	1		02/23/09 20:49	127-18-4	
Toluene	ND ug		5.4	1		02/23/09 20:49	108-88-3	
1,1,1-Trichloroethane	ND ug	/kg	5.4	1		02/23/09 20:49	71-55-6	
Trichloroethene	8.8 ug	/kg	5.4	1		02/23/09 20:49	79-01-6	
Vinyl chloride	ND ug		5.4	1		02/23/09 20:49	75-01-4	
Xylene (Total)	ND ug	ı/kg	10.9	1		02/23/09 20:49	1330-20-7	
Dibromofluoromethane (S)	105 %		80-124	1		02/23/09 20:49	1868-53-7	
Toluene-d8 (S)	101 %		58-145	1		02/23/09 20:49	2037-26-5	
4-Bromofluorobenzene (S)	97 %		61-131	1		02/23/09 20:49	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	8.1 %		0.10	1		02/23/09 19:04		

Page 393 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-17 (4-6") Lab ID: 5023501020 Collected: 02/17/09 15:00 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826)					
Benzene	ND uç	g/kg	5.8	1		02/23/09 21:21	71-43-2	
Carbon tetrachloride	ND uç	g/kg	5.8	1		02/23/09 21:21	56-23-5	
Chloroform	ND ug	g/kg	5.8	1		02/23/09 21:21	67-66-3	
1,1-Dichloroethane	ND uç	g/kg	5.8	1		02/23/09 21:21	75-34-3	
1,2-Dichloroethane	ND ug	g/kg	5.8	1		02/23/09 21:21	107-06-2	
1,1-Dichloroethene	ND uç	g/kg	5.8	1		02/23/09 21:21	75-35-4	
cis-1,2-Dichloroethene	ND ug	g/kg	5.8	1		02/23/09 21:21	156-59-2	
trans-1,2-Dichloroethene	ND ug	g/kg	5.8	1		02/23/09 21:21	156-60-5	
Ethylbenzene	ND ug	g/kg	5.8	1		02/23/09 21:21	100-41-4	
Methylene chloride	ND ug	g/kg	23.0	1		02/23/09 21:21	75-09-2	
Naphthalene	ND ug	g/kg	5.8	1		02/23/09 21:21	91-20-3	
Tetrachloroethene	77.2 uç	g/kg	5.8	1		02/23/09 21:21	127-18-4	
Toluene	ND ug	g/kg	5.8	1		02/23/09 21:21	108-88-3	
1,1,1-Trichloroethane	ND uç	g/kg	5.8	1		02/23/09 21:21	71-55-6	
Trichloroethene	ND ug	g/kg	5.8	1		02/23/09 21:21	79-01-6	
Vinyl chloride	ND ug	g/kg	5.8	1		02/23/09 21:21	75-01-4	
Xylene (Total)	ND uç	g/kg	11.5	1		02/23/09 21:21	1330-20-7	
Dibromofluoromethane (S)	105 %		80-124	1		02/23/09 21:21	1868-53-7	
Toluene-d8 (S)	100 %	1	58-145	1		02/23/09 21:21	2037-26-5	
4-Bromofluorobenzene (S)	102 %	1	61-131	1		02/23/09 21:21	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	13.1 %	ı	0.10	1		02/23/09 19:04		

Date: 03/02/2009 11:25 AM

Page 394 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-17 (10-12') Lab ID: 5023501021 Collected: 02/17/09 15:05 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826)					
Benzene	ND ug	g/kg	5.5	1		02/23/09 21:53	71-43-2	
Carbon tetrachloride	ND ug	j/kg	5.5	1		02/23/09 21:53	56-23-5	
Chloroform	ND ug	j/kg	5.5	1		02/23/09 21:53	67-66-3	
1,1-Dichloroethane	ND ug	j/kg	5.5	1		02/23/09 21:53	75-34-3	
1,2-Dichloroethane	ND ug	j/kg	5.5	1		02/23/09 21:53	107-06-2	
1,1-Dichloroethene	ND ug	n/kg	5.5	1		02/23/09 21:53	75-35-4	
cis-1,2-Dichloroethene	ND ug	j/kg	5.5	1		02/23/09 21:53	156-59-2	
trans-1,2-Dichloroethene	ND ug	j/kg	5.5	1		02/23/09 21:53	156-60-5	
Ethylbenzene	ND ug	/kg	5.5	1		02/23/09 21:53	100-41-4	
Methylene chloride	ND ug	j/kg	22.0	1		02/23/09 21:53	75-09-2	
Naphthalene	ND ug	r/kg	5.5	1		02/23/09 21:53	91-20-3	
Tetrachloroethene	10500 ug	j/kg	275	50		02/24/09 19:29	127-18-4	
Toluene	ND ug	/kg	5.5	1		02/23/09 21:53	108-88-3	
1,1,1-Trichloroethane	ND ug	/kg	5.5	1		02/23/09 21:53	71-55-6	
Trichloroethene	9.6 ug	/kg	5.5	1		02/23/09 21:53	79-01-6	
Vinyl chloride	ND ug	n/kg	5.5	1		02/23/09 21:53	75-01-4	
Xylene (Total)	ND ug	ı/kg	11.0	1		02/23/09 21:53	1330-20-7	
Dibromofluoromethane (S)	106 %		80-124	1		02/23/09 21:53	1868-53-7	
Toluene-d8 (S)	99 %		58-145	1		02/23/09 21:53	2037-26-5	
4-Bromofluorobenzene (S)	98 %		61-131	1		02/23/09 21:53	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	9.3 %		0.10	1		02/23/09 19:04		

Page 395 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: SB-17 (12-14') Lab ID: 5023501022 Collected: 02/17/09 15:10 Received: 02/19/09 13:33 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5030 Low Level	Analytical Met	hod: EPA 826	0					
Benzene	ND ug	g/kg	5.3	1		02/23/09 22:26	71-43-2	
Carbon tetrachloride	ND ug	j/kg	5.3	1		02/23/09 22:26	56-23-5	
Chloroform	ND ug	j/kg	5.3	1		02/23/09 22:26	67-66-3	
1,1-Dichloroethane	ND ug	ı/kg	5.3	1		02/23/09 22:26	75-34-3	
1,2-Dichloroethane	ND ug	j/kg	5.3	1		02/23/09 22:26	107-06-2	
1,1-Dichloroethene	ND ug	n/kg	5.3	1		02/23/09 22:26	75-35-4	
cis-1,2-Dichloroethene	ND ug	j/kg	5.3	1		02/23/09 22:26	156-59-2	
trans-1,2-Dichloroethene	ND ug	j/kg	5.3	1		02/23/09 22:26	156-60-5	
Ethylbenzene	ND ug	ı/kg	5.3	1		02/23/09 22:26	100-41-4	
Methylene chloride	ND ug	j/kg	21.4	1		02/23/09 22:26	75-09-2	
Naphthalene	ND ug	r/kg	5.3	1		02/23/09 22:26	91-20-3	
Tetrachloroethene	30600 ug	j/kg	534	100		02/24/09 20:01	127-18-4	
Toluene	ND ug	r/kg	5.3	1		02/23/09 22:26	108-88-3	
1,1,1-Trichloroethane	ND ug	/kg	5.3	1		02/23/09 22:26	71-55-6	
Trichloroethene	15.8 սջ	ı/kg	5.3	1		02/23/09 22:26	79-01-6	
Vinyl chloride	ND ug		5.3	1		02/23/09 22:26	75-01-4	
Xylene (Total)	ND ug	ı/kg	10.7	1		02/23/09 22:26	1330-20-7	
Dibromofluoromethane (S)	104 %		80-124	1		02/23/09 22:26	1868-53-7	
Toluene-d8 (S)	97 %		58-145	1		02/23/09 22:26	2037-26-5	
4-Bromofluorobenzene (S)	96 %		61-131	1		02/23/09 22:26	460-00-4	
Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
Percent Moisture	6.4 %		0.10	1		02/23/09 19:04		

Date: 03/02/2009 11:25 AM

Page 396
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Meadows

Pace Project No.: 5023501

Sample: TRIPBLANK	Lab ID: 5023501023	Collected: 02/17/0	9 08:00	Received: 02/19/09 13:33	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
8260 MSV	Analytical Method: EPA	8260				
Benzene	ND ug/L	5.0	1	02/24/09 15	5:34 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	02/24/09 15	i:34 56-23-5	
Chloroform	ND ug/L	5.0	1	02/24/09 15	5:34 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	02/24/09 15	i:34 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	02/24/09 15	34 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	02/24/09 15	34 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	5.0	1	02/24/09 15	5:34 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	5.0	1	02/24/09 15	5:34 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	02/24/09 15	5:34 100-41-4	
Methylene chloride	ND ug/L	5.0	1	02/24/09 15	5:34 75-09-2	
Naphthalene	ND ug/L	5.0	1	02/24/09 15	5:34 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	02/24/09 15	34 127-18-4	
Toluene	ND ug/L	5.0	1	02/24/09 15	5:34 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	02/24/09 15	5:34 71-55-6	
Trichloroethene	ND ug/L	5.0	1	02/24/09 15	5:34 79-01-6	
Vinyl chloride	ND ug/L	2.0	1	02/24/09 15	5:34 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	02/24/09 15	5:34 1330-20-7	
Dibromofluoromethane (S)	101 %	80-123	1	02/24/09 15	5:34 1868-53-7	
4-Bromofluorobenzene (S)	99 %	70-126	1	02/24/09 15	:34 460-00-4	
Toluene-d8 (S)	102 %	80-116	1	02/24/09 15	5:34 2037-26-5	

Page 397 e Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

Pace Project No.: 5023501

QC Batch: PMST/3361 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 5023501006, 5023501006, 5023501007, 5023501008, 5023501009, 5023501010, 5023501011, 5023501012,

5023501013, 5023501014, 5023501015, 5023501016, 5023501017, 5023501018, 5023501019, 5023501020,

5023501021, 5023501022

SAMPLE DUPLICATE: 266791

5023501005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 4.1 % 5 R2 Percent Moisture 3.7 11 SAMPLE DUPLICATE: 266792

5023501022 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Percent Moisture % 6.4 5.0 24 5 R2

Date: 03/02/2009 11:25 AM

Page 398 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Danadlas

Project Michigan Meadows

Pace Project No.: 5023501

QC Batch: MSV/14559 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5030 Low

Associated Lab Samples: 5023501006, 5023501006, 5023501007, 5023501008, 5023501009, 5023501010, 5023501011, 5023501012,

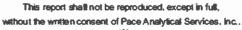
5023501013

METHOD BLANK: 267017 Matrix: Solid

Associated Lab Samples: 5023501006, 5023501006, 5023501007, 5023501008, 5023501009, 5023501010, 5023501011, 5023501012,

Diante

5023501013


		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/kg	ND	5.0	02/23/09 12:51	
1,1-Dichloroethane	ug/kg	ND	5.0	02/23/09 12:51	
1,1-Dichloroethene	ug/kg	ND	5.0	02/23/09 12:51	
1,2-Dichloroethane	ug/kg	ND	5.0	02/23/09 12:51	
Benzene	ug/kg	ND	5.0	02/23/09 12:51	
Carbon tetrachloride	ug/kg	ND	5.0	02/23/09 12:51	
Chloroform	ug/kg	ND	5.0	02/23/09 12:51	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	02/23/09 12:51	
Ethylbenzene	ug/kg	ND	5.0	02/23/09 12:51	
Methylene chloride	ug/kg	ND	20.0	02/23/09 12:51	
Naphthalene	ug/kg	ND	5.0	02/23/09 12:51	
Tetrachloroethene	ug/kg	ND	5.0	02/23/09 12:51	
Toluene	ug/kg	ND	5.0	02/23/09 12:51	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	02/23/09 12:51	
Trichloroethene	ug/kg	ND	5.0	02/23/09 12:51	
Vinyl chloride	ug/kg	ND	5.0	02/23/09 12:51	
Xylene (Total)	ug/kg	ND	10.0	02/23/09 12:51	
4-Bromofluorobenzene (S)	%	98	61-131	02/23/09 12:51	
Dibromofluoromethane (S)	%	103	80-124	02/23/09 12:51	
Toluene-d8 (S)	%	101	58-145	02/23/09 12:51	

		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
1,1.1-Trichloroethane	ug/kg	50	41.6	83	61-135		
1,1-Dichloroethane	ug/kg	50	42.8	86	62-132		
1,1-Dichloroethene	ug/kg	50	44.8	90	61-123		
1,2-Dichloroethane	ug/kg	50	44.5	89	62-135		
Benzene	ug/kg	50	44.3	89	76-123		
Carbon tetrachloride	ug/kg	50	42.7	85	54-136		
Chloroform	ug/kg	50	43.8	88	74-123		
cis-1,2-Dichloroethene	ug/kg	50	44.8	90	76-119		
Ethylbenzene	ug/kg	50	45.5	91	78-121		
Methylene chloride	ug/kg	50	38.5	77	30-170		
Naphthalene	ug/kg	50	39.1	78	60-128		
Tetrachloroethene	ug/kg	50	31.9	64	63-117		
Toluene	ug/kg	50	44.9	90	72-123		
trans-1,2-Dichloroethene	ug/kg	50	47.5	95	70-122		
Trichloroethene	ug/kg	50	46.0	92	74-121		
Vinyl chloride	ug/kg	50	58.5	117	50-146		

Date: 03/02/2009 11:25 AM

REPORT OF LABORATORY ANALYSIS

Page 29 of 37

Page 399

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

Pace Project No.: 5023501

LABORATORY CONTROL SAMPLE: 267018

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Xylene (Total)	ug/kg	150	137	92	77-120	
4-Bromofluorobenzene (S)	%			101	61-131	
Dibromofluoromethane (S)	%			104	80-124	
Toluene-d8 (S)	%			103	58-145	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 26701	9		267020							
			MS	MSD								
	50	23501007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	ND	52	52	36.4	39.1	70	75	27-142	7	20	
1,1-Dichloroethane	ug/kg	ND	52	52	43.9	40.9	84	79	31-141	7	20	
1,1-Dichloroethene	ug/kg	ND	52	52	44.9	43.1	86	83	23-132	4	20	
1,2-Dichloroethane	ug/kg	ND	52	52	47.2	44.1	91	85	30-143	7	20	
Benzene	ug/kg	ND	52	52	43.8	40.7	84	78	50-135	7	20	
Carbon tetrachloride	ug/kg	ND	52	52	35.7	39.1	69	75	30-130	9	20	
Chloroform	ug/kg	ND	52	52	44.3	41.2	85	79	30-136	7	20	
cis-1,2-Dichloroethene	ug/kg	ND	52	52	45.4	42.6	87	82	30-141	6	20	
Ethylbenzene	ug/kg	ND	52	52	39.6	34.3	76	66	50-150	14	20	
Methylene chloride	ug/kg	ND	52	52	43.8	40.4	84	78	30-163	8	20	
Naphthalene	ug/kg	ND	52	52	25.9	23.5	50	45	50-128	10	20	MO
Tetrachloroethene	ug/kg	10.4	52	52	51.6	48.2	79	73	40-155	7	20	
Toluene	ug/kg	ND	52	52	41.8	38.0	80	73	50-149	10	20	
trans-1,2-Dichloroethene	ug/kg	ND	52	52	46.4	43.3	89	83	40-140	7	20	
Trichloroethene	ug/kg	ND	52	52	43.3	39.6	83	76	40-153	9	20	
Vinyl chloride	ug/kg	ND	52	52	59.1	55.6	114	107	36-137	6	20	
Xylene (Total)	ug/kg	ND	156	156	119	102	76	66	50-143	15	20	
4-Bromofluorobenzene (S)	%						100	103	61-131		20	
Dibromofluoromethane (S)	%						103	105	80-124		20	
Toluene-d8 (S)	%						100	104	58-145		20	

Date: 03/02/2009 11:25 AM

REPORT OF LABORATORY ANALYSIS

Page 400 ce Analytical Services, Inc. 7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

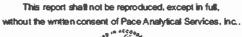
Pace Project No.: 5023501

QC Batch: MSV/14561 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5030 Low

Associated Lab Samples: 5023501015, 5023501016, 5023501017, 5023501018, 5023501019, 5023501020, 5023501021, 5023501022

METHOD BLANK: 267025 Matrix: Solid


Associated Lab Samples: 5023501015, 5023501016, 5023501017, 5023501018, 5023501019, 5023501020, 5023501021, 5023501022

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1.1-Trichloroethane	ug/kg	ND ·	5.0	02/23/09 13:07	
1,1-Dichloroethane	ug/kg	ND	5.0	02/23/09 13:07	
1,1-Dichloroethene	ug/kg	ND	5.0	02/23/09 13:07	
1,2-Dichloroethane	ug/kg	ND	5.0	02/23/09 13:07	
Benzene	ug/kg	ND	5.0	02/23/09 13:07	
Carbon tetrachloride	ug/kg	ND	5.0	02/23/09 13:07	
Chloroform	ug/kg	ND	5.0	02/23/09 13:07	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	02/23/09 13:07	
Ethylbenzene	ug/kg	ND	5.0	02/23/09 13:07	
Methylene chloride	ug/kg	ND	20.0	02/23/09 13:07	
Naphthalene	ug/kg	ND	5.0	02/23/09 13:07	
Tetrachloroethene	ug/kg	ND	5.0	02/23/09 13:07	
Toluene	ug/kg	ND	5.0	02/23/09 13:07	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	02/23/09 13:07	
Trichloroethene	ug/kg	ND	5.0	02/23/09 13:07	
Vinyl chloride	ug/kg	ND	5.0	02/23/09 13:07	
Xylene (Total)	ug/kg	ND	10.0	02/23/09 13:07	
4-Bromofluorobenzene (S)	%	100	61-131	02/23/09 13:07	
Dibromofluoromethane (S)	%	102	80-124	02/23/09 13:07	
Toluene-d8 (S)	%	102	58-145	02/23/09 13:07	

LABORATORY CONTROL SAMPLE:	267026					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	50	46.5	93	61-135	
1,1-Dichloroethane	ug/kg	50	42.8	86	62-132	
1,1-Dichloroethene	ug/kg	50	47.5	95	61-123	
1,2-Dichloroethane	ug/kg	50	47.6	95	62-135	
Benzene	ug/kg	50	46.2	92	76-123	
Carbon tetrachloride	ug/kg	50	47.1	94	54-136	
Chloroform	ug/kg	50	45.6	91	74-123	
cis-1,2-Dichloroethene	ug/kg	50	46.0	92	76-119	
Ethylbenzene	ug/kg	50	48.1	96	78-121	
Methylene chloride	ug/kg	50	53.1	106	30-170	
Naphthalene	ug/kg	50	41.9	84	60-128	
Tetrachloroethene	ug/kg	50	34.4	69	63-117	
Toluene	ug/kg	50	46.9	94	72-123	
trans-1,2-Dichloroethene	ug/kg	50	47.6	95	70-122	
Trichloroethene	ug/kg	50	45.6	91	74-121	
Vinyl chloride	ug/kg	50	55.9	112	50-146	
Xylene (Total)	ug/kg	150	144	96	77-120	

Date: 03/02/2009 11:25 AM REPORT OF LABORATORY ANALYSIS

Page 31 of 37

Page 401
Pace Analytical Services, Inc.
7728 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

Pace Project No.: 5023501

LABORATORY CONTROL SAMPLE: 267026

Parameter	Units	Spike Canc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			103	61-131	
Dibromofluoromethane (S)	%			103	80-124	
Toluene-d8 (S)	%			103	58-145	

MATRIX SPIKE SAMPLE:	267027						
	1.6-24-	5023501015	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	ND	52.1	40.4	78	27-142	
1,1-Dichloroethane	ug/kg	ND	52.1	40.0	77	31-141	
1,1-Dichloroethene	ug/kg	ND	52.1	44.0	84	23-132	
1,2-Dichloroethane	ug/kg	ND	52.1	44.9	86	30-143	
Benzene	ug/kg	ND	52.1	41.4	80	50-135	
Carbon tetrachloride	ug/kg	ND	52.1	38.7	74	30-130	
Chloroform	ug/kg	ND	52.1	42.2	81	30-136	
cis-1,2-Dichloroethene	ug/kg	ND	52.1	42.5	82	30-141	
Ethylbenzene	ug/kg	ND	52.1	36.3	70	50-150	
Methylene chloride	ug/kg	ND	52.1	52.1	84	30-163	
Naphthalene	ug/kg	ND	52.1	19.4	37	50-128 N	10
Tetrachloroethene	ug/kg	130	52.1	259	249	40-155 N	10
Toluene	ug/kg	ND	52.1	38.4	74	50-149	
trans-1,2-Dichloroethene	ug/kg	ND	52.1	43.4	83	40-140	
Trichloroethene	ug/kg	ND	52.1	42.7	78	40-153	
Vinyl chloride	ug/kg	ND	52.1	55.0	106	36-137	
Xylene (Total)	ug/kg	ND	156	107	68	50-143	
4-Bromofluorobenzene (S)	%				102	61-131	
Dibromofluoromethane (S)	%				105	80-124	
Toluene-d8 (S)	%				102	58-145	

Date: 03/02/2009 11:25 AM

REPORT OF LABORATORY ANALYSIS

Page 402 ace Analytical Services, Inc. 7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

Pace Project No.: 5023501

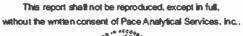
 QC Batch:
 MSV/14571
 Analysis Method:
 EPA 8260

 QC Batch Method:
 EPA 8260
 Analysis Description:
 8260 MSV

 Associated Lab Samples:
 5023501001, 5023501002, 5023501003, 5023501004, 5023501003
 5023501003, 5023501004, 5023501003

METHOD BLANK: 267316 Matrix: Water

Associated Lab Samples: 5023501001, 5023501002, 5023501003, 5023501004, 5023501023


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND .	5.0	02/24/09 11:03	
1,1-Dichloroethane	ug/L	ND	5.0	02/24/09 11:03	
1,1-Dichloroethene	ug/L	ND	5.0	02/24/09 11:03	
1.2-Dichloroethane	-	ND	5.0	02/24/09 11:03	
	ug/L	–			
Benzene	ug/L	ND	5.0	02/24/09 11:03	
Carbon tetrachloride	ug/L	ND	5.0	02/24/09 11:03	
Chloroform	ug/L	ND	5.0	02/24/09 11:03	
cis-1,2-Dichloroethene	ug/L	ND	5.0	02/24/09 11:03	
Ethylbenzene	ug/L	ND	5.0	02/24/09 11:03	
Methylene chloride	ug/L	ND	5.0	02/24/09 11:03	
Naphthalene	ug/L	ND	5.0	02/24/09 11:03	
Tetrachloroethene	ug/L	ND	5.0	02/24/09 11:03	
Toluene	ug/L	ND	5.0	02/24/09 11:03	
trans-1,2-Dichloroethene	ug/L	ND	5.0	02/24/09 11:03	
Trichloroethene	ug/L	ND	5.0	02/24/09 11:03	
Vinyl chloride	ug/L	ND	2.0	02/24/09 11:03	
Xylene (Total)	ug/L	ND	10.0	02/24/09 11:03	
4-Bromofluorobenzene (S)	%	101	70-126	02/24/09 11:03	
Dibromofluoromethane (S)	%	103	80-123	02/24/09 11:03	
Toluene-d8 (S)	%	104	80-116	02/24/09 11:03	

LABORATORY CONTROL SAMPLE:	267317					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	46.0	92	69-136	
1,1-Dichloroethane	ug/L	50	46.8	94	67-133	
1,1-Dichloroethene	ug/L	50	48.2	96	63-128	
1,2-Dichloroethane	ug/L	50	56.6	113	69-139	
Benzene	ug/L	50	46.8	94	78-127	
Carbon tetrachloride	ug/L	50	51.5	103	62-143	
Chloroform	ug/L	50	50.8	102	74-131	
cis-1,2-Dichloroethene	ug/L	50	51.7	103	74-128	
Ethylbenzene	ug/L	50	45.6	91	81-126	
Methylene chloride	ug/L	50	51.8	104	32-164	
Naphthalene	ug/L	50	42.0	84	61-135	
Tetrachloroethene	ug/L	50	45.1	90	60-119	
Toluene	ug/L	50	46.4	93	75-129	
trans-1,2-Dichloroethene	ug/L	50	54.4	109	71-126	
Trichloroethene	ug/L	50	52.2	104	74-130	
Vinyl chloride	ug/L	50	49.6	99	55-141	
Xylene (Total)	ug/L	150	140	93	76 -132	

Date: 03/02/2009 11:25 AM REPORT OF LABORATORY ANALYSIS

KEI OKI OI LADOKAIOKI AKALIGIO

Page 33 of 37

Page 403
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

Pace Project No.: 5023501

LABORATORY CONTROL SAMPLE: 267317

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			101	70-126	
Dibromofluoromethane (S)	%			106	80-123	
Toluene-d8 (S)	%			98	80-116	

MATRIX SPIKE SAMPLE:	267318						
		5023460009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	ND ND	50	42.3	85	64-143	
1,1-Dichloroethane	ug/L	ND	50	47.8	96	68-139	
1,1-Dichloroethene	ug/L	ND	50	41.3	83	55-140	
1,2-Dichloroethane	ug/L	ND	50	56.0	112	63-148	
Benzene	ug/L	ND	50	45.8	89	63-141	
Carbon tetrachloride	ug/L	ND	50	43.1	86	54-145	
Chloroform	ug/L	ND	50	50.6	101	67-134	
cis-1,2-Dichloroethene	ug/L	ND	50	49.8	100	65-132	
Ethylbenzene	ug/L	ND	50	39.2	78	44-151	
Methylene chloride	ug/L	ND	50	50.4	101	46-154	
Naphthalene	ug/L	ND	50	37.7	75	44-138	
Tetrachloroethene	ug/L	ND	50	37.1	74	25-146	
Toluene	ug/L	ND	50	43.5	83	59-142	
trans-1,2-Dichloroethene	ug/L	ND	50	49.1	98	60-137	
Trichloroethene	ug/L	ND	50	44.8	90	61-137	
Vinyl chloride	ug/L	ND	50	46.0	92	51-144	
Xylene (Total)	ug/L	ND	150	120	80	44-152	
4-Bromofluorobenzene (S)	%				102	70-126	
Dibromofluoromethane (S)	%				102	80-123	
Toluene-d8 (S)	%				99	80-116	

Date: 03/02/2009 11:25 AM

REPORT OF LABORATORY ANALYSIS

Page 404
ace Anafytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

Pace Project No.: 5023501

QC Batch: MSV/14579 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5030 Low

Associated Lab Samples: 5023501014

METHOD BLANK: 267414 Matrix: Solid

Associated Lab Samples: 5023501014

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
				<u> </u>	
1,1,1-Trichloroethane	ug/kg	ND	5.0	02/24/09 12:31	
1,1-Dichloroethane	ug/kg	ND	5.0	02/24/09 12:31	
1,1-Dichloroethene	ug/kg	ND	5.0	02/24/09 12:31	
1,2-Dichloroethane	ug/kg	ND	5.0	02/24/09 12:31	
Benzene	ug/kg	ND	5.0	02/24/09 12:31	
Carbon tetrachloride	ug/kg	ND	5.0	02/24/09 12:31	
Chloroform	ug/kg	ND	5.0	02/24/09 12:31	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	02/24/09 12:31	
Ethylbenzene	ug/kg	ND	5.0	02/24/09 12:31	
Methylene chloride	ug/kg	ND	20.0	02/24/09 12:31	
Naphthalene	ug/kg	ND	5.0	02/24/09 12:31	
Tetrachloroethene	ug/kg	ND	5.0	02/24/09 12:31	
Toluene	ug/kg	ND	5.0	02/24/09 12:31	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	02/24/09 12:31	
Trichloroethene	ug/kg	ND	5.0	02/24/09 12:31	
Vinyl chloride	ug/kg	ND	5.0	02/24/09 12:31	
Xylene (Total)	ug/kg	ND	10.0	02/24/09 12:31	
4-Bromofluorobenzene (S)	%	101	61-131	02/24/09 12:31	
Dibromofluoromethane (S)	%	103	80-124	02/24/09 12:31	
Toluene-d8 (S)	%	100	58-145	02/24/09 12:31	

LABORATORY CONTROL SAMPLE:	267415					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	50	40.2	80	61-135	
1,1-Dichloroethane	ug/kg	50	40.1	80	62-132	
1,1-Dichloroethene	ug/kg	50	40.9	82	61-123	
1,2-Dichloroethane	ug/kg	50	42.0	84	62-135	
Benzene	ug/kg	50	41.4	83	76 -123	
Carbon tetrachloride	ug/kg	50	38.9	78	54-136	
Chloroform	ug/kg	50	40.2	80	74-123	
cis-1,2-Dichloroethene	ug/kg	50	41.9	84	76-119	
Ethylbenzene	ug/kg	50	41.8	84	78-121	
Methylene chloride	ug/kg	50	36.4	73	30-170	
Naphthalene	ug/kg	50	38.9	78	60-128	
Tetrachloroethene	ug/kg	50	29.4	59	63-117 LC)
Toluene	ug/kg	50	40.4	81	72-123	
trans-1,2-Dichloroethene	ug/kg	50	42.5	85	70-122	
Trichloroethene	ug/kg	50	42.5	85	74-121	
Vinyl chloride	ug/kg	50	51.6	103	50-146	
Xylene (Total)	ug/kg	150	127	84	77-120	

Date: 03/02/2009 11:25 AM

REPORT OF LABORATORY ANALYSIS

Page 35 of 37

Page 405
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Meadows

Pace Project No.: 5023501

LABORATORY CONTROL SAMPLE: 267415

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			103	61-131	
Dibromofluoromethane (S)	%			104	80-124	
Toluene-d8 (S)	%			100	58-145	

MATRIX SPIKE SAMPLE:	267416	•					
		5023531020	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	ND	61.5	39.6	64	27-142	
1,1-Dichloroethane	ug/kg	ND	61.5	47.1	77	31-141	
1,1-Dichloroethene	ug/kg	ND	61.5	46.8	76	23-132	
1,2-Dichloroethane	ug/kg	ND	61.5	49.0	80	30-143	
Benzene	ug/kg	ND	61.5	47.9	78	50-135	
Carbon tetrachloride	ug/kg	ND	61.5	35.3	57	30-130	
Chloroform	ug/kg	ND	61.5	47.7	78	30-136	
cis-1,2-Dichloroethene	ug/kg	ND	61.5	49.3	80	30-141	
Ethylbenzene	ug/kg	ND	61.5	44.0	72	50-150	
Methylene chloride	ug/kg	ND	61.5	43.1	70	30-163	
Naphthalene	ug/kg	13.0	61.5	46.2	54	50-128	
Tetrachloroethene	ug/kg	ND	61.5	29.0	47	40-155	
Toluene	ug/kg	ND	61.5	44.8	73	50-149	
trans-1,2-Dichloroethene	ug/kg	ND	61.5	51.7	84	40-140	
Trichloroethene	ug/kg	ND	61.5	47.7	78	40-153	
Vinyl chloride	ug/kg	ND	61.5	60.8	99	36-137	
Xylene (Total)	ug/kg	ND	185	131	71	50-143	
4-Bromofluorobenzene (S)	%				108	61-131	
Dibromofluoromethane (S)	%				104	80-124	
Toluene-d8 (S)	%				101	58-145	

Date: 03/02/2009 11:25 AM

REPORT OF LABORATORY ANALYSIS

Page 406 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALIFIERS

Project Michigan Meadows

Pace Project No.: 5023501

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobertzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

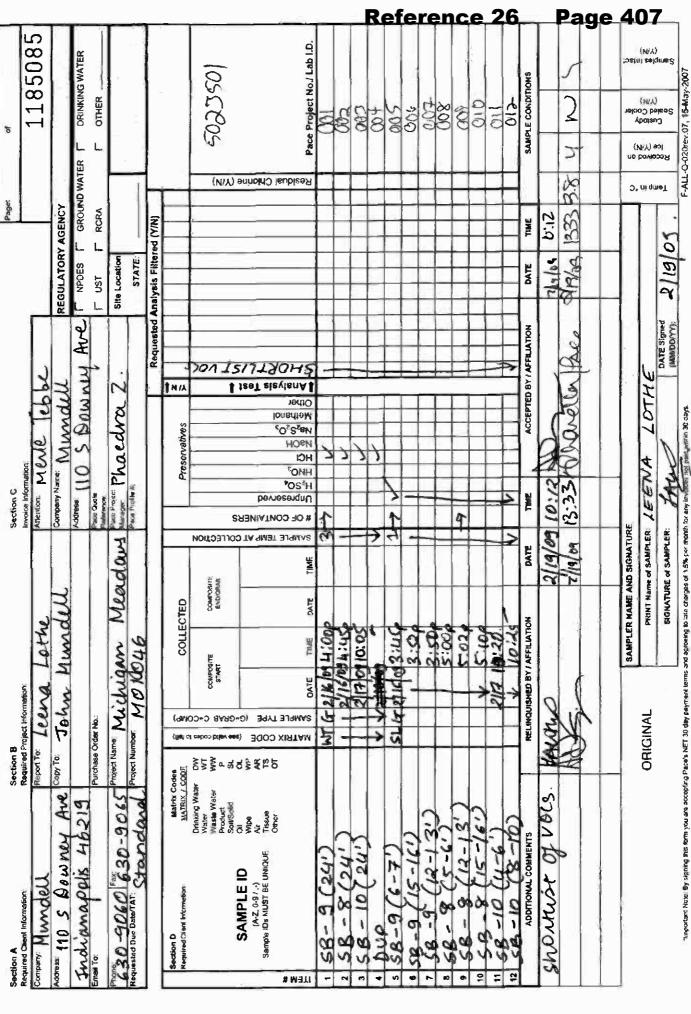
U - Indicates the compound was analyzed for, but not detected.

ANALYTE QUALIFIERS

E Analyte concentration exceeded the calibration range. The reported result is estimated.

LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

M0 Matrix spike recovery was outside laboratory control limits.


R2 RPD value was outside control limits due to matrix interference

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately

Pace Analytical

Important Noze. By Japang this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any link

CHAIN-OF-CUSTODY / Analytical Request Document The Chain of Custody is a LEGAL DOCUMENT. At relevant fields must be completed accurately.

Face Analytical

Section A Required Clerk Information:	Section B Required Project Information:	Section C Invaros information	9			
Company: Mundell	Reporto, Leena Come	Attention: MC	we test			1185086
Address:	Coop to John Mundell	Company Name		REGULATORY AGENCY		
		Address.		I NPDES I GROU	GROUND WATER	DRINKING WATER
Email To:	Purchase Order No.:	Proe Ouote Retemnoo:		F UST F RCRA	Ļ	OTHER
Phone. Fax.	Project Namo: Michigan 40	adon		Ste Location	L.	
Requested Due DaterTAT	1 3	Page Profile \$.		STATE:	-	
	1		Requested	Requested Analysis Fittered (Y/N)	_	
Section D Matrix Codes Required Cheft Information MATRIX / CODE	(3)49		Preservatives			
Drinking Water Waster Waster Waster Product Product SolitSolid	WW W W See Cooper In Coope		t			
Sample ID With Sample IDs Mither Sample IDs MUST BE UNIQUE These Ones	98, ₹8. P	RBNIATM			Onlorine	9023501
# MaTi	SJOWAR BY THE PARTY OF THE PART	H ³ 2O ⁴ Nublese # O E CO				Pace Project No./ Lab I.D.
1 58-10 (14-16")	-10/30	7			L	CIO 130
258-15-14-67					¥	COP OI 4
7 17-05	0.7					00 B 015
PI-01 51-85					+	900
SR=16 (8-10)	627					200
1191-	8.					019
12 74	2000					බ <u>ළ</u> ග්
10 SB-17 (0-12)	58.5				-	600
Trip Blank	2	2	3			09.3
42 ADDITIONAL COMMENTS	RELINQUISHED BY ! AFFELTATION	DATE	ACCEPTED BY JAFFILIATION	DATE TWE	SAJ	SAMPLE CONDITIONS
Shorthist VORS	(MOTH)	2/19/09 10:12		7/18/LA 16517		
	Mary		6 sk aller par	0 01/9/20 (333	78.	3
1 201-5	SAMPLER MANE	AND SIGNATURE			uo.	helo
1 55/50 / C	Challeman All Properties	PRINT Name of SAMPLER: LEENA	A LOTHE DATE Signed		rii qma/T bevisce/	Custody Seled Cor (VAY)
\ \frac{1}{2} \\ \fra		CAP!		7 200		

Reference 26 Page 409

Sample Condition Upon Receipt

Client Name: MONDELI Project # Courier: Fed Ex UPS USPS Delient Commercial Pace Other Tracking #: Sea's intact: ☐ ves 7d Other Packing Material: Bubble Wrap Bubble Bags None Thermometer Used Type of Ice: Wet Blue None Samples on ice, cooling process has begun Date and Initials of person examin Biological Tissue is Frozen: Yes No Cooler Temperature contents: O Temp should be above freezing to 6°C Comments: Chain of Custody Present: No DNA Ves ONo □N/A Chain of Custody Filled Out: Tes ONo □N/A Chain of Custody Relinquished: ATYES DNo DNA 4. Sampler Name & Signature on COC: □N/A 5. Samples Arrived within Hold Time: No DNo Short Hold Time Analysis (<72hr): ☐Yes ☐No DN/80 6. Rush Turn Around Time Requested: ☐Yes ☐No PINIA Sufficient Volume: ZIYes ONo □N/A □N/A 9. Correct Containers Used: EVes ONO Pes ONo □N/A -Pace Containers Used: es ONO ONA 10. Containers Intact: ☐Yes ☐No ANA Filtered volume received for Dissolved tests 11. ØVcs □No ON/A Sample Labels match COC: 12. -Includes date/time/ID/Analysis All containers needing preservation have been checked. 13. ☐Yes ☐No All containers needing preservation are found to be in ☐Yes ☐No compliance with EPA recommendation. Initial when Lot # of added Elves | No exceptions: VOA, coliform, TOC, Q&G, Wt-DRO (water) completed preservative Samples checked for dechlorination: Yes No No 14. □N/A Headspace in VOA Vials (>6mm): TYES ZING 15. Trip Blank Present: □No. QNA 16. Trip Blank Custody Seals Present 6s ONO □N/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Y / Person Contacted: Date/Time: Comments/ Resolution: Date: 2 Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Page 410 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

March 30, 2009

Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

RE: Project: M01046 / Michigan Plaza

Pace Project No.: 5024288

Dear Leena Lothe:

Enclosed are the analytical results for sample(s) received by the laboratory on March 17, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raedra Zuckowoth

Phaedra Zucksworth

phaedra.zucksworth@pacelabs.com Project Manager

Illinois/NELAC Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky Certification #: 0042 Ohio VAP: CL0065 Pennsylvania: 68-00791

West Virginia Certification #: 330

Enclosures

Page 411
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

SAMPLE SUMMARY

Project M01046 / Michigan Plaza

Lab ID	Sample ID	Matrix	Date Collected	Date Received
5024288001	MMW-1S	Water	03/16/09 11:50	03/17/09 09:35
5024288002	MMW-8S	Water	03/16/09 14:10	03/17/09 09:35
5024288003	MMW-9S	Water	03/16/09 11:28	03/17/09 09:35
5024288004	MMW-10S	Water	03/16/09 10:55	03/17/09 09:35
5024288005	MMW-11S	Water	03/16/09 13:38	03/17/09 09:35
5024288006	MMW-11D	Water	03/16/09 13:20	03/17/09 09:35
5024288007	MMW-12S	Water	03/16/09 12:22	03/17/09 09:35
5024288008	TRIP BLANK	Water	03/16/09 08:00	03/17/09 09:35
5024288009	MMW-13D	Water	03/16/09 12:55	03/17/09 09:35

Page 412
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

SAMPLE ANALYTE COUNT

Project M01046 / Michigan Plaza

Lab ID	Sample ID	Method	Analysts	Analytes Reported
5024288001	MMW-1S	ASTM D516-90,02	TPD	1
		EPA 353.2	DDM	1
		EPA 8260	AMV	20
		SM 2340B	FRW	1
5024288002	MMW-8S	EPA 8260	AMV	20
5024288003	MMW-9S	ASTM D516-90,02	TPD	1
		EPA 353.2	DDM	1
		EPA 8260	AMV	20
5024288004	MMW-10S	EPA 8260	AMV	20
5024288005	MMW-11S	ASTM D516-90,02	TPD	•
		EPA 353.2	DDM	•
		EPA 8260	AMV	20
5024288006	MMW-11D	EPA 8260	AMV	20
5024288007	MMW-12S	EPA 8260	AMV	20
5024288008	TRIP BLANK	EPA 8260	AMV	20
5024288009	MMW-13D	EPA 8260	AMV	20

Page 413
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-1S	Lab ID: 5024288001	Collected: 03/16/0	9 11:50	Received: 03/17/09 09:35	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
2340B Hardness, Total (Calc.)	Analytical Method: SM 2340	8				
Total Hardness	530 mg/L	1.0	1	03/26/09 11:	22	
8260 MSV	Analytical Method: EPA 826	0				
Benzene	ND ug/L	5.0	1	03/21/09 03:	30 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/21/09 03:	30 56-23-5	
Chloroform	ND ug/L	5.0	1	03/21/09 03:	30 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/21/09 03:	30 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/21/09 03:	30 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/21/09 03:	30 75-35-4	
is-1,2-Dichloroethene	ND ug/L	5.0	1	03/21/09 03:	30 156-59-2	
rans-1,2-Dichloroethene	ND ug/L	5.0	1	03/21/09 03:	30 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/21/09 03:	30 100-41-4	
Nethylene chloride	ND ug/L	5.0	1	03/21/09 03:	30 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/21/09 03:	30 91-20-3	
letrachloroethene	199 ug/L	5.0	1	03/21/09 03:	30 127-18-4	
l'oluene	ND ug/L	5.0	1	03/21/09 03:	30 108-88-3	
I,1,1-Trichloroethane	ND ug/L	5.0	1	03/21/09 03:	30 71-55-6	
[richloroethene	11.3 ug/L	5.0	1	03/21/09 03:	30 79-01-6	
/inyl chloride	ND ug/L	2.0	1	03/21/09 03:	30 75-01-4	
(ylene (Total)	ND ug/L	10.0	1	03/21/09 03:	30 1330-20-7	
Dibromofluoromethane (S)	107 %	80-123	1	03/21/09 03:	30 1868-53-7	
I-Bromofluorobenzene (S)	99 %	70-126	1	03/21/09 03:	30 460-00-4	
Foluene-d8 (S)	103 %	80-116	1	03/21/09 03:	30 2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.	.2				
Nitrogen, Nitrate	7.3 mg/L	0.10	1	03/18/09 10:	30	
ASTM D516-9002 Sulfate Water	Analytical Method: ASTM D	516-90,02				
Sulfate	67.6 mg/L	25.0	5	03/18/09 13:	37 14808-79-8	

Page 414
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-8S	Lab ID: 5024288002 C	Collected: 03/16/0	9 14:10	Received: 03/17/09 09:35 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qu
8260 MSV	Analytical Method: EPA 8260			
Benzene	ND ug/L	5.0	1	03/23/09 13:17 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/23/09 13:17 56-23-5
Chloroform	ND ug/L	5.0	1	03/23/09 13:17 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/23/09 13:17 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/23/09 13:17 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/23/09 13:17 75-35-4
cis-1,2-Dichloroethene	95.0 ug/L	5.0	1	03/23/09 13:17 156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/23/09 13:17 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/23/09 13:17 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/23/09 13:17 75-09-2
Naphthalene	ND ug/L	5.0	1	03/23/09 13:17 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/23/09 13:17 127-18-4
Toluene	ND ug/L	5.0	1	03/23/09 13:17 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/23/09 13:17 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/23/09 13:17 79-01-6
Vinyl chloride	348 ug/L	20.0	10	03/23/09 13:52 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/23/09 13:17 1330-20-7
Dibromofluoromethane (S)	107 %	80-123	1	03/23/09 13:17 1868-53-7
4-Bromofluorobenzene (S)	102 %	70-126	1	03/23/09 13:17 460-00-4
Toluene-d8 (S)	103 %	80-116	1	03/23/09 13:17 2037-26-5

Page 415 ce Analytical Services, Inc. 7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-9S	Lab ID: 5024288003	Collected: 03/16/0	9 11:28	Received: 03/17/	09 09:35 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA 826	0					
Benzene	ND ug/L	50.0	10	03/	23/09 14:26	71-43-2	1d,D4
Carbon tetrachloride	ND ug/L	50.0	10	03/	23/09 14:26	56-23-5	
Chloroform	ND ug/L	50.0	10	03/	23/09 14:26	67-66-3	
1,1-Dichloroethane	ND ug/L	50.0	10	03/	23/09 14:26	75-34-3	
1,2-Dichloroethane	ND ug/L	50.0	10	03/	23/09 14:26	107-06-2	
1,1-Dichloroethene	ND ug/L	50.0	10	03/	23/09 14:26	75-35-4	
cis-1,2-Dichloroethene	7490 ug/L	500	100	03/	23/09 15:00	156-59-2	
rans-1,2-Dichloroethene	73.8 ug/L	50.0	10	03/	23/09 14:26	156-60-5	
Ethylbenzene	ND ug/L	50.0	10	03/	23/09 14:26	100-41-4	
Methylene chloride	ND ug/L	50.0	10	03/	23/09 14:26	75-09-2	
Naphthalene	ND ug/L	50.0	10	03/	23/09 14:26	91-20-3	
Tetrachloroethene	ND ug/L	50.0	10	03/	23/09 14:26	127-18-4	2d
Toluene	ND ug/L	50.0	10	03/	23/09 14:26	108-88-3	
1,1,1-Trichloroethane	ND ug/L	50.0	10	03/	23/09 14:26	71-55-6	
Trichloroethene	ND ug/L	50.0	10	03/	23/09 14:26	79-01-6	1d
Vinyl chloride	1800 ug/L	20.0	10	03/	23/09 14:26	75-01-4	
Xylene (Total)	ND ug/L	100	10	03/	23/09 14:26	1330-20-7	
Dibromofluoromethane (S)	107 %	80-123	10	03/	23/09 14:26	1868-53-7	
4-Bromofluorobenzene (S)	101 %	70-126	10	03/	23/09 14:26	460-00-4	
Toluene-d8 (S)	102 %	80-116	10	03/	23/09 14:26	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353	.2					
Nitrogen, Nitrate	ND mg/L	0.10	1	03/	18/09 10:29		
ASTM D516-9002 Sulfate Water	Analytical Method: ASTM D	516-90,02					
Sulfate	74.2 mg/L	25.0	5	03/	18/09 13:37	14808-79-8	

Page 416
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-10S	Lab ID: 5024288004	Collected: 03/16/0	9 10:55	Received:	03/17/09 09:35	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical Method: EPA 8	260					
Benzene	ND ug/L	5.0	1		03/21/09 04:3	8 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1		03/21/09 04:3	8 56-23-5	
Chloroform	ND ug/L	5.0	1		03/21/09 04:3	8 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1		03/21/09 04:3	8 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1		03/21/09 04:3	8 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1		03/21/09 04:3	8 75-35-4	
cis-1,2-Dichloroethene	302 ug/L	5.0	1		03/21/09 04:3	8 156-59-2	E
trans-1,2-Dichloroethene	ND ug/L	5.0	1		03/21/09 04:3	8 156-60-5	
Ethylbenzene	ND ug/L	5.0	1		03/21/09 04:3	8 100-41-4	
Methylene chloride	ND ug/L	5.0	1		03/21/09 04:3	8 75-09-2	
Naphthalene	ND ug/L	5.0	1		03/21/09 04:3	8 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1		03/21/09 04:3	8 127-18-4	
Toluene	ND ug/L	5.0	1		03/21/09 04:3	8 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1		03/21/09 04:3	8 71-55-6	
Trichloroethene	ND ug/L	5.0	1		03/21/09 04:3	8 79-01-6	
Vinyl chloride	114 ug/L	2.0	1		03/21/09 04:3	8 75-01-4	
Xylene (Total)	ND ug/L	10.0	1		03/21/09 04:3	8 1330-20-7	
Dibromofluoromethane (S)	112 %	80-123	1		03/21/09 04:3	8 1868-53-7	
4-Bromofluorobenzene (S)	103 %	70-126	1		03/21/09 04:3	8 460-00-4	
Toluene-d8 (S)	103 %	80-116	1		03/21/09 04:3	8 2037-26-5	

Page 417
Pace Analytical Services, Inc.
7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-11S	Lab ID: 5024288005	Collected: 03/16/0	9 13:38	Received: 03/17/09 09:35 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
260 MSV	Analytical Method: EPA	3260			
lenzene	ND ug/L	5.0	1	03/23/09 15:34 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/23/09 15:34 56-23-5	
Chloroform	ND ug/L	5.0	1	03/23/09 15:34 67-66-3	
,1-Dichloroethane	ND ug/L	5.0	1	03/23/09 15:34 75-34-3	
,2-Dichloroethane	ND ug/L	5.0	1	03/23/09 15:34 107-06-2	
,1-Dichloroethene	ND ug/L	5.0	1	03/23/09 15:34 75-35-4	
is-1,2-Dichloroethene	37.6 ug/L	5.0	1	03/23/09 15:34 156-59-2	
rans-1,2-Dichloroethene	ND ug/L	5.0	1	03/23/09 15:34 156-60-5	
thylbenzene	ND ug/L	5.0	1	03/23/09 15:34 100-41-4	
flethylene chloride	ND ug/L	5.0	1	03/23/09 15:34 75-09-2	
laphthalene	ND ug/L	5.0	1	03/23/09 15:34 91-20-3	
etrachloroethene	ND ug/L	5.0	1	03/23/09 15:34 127-18-4	
oluene	ND ug/L	5.0	1	03/23/09 15:34 108-88-3	
,1,1-Trichloroethane	ND ug/L	5.0	1	03/23/09 15:34 71-55-6	
richloroethene	ND ug/L	5.0	1	03/23/09 15:34 79-01-6	
/inyl chloride	ND ug/L	2.0	1	03/23/09 15:34 75-01-4	
(ylene (Total)	ND ug/L	10.0	1	03/23/09 15:34 1330-20-7	
Dibromofluoromethane (S)	114 %	80-123	1	03/23/09 15:34 1868-53-7	
-Bromofluorobenzene (S)	101 %	70-126	1	03/23/09 15:34 460-00-4	
oluene-d8 (S)	102 %	80-116	1	03/23/09 15:34 2037-26-5	
53.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
litrogen, Nitrate	5.6 mg/L	0.10	1	03/18/09 10:31	
ASTM D516-9002 Sulfate Water	Analytical Method: ASTN	1 D516-90,02			
Sulfate	187 mg/L	50.0	10	03/18/09 13:37 14808-79-8	

Page 418
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-11D	Lab ID: 5024288006	Collected: 03/16/09	13:20	Received: 03/17/09 09:35 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qual
8260 MSV	Analytical Method: EPA 826	i0		
Benzene	ND ug/L	5.0	1	03/26/09 18:58 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/26/09 18:58 56-23-5
Chloroform	ND ug/L	5.0	1	03/26/09 18:58 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/26/09 18:58 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/26/09 18:58 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/26/09 18:58 75-35-4
cis-1,2-Dichloroethene	288 ug/L	50.0	10	03/26/09 19:32 156-59-2
trans-1,2-Dichloroethene	20.1 ug/L	5.0	1	03/26/09 18:58 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/26/09 18:58 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/26/09 18:58 75-09-2
Naphthalene	ND ug/L	5.0	1	03/26/09 18:58 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/26/09 18:58 127-18-4
Toluene	ND ug/L	5.0	1	03/26/09 18:58 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/26/09 18:58 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/26/09 18:58 79-01-6
Vinyl chloride	2.2 ug/L	2.0	1	03/26/09 18:58 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/26/09 18:58 1330-20-7
Dibromofluoromethane (S)	100 %	80-123	1	03/26/09 18:58 1868-53-7
4-Bromofluorobenzene (S)	102 %	70-126	1	03/26/09 18:58 460-00-4
Toluene-d8 (S)	102 %	80-116	1	03/26/09 18:58 2037-26-5

Page 419 e Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Pace Project No.: 5024288

Sample: MMW-12S	Lab ID: 5024288007	Collected: 03/16/0	9 12:22	Received: 03/17/09 09:35 N	latrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qua
8260 MSV	Analytical Method: EPA 82	60			
Benzene	ND ug/L	5.0	1	03/23/09 17:15	71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/23/09 17:15	56-23-5
Chloroform	ND ug/L	5.0	1	03/23/09 17:15	67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/23/09 17:15	75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/23/09 17:15	107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/23/09 17:15	75-35-4
cis-1,2-Dichloroethene	ND ug/L	5.0	1	03/23/09 17:15	156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/23/09 17:15	156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/23/09 17:15	100-41-4
Methylene chloride	ND ug/L	5.0	1	03/23/09 17:15	75-09-2
Naphthalene	ND ug/L	5.0	1	03/23/09 17:15	91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/23/09 17:15	127-18-4
Toluene	ND ug/L	5.0	1	03/23/09 17:15	108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/23/09 17:15	71-55-6
Trichloroethene	ND ug/L	5.0	1	03/23/09 17:15	79-01-6
Vinyl chloride	ND ug/L	2.0	1	03/23/09 17:15	75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/23/09 17:15	1330-20-7
Dibromofluoromethane (S)	116 %	80-123	1	03/23/09 17:15	1868-53-7
4-Bromofluorobenzene (S)	100 %	70-126	1	03/23/09 17:15	460-00-4
Toluene-d8 (S)	100 %	80-116	1	03/23/09 17:15	2037-26-5

Date: 03/30/2009 03:50 PM

Page 420 Page Analytical Services, Inc

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Pace Project No.: 5024288

Sample: TRIPBLANK	Lab ID: 5024288008	Collected: 03/16/0	9 08:00	Received: 03/17/09 09:35 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qua
8260 MSV	Analytical Method: EPA 82	60			
Benzene	ND ug/L	5.0	1	03/21/09 04:04 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/21/09 04:04 56-23-5	
Chloroform	ND ug/L	5.0	1	03/21/09 04:04 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/21/09 04:04 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/21/09 04:04 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/21/09 04:04 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	5.0	1	03/21/09 04:04 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/21/09 04:04 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/21/09 04:04 100-41-4	
Methylene chloride	ND ug/L	5.0	1	03/21/09 04:04 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/21/09 04:04 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	03/21/09 04:04 127-18-4	
Toluene	ND ug/L	5.0	1	03/21/09 04:04 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/21/09 04:04 71-55-6	
Trichloroethene	ND ug/L	5.0	1	03/21/09 04:04 79-01-6	
Vinyl chloride	ND ug/L	2.0	1	03/21/09 04:04 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	03/21/09 04:04 1330-20-7	
Dibromofluoromethane (S)	112 %	80-123	1	03/21/09 04:04 1868-53-7	
4-Bromofluorobenzene (S)	100 %	70-126	1	03/21/09 04:04 460-00-4	
Toluene-d8 (S)	101 %	80-116	1	03/21/09 04:04 2037-26-5	

Date: 03/30/2009 03:50 PM

REPORT OF LABORATORY ANALYSIS

Page 421
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-13D	Lab ID: 5024288009	Collected: 03/16/0	9 12:55	Received: 03/17/09 09:35 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qual
8260 MSV	Analytical Method: EPA 82	60		
Benzene	ND ug/L	5.0	1	03/23/09 17:49 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/23/09 17:49 56-23-5
Chloroform	ND ug/L	5.0	1	03/23/09 17:49 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/23/09 17:49 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/23/09 17:49 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/23/09 17:49 75-35-4
cis-1,2-Dichloroethene	699 ug/L	50.0	10	03/24/09 18:29 156-59-2
trans-1,2-Dichloroethene	6.6 ug/L	5.0	1	03/23/09 17:49 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/23/09 17:49 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/23/09 17:49 75-09-2
Naphthalene	ND ug/L	5.0	1	03/23/09 17:49 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/23/09 17:49 127-18-4
Toluene	ND ug/L	5.0	1	03/23/09 17:49 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/23/09 17:49 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/23/09 17:49 79-01-6
Vinyl chloride	25.4 ug/L	2.0	1	03/23/09 17:49 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/23/09 17:49 1330-20-7
Dibromofluoromethane (S)	115 %	80-123	1	03/23/09 17:49 1868-53-7
4-Bromofluorobenzene (S)	98 %	70-126	1	03/23/09 17:49 460-00-4
Toluene-d8 (S)	101 %	80-116	1	03/23/09 17:49 2037-26-5

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project

M01046 / Michigan Plaza

Pace Project No.:

5024288

QC Batch:

WETA/3375

Analysis Method:

EPA 353.2

QC Batch Method:

EPA 353.2

Analysis Description:

353.2 Nitrate + Nitrite, Unpres.

Associated Lab Samples:

5024288001, 5024288003, 5024288005

Units

Units

Matrix: Water

METHOD BLANK: 275809 Associated Lab Samples:

5024288001, 5024288003, 5024288005

Reporting

Blank Result

Limit

Analyzed

Qualifiers

Nitrogen, Nitrate

mg/L

ND

0.10 03/18/09 10:26

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

mg/L

Spike

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Nitrogen, Nitrate

Nitrogen, Nitrate

mg/L

Canc.

90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 275811

MS

MSD

Spike Conc.

Spike Conc.

MS

275812

0.93

MSD Result MS MSD % Rec

Max

RPD Qual

5024311001 Parameter Units Result

0.71

Result

1.6

1.7

% Rec % Rec Limits 90-110 RPD

8. 20

Date: 03/30/2009 03:50 PM

Page 423 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024288

QC Batch: WETA/3377 Analysis Method: ASTM D516-90,02

QC Batch Method: ASTM D516-90,02 Analysis Description: ASTM D516-9002 Sulfate Water

Associated Lab Samples: 5024288001, 5024288003, 5024288005

METHOD BLANK: 276172 Matrix: Water

Associated Lab Samples: 5024288001, 5024288003, 5024288005

Blank Reporting ter Units Result Limit

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 5.0 03/18/09 13:37

LABORATORY CONTROL SAMPLE: 276173

Parameter Units Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers

Sulfate mg/L 20 18.3 92 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 276174

MS MSD

5024125001 MS MSD MS MSD % Rec Spike Spike Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate mg/L 72.5 100 100 175 181 102 109 75-125 3 20

276175

Page 424 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

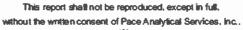
Pace Project No.: 5024288

QC Batch: MSV/15118 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024288001, 5024288004, 5024288008

METHOD BLANK: 278236 Matrix: Water

Associated Lab Samples: 5024288001, 5024288004, 5024288008


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND .	5.0	03/20/09 19:36	
1,1-Dichloroethane	ug/L	ND	5.0	03/20/09 19:36	
1,1-Dichloroethene	ug/L	ND	5.0	03/20/09 19:36	
1,2-Dichloroethane	ug/L	ND	5.0	03/20/09 19:36	
Benzene	ug/L	ND	5.0	03/20/09 19:36	
Carbon tetrachloride	ug/L	ND	5.0	03/20/09 19:36	
Chloroform	ug/L	ND	5.0	03/20/09 19:36	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/20/09 19:36	
Ethylbenzene	ug/L	ND	5.0	03/20/09 19:36	
Methylene chloride	ug/L	ND	5.0	03/20/09 19:36	
Naphthalene	ug/L	ND	5.0	03/20/09 19:36	
Tetrachloroethene	ug/L	ND	5.0	03/20/09 19:36	
Toluene	ug/L	ND	5.0	03/20/09 19:36	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/20/09 19:36	
Trichloroethene	ug/L	ND	5.0	03/20/09 19:36	
Vinyl chloride	ug/L	ND	2.0	03/20/09 19:36	
Xylene (Total)	ug/L	ND	10.0	03/20/09 19:36	
4-Bromofluorobenzene (S)	%	101	70-126	03/20/09 19:36	
Dibromofluoromethane (S)	%	109	80-123	03/20/09 19:36	
Toluene-d8 (S)	%	101	80-116	03/20/09 19:36	

LABORATORY CONTROL SAMPLE:	278237					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	47.1	94	69-136	
1,1-Dichloroethane	ug/L	50	48.9	98	67-133	
1,1-Dichloroethene	ug/L	50	42.4	85	63-128	
1,2-Dichloroethane	ug/L	50	54.7	109	69-139	
Benzene	ug/L	50	47.7	95	78-127	
Carbon tetrachloride	ug/L	50	51.5	103	62-143	
Chloroform	ug/L	50	47.0	94	74-131	
cis-1,2-Dichloroethene	ug/L	50	51.0	102	74-128	
Ethylbenzene	ug/L	50	47.6	95	81-126	
Methylene chloride	ug/L	50	52.5	105	32-164	
Naphthalene	ug/L	50	38.8	78	61-135	
Tetrachloroethene	ug/L	50	37.8	76	60-119	
Toluene	ug/L	50	48.8	98	75-129	
trans-1,2-Dichloroethene	ug/L	50	52.1	104	71-126	
Trichloroethene	ug/L	50	50.1	100	74-130	
Vinyl chloride	ug/L	50	44.5	89	55-141	
Xylene (Total)	ug/L	150	147	98	76-132	

Date: 03/30/2009 03:50 PM

REPORT OF LABORATORY ANALYSIS

Page 15 of 19

Page 425
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024288

LABORATORY CONTROL SAMPLE: 278237

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			99	70-126	
Dibromofluoromethane (S)	%			100	80-123	
Toluene-d8 (S)	%			99	80-116	

MATRIX SPIKE SAMPLE:	278238						
		5024288004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	50	46.2	92	64-143	
1,1-Dichloroethane	ug/L	ND	50	45.8	92	68-139	
1,1-Dichloroethene	ug/L	ND	50	44.6	89	55-140	
1,2-Dichloroethane	ug/L	ND	50	50.2	100	63-148	
Benzene	ug/L	ND	50	44.1	88	63-141	
Carbon tetrachloride	ug/L	ND	50	47.4	95	54-145	
Chloroform	ug/L	ND	50	43.6	87	67-134	
cis-1,2-Dichloroethene	ug/L	302	50	313	22	65-132	
Ethylbenzene	ug/L	ND	50	42.8	86	44-151	
Methylene chloride	ug/L	ND	50	50.3	101	46-154	
Naphthalene	ug/L	ND	50	25.1	50	44-138	
Tetrachloroethene	ug/L	ND	50	36.3	66	25-146	
Toluene	ug/L	ND	50	44.8	90	59-142	
trans-1,2-Dichloroethene	ug/L	ND	50	58.3	111	60-137	
Trichloroethene	ug/L	ND	50	47.7	95	61-137	
Vinyl chloride	ug/L	114	50	158	87	51-144	
Xylene (Total)	ug/L	ND	150	131	87	44-152	
4-Bromofluorobenzene (S)	%				98	70-126	
Dibromofluoromethane (S)	%				102	80-123	
Toluene-d8 (S)	%				99	80-116	

Date: 03/30/2009 03:50 PM

Page 426 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024288

QC Batch: MSV/15138 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024288002, 5024288003, 5024288005, 5024288006, 5024288007, 5024288009

METHOD BLANK: 278658 Matrix: Water

Associated Lab Samples: 5024288002, 5024288003, 5024288005, 5024288007, 5024288009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	5.0	03/23/09 12:43	
1,1-Dichloroethane	ug/L	ND	5.0	03/23/09 12:43	
1,1-Dichloroethene	ug/L	ND	5.0	03/23/09 12:43	
1,2-Dichloroethane	ug/L	ND	5.0	03/23/09 12:43	
Benzene	ug/L	ND	5.0	03/23/09 12:43	
Carbon tetrachloride	ug/L	ND	5.0	03/23/09 12:43	
Chloroform	ug/L	ND	5.0	03/23/09 12:43	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/23/09 12:43	
Ethylbenzene	ug/L	ND	5.0	03/23/09 12:43	
Methylene chloride	ug/L	ND	5.0	03/23/09 12:43	
Naphthalene	ug/L	ND	5.0	03/23/09 12:43	
Tetrachloroethene	ug/L	ND	5.0	03/23/09 12:43	
Toluene	ug/L	ND	5.0	03/23/09 12:43	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/23/09 12:43	
Trichloroethene	ug/L	ND	5.0	03/23/09 12:43	
Vinyl chloride	ug/L	ND	2.0	03/23/09 12:43	
Xylene (Total)	ug/L	ND	10.0	03/23/09 12:43	
4-Bromofluorobenzene (S)	%	102	70-126	03/23/09 12:43	
Dibromofluoromethane (S)	%	109	80-123	03/23/09 12:43	
Toluene-d8 (S)	%	103	80-116	03/23/09 12:43	

LABORATORY CONTROL SAMPLE:	278659					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	52.0	104	69-136	
1,1-Dichloroethane	ug/L	50	52.9	106	67-133	
1,1-Dichloroethene	ug/L	50	50.7	101	63-128	
1,2-Dichloroethane	ug/L	50	58.0	116	69-139	
Benzene	ug/L	50	51.2	102	78-127	
Carbon tetrachloride	ug/L	50	56.3	113	62-143	
Chloroform	ug/L	50	50.2	100	74-131	
cis-1,2-Dichloroethene	ug/L	50	54.0	108	74-128	
Ethylbenzene	ug/L	50	49.8	100	81-126	
Methylene chloride	ug/L	50	57.7	115	32-164	
Naphthalene	ug/L	50	36.8	74	61-135	
Tetrachloroethene	ug/L	50	40.2	80	60-119	
Toluene	ug/L	50	52.0	104	75-129	
trans-1,2-Dichloroethene	ug/L	50	59.6	119	71-126	
Trichloroethene	ug/L	50	53.8	108	74-130	
Vinyl chloride	ug/L	50	61.6	123	55-141	
Xylene (Total)	ug/L	150	152	101	76-132	

Date: 03/30/2009 03:50 PM REPORT OF LABORATORY ANALYSIS

Page 17 of 19

Page 427
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024288

LABORATORY CONTROL SAMPLE: 278659

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			100	70-126	
Dibromofluoromethane (S)	%			101	80-123	
Toluene-d8 (S)	%			100	80-116	

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 27866)		278661							
	50	24380006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,1,1-Trichloroethane	ug/L	ND	50	50	54.3	57.1	109	114	64-143	5	20	
1,1-Dichloroethane	ug/L	ND	50	50	53.3	56.1	107	112	68-139	5	20	
1,1-Dichloroethene	ug/L	ND	50	50	55.4	58.7	111	117	55-140	6	20	
1,2-Dichloroethane	ug/L	ND	50	50	57.7	59.0	115	118	63-148	2	20	
Benzene	ug/L	ND	50	50	51.4	53.2	103	106	63-141	3	20	
Carbon tetrachloride	ug/L	ND	50	50	57.8	60.5	116	121	54-145	4	20	
Chloroform	ug/L	ND	50	50	51.7	53.0	103	106	67-134	3	20	
cis-1,2-Dichloroethene	ug/L	ND	50	50	55.5	58.1	111	116	65-132	4	20	
Ethylbenzene	ug/L	ND	50	50	49.8	51.0	97	100	44-151	2	20	
Methylene chloride	ug/L	ND	50	50	60.3	61.0	121	122	46-154	1	20	
Naphthalene	ug/L	ND	50	50	25.2	26.0	50	52	44-138	3	20	
Tetrachloroethene	ug/L	ND	50	50	40.3	42.5	75	79	25-146	5	20	
Toluene	ug/L	ND	50	50	51.1	53.2	102	106	59-142	4	20	
trans-1,2-Dichloroethene	ug/L	ND	50	50	63.8	65.1	128	130	60-137	2	20	
Trichloroethene	ug/L	ND	50	50	54.9	56.0	110	112	61-137	2	20	
Vinyl chloride	ug/L	ND	50	50	68.6	72.5	137	145	51-144	6	20	
Xylene (Total)	ug/L	ND	150	150	152	156	101	104	44-152	3	20	
4-Bromofluorobenzene (S)	%						102	98	70-126		20	
Dibromofluoromethane (S)	%						106	104	80-123		20	
Toluene-d8 (S)	%						99	99	80-116		20	

Date: 03/30/2009 03:50 PM

REPORT OF LABORATORY ANALYSIS

Page 428 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALIFIERS

Project M01046 / Michigan Plaza

Pace Project No.: 5024288

DEFINITIONS

DF - Dilution Factor, If reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobertzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

ANALYTE QUALIFIERS

1d evaluated to 5 ug/L per MDL AMV 3-24-09
2d evaluated to 5.8 ug/L per MDL AMV 3-24-09

D4 Sample was diluted due to the presence of high levels of target analytes.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

Date: 03/30/2009 03:50 PM

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Section C

1247703 Pace Project No./ Lab I.D. DRINKING WATER Q. 5024288 SAMPLE CONDITIONS OTHER per 009 200 000 003 8 800 600 000 00 GROUND WATER Residual Chlorine (Y/N) REGULATORY AGENCY RCRA IN Requested Analysis Filtered (Y/N) F STATE NPDES Site Location DATE UST States States States 130.2 2.525 Anku 2.525. Anku 5.00 Sullete 353. Y ACCEPTED BY / AFFILIATION **X** × × ×× Analysis Test N/A Other Methanol OSSEN Preservatives HOEN HCI HINO³ SHE 1 1 nvoice information H⁵2O⁵ Smpany Name Anager ace Profie #: deference: ace Quote W W W Z # OF CONTAINERS 1 SAMPLE TEMP AT COLLECTION 43z:11 45:11 bajays 10:55A DATE 48.0 **cas**: do7: E S COMPOSITE DATE COLLECTED RELINQUISHED BY / AFFILIATION Project Name: Michaes Dieze TIME START DATE Mesery REPORT OF LESSE LOTE Section B Required Project Information. (GEGRAB CECOMP) BULL BILDWIVE 0 urchase Order No. 5 Project Number. MATRIX CODE Copy To: STANOR OF STO Matrix Codes Driving Water Water Waste Wister Product Sod'Sold Oil Wise An Trave Other 317-430-9045 Company & Associates INC HOS. Downey eve ADDITIONAL COMMENTS SXM 2 IN 46219 (A-Z, 0-9 / ...) Sample IOs MUST BE UNIQUE SAMPLE ID Amm - 13 D MMW- 125 MMM- ILD Phone:
30 - 630 - 90 L. O. Requested Due Dato/TAT: equired Clent Information Section A Required Clert Information: AM. 105 MANAI-85 AMM - 95 MALLI- 115 MMW- 15 Irp Blook Tudok Email To Section D 40 • 2 = # WELL

Page 429 Reference 26 (NVA) F-ALL-O-020rev.07, 15-May-2007 (NVA) Sealed Coole Custody ICE (XYM) Received on 33.00 Of ni qme? 9:35 3/1/05 CMM/DOTY: 3/16/09 ceid within 30 days July of 3/17/099.36 10.C.C.1.
Re.Col. 3 T 8

Supring the form you are accepting Face's NET 30 day payment terms and agreeing to late changes of 1.5% per month for SAMPLER NAME AND SKGNATURE PRINT Name of SAMPLER SIGNATURE OF SAMPLER: Mood / Mundelle ORIGINAL 15+ 10 JOC 'S WE 31/31 0ENS Kar othera

3

Reference 26 Page 430

Sample Condition Upon Receipt

<i>y</i> ,		Topon Receipt	
Pace Analytical Client Name	: Mundel	1 & deso	Project # 5024a88
f.		7.0	
Courier: Fed Ex UPS USPS Cik	ent Commercial	Pace Other	EARLY DE LEGISLATION
Tracking #:			Company of the compan
Custody Seal on Cooler/Box Present: yes	no Seal	s intact: 🔲 yes 🔎	rno en
Packing Material: Bubble Wrap, Bubble	Bags None	Ø Other	
Thermometer Used 123456	Type of Ice: We	Blue None	Samples on ice, cooling process has begun
Cooler Temperature 2.3'	Blological Tissue	Is Frozen: Yes No	Date and Initials of person examining contents: 3/2/01
Temp should be above freezing to 6°C		Comments:	
Chain of Custody Present:	DYGG DNG DN/A	1,	
Chain of Custody Filled Out:	Dyes ONO ON/A		
Chain of Custody Relinquished:	ZYes DNo DNA	3.	
Sampler Name & Signature on COC:	☐Yes ☐No ☐N/A	4.	
Samples Arrived within Hold Time:	PY€4 □NO □N/A	5.	
Short Hold Time Analysis (<72hr):	EYes ONO ON/A	6.	
Rush Turn Around Time Requested:	CYes ONo DIKUA	7.	
Sufficient Volume:	Tes ONo ON/A	8.	
Correct Containers Used:	No ONO ONA	9.	
-Pace Containers Used:	DYes DNo DN/A		
Containers Intact:	ØYes □No □N/A	10.	· _
Filtered volume received for Dissolved tests	□Yes □No ØK/A	11.	
Sample Labels match COC:	JPYes □No □NVA	12.	
-Includes date/time/ID/Analysis Matrix:	Noter		
All containers needing preservation have been checked.	ØYes □No □N/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	ØYes □No □N/A		
exceptions: VOA, colliform, TOC, OSG, WI-DRO (water)	□Yes □No	Initial when completed	Lot # of added
Samples checked for dechlorination:	□Yes □No □KVA		
Headspace in VOA Viais (>6mm);	ZY ONO ONYA	T .	head Space.
Trip Blank Present:	ZIVes DNo DN/A	T .	7400
Trip Blank Custody Seals Present	ØYes □No □NVA		
Pace Trip Blank Lot # (If purchased):	_		
Client Notification/ Resolution:			Sold Pata Specified W. J. M.
Person Contacted:	Date/	Time [,]	Field Data Required? Y / N
Comments/ Resolution:			
Project Manager Review:			Date: 3/17/09

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Page 431 Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

March 30, 2009

Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

RE: Project: M01046 / Michigan Plaza

Pace Project No.: 5024368

Dear Leena Lothe:

Enclosed are the analytical results for sample(s) received by the laboratory on March 18, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raedra Zuckowoth

Phaedra Zucksworth

phaedra.zucksworth@pacelabs.com Project Manager

Illinois/NELAC Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky Certification #: 0042 Ohio VAP: CL0065 Pennsylvania: 68-00791

West Virginia Certification #: 330

Enclosures

Page 432
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

SAMPLE SUMMARY

Project M01046 / Michigan Plaza

Lab ID	Sample ID	Matrix	Date Collected	Date Received
5024368001	MW-168D	Water	03/17/09 10:00	03/18/09 11:10
5024368002	MMW-P-09S	Water	03/17/09 10:40	03/18/09 11:10
5024368003	MMW-P-09D	Water	03/17/09 11:05	03/18/09 11:10
5024368004	MMW-C-02	Water	03/17/09 11:25	03/18/09 11:10
5024368005	MMW-C-01	Water	03/17/09 11:45	03/18/09 11:10
5024368006	MMW-P-02	Water	03/17/09 12:15	03/18/09 11:10
5024368007	MW-P-03S	Water	03/17/09 12:35	03/18/09 11:10
5024368008	MW-P-03D	Water	03/17/09 12:45	03/18/09 11:10
024368009	MW-P-05	Water	03/17/09 13:20	03/18/09 11:10
024368010	MW-P-06	Water	03/17/09 13:40	03/18/09 11:10
024368011	MW-P-10S	Water	03/17/09 14:10	03/18/09 11:10
024368012	MW-P-10D	Water	03/17/09 14:30	03/18/09 11:10
024368013	MW-P-08	Water	03/17/09 15:00	03/18/09 11:10
5024368014	MW-P-07	Water	03/17/09 15:20	03/18/09 11:10
6024368015	MW-P-01	Water	03/17/09 15:50	03/18/09 11:10
024368016	DUP 1	Water	03/17/09 08:00	03/18/09 11:10
024368017	DUP 2	Water	03/17/09 08:00	03/18/09 11:10
5024368018	TB	Water	03/17/09 08:00	03/18/09 11:10

Page 433
Pace Analytical Services, Inc.
7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

SAMPLE ANALYTE COUNT

Project

M01046 / Michigan Plaza

Pace Project No.: 5

5024368

Lab ID	Sample ID	Method	Analysts	Analytes Reported
5024368001	MW-168D	ASTM D516-90,02	TPD	1
		EPA 353.2	CLS	1
		EPA 8260	SLB	20
5024368002	MMW-P-09S	ASTM D516-90,02	TPD	1
		EPA 353.2	CLS	1
		EPA 8260	SLB	20
5024368003	MMW-P-09D	EPA 8260	SLB	20
5024368004	MMW-C-02	EPA 8260	SLB	20
5024368005	MMW-C-01	EPA 8260	SLB	19
5024368006	MMW-P-02	EPA 8260	SLB	20
5024368007	MW-P-03S	ASTM D516-90,02	TPD	1
		EPA 353.2	CLS	1
		EPA 8260	SLB	20
		SM 2340B	FRW	1
5024368008	MW-P-03D	ASTM D516-90.02	TPD	1
		EPA 353.2	CLS	1
		EPA 8260	SLB	20
5024368009	MW-P-05	EPA 8260	SLB	20
024368010	MW-P-06	ASTM D516-90.02	TPD	1
		EPA 353.2	CLS	1
		EPA 8260	SLB	20
5024368011	MW-P-10S	ASTM D516-90,02	TPD	1
		EPA 353.2	CLS	1
		EPA 8260	SLB	20
5024368012	MW-P-10D	EPA 8260	SLB	20
6024368013	MW-P-08	ASTM D516-90,02	TPD	1
		EPA 353.2	CLS	1
		EPA 8260	SLB	20
		SM 2340B	FRW	1
5024368014	MW-P-07	EPA 8260	SLB	20
024368015	MW-P-01	EPA 8260	AMV	20
5024368016	DUP 1	EPA 8260	AMV	20
024368017	DUP 2	EPA 8260	AMV	20
5024368018	тв	EPA 8260	AMV	20

Page 434 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

Sample: MW-1680	Lab ID: 5024368001	Collected: 03/17/0	9 10:00	Received: 03/18/09 11:10 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qua
260 MSV	Analytical Method: EPA	8260			
Benzene	ND ug/L	5.0	1	03/24/09 03:53 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 03:53 56-23-5	
Chloroform	ND ug/L	5.0	1	03/24/09 03:53 67-66-3	
,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 03:53 75-34-3	
,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 03:53 107-06-2	
,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 03:53 75-35-4	
is-1,2-Dichloroethene	16.5 ug/L	5.0	1	03/24/09 03:53 156-59-2	
rans-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 03:53 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/24/09 03:53 100-41-4	
Nethylene chloride	ND ug/L	5.0	1	03/24/09 03:53 75-09-2	
laphthalene	6.5 ug/L	5.0	1	03/24/09 03:53 91-20-3	
etrachloroethene	ND ug/L	5.0	1	03/24/09 03:53 127-18-4	
Toluene	ND ug/L	5.0	1	03/24/09 03:53 108-88-3	
,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 03:53 71-55-6	
richloroethene	ND ug/L	5.0	1	03/24/09 03:53 79-01-6	
/inyl chloride	ND ug/L	2.0	1	03/24/09 03:53 75-01-4	
(ylene (Total)	ND ug/L	10.0	1	03/24/09 03:53 1330-20-7	
Dibromofluoromethane (S)	110 %	80-123	1	03/24/09 03:53 1868-53-7	
-Bromofluorobenzene (S)	100 %	70-126	1	03/24/09 03:53 460-00-4	
oluene-d8 (S)	102 %	80-116	1	03/24/09 03:53 2037-26-5	
53.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
Nitrogen, Nitrate	ND mg/L	0.10	1	03/18/09 17:46	
ASTM D516-9002 Sulfate Water	Analytical Method: ASTI	M D516-90,02			
Sulfate	43.0 mg/L	12.5	2.5	03/20/09 13:30 14808-79-8	

Date: 03/30/2009 03:52 PM

Page 435 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

Sample: MMW-P-09S	Lab ID: 5024368002	Collected: 03/17/0	9 10:40	Received: 03/18/09 11:10 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. C	Jual
260 MSV	Analytical Method: EPA	8260			
lenzene	ND ug/L	5.0	1	03/24/09 04:30 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 04:30 56-23-5	
Chloroform	ND ug/L	5.0	1	03/24/09 04:30 67-66-3	
,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 04:30 75-34-3	
,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 04:30 107-06-2	
,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 04:30 75-35-4	
is-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 04:30 156-59-2	
rans-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 04:30 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/24/09 04:30 100-41-4	
fethylene chloride	ND ug/L	5.0	1	03/24/09 04:30 75-09-2	
laphthalene	ND ug/L	5.0	1	03/24/09 04:30 91-20-3	
etrachloroethene	ND ug/L	5.0	1	03/24/09 04:30 127-18-4	
'oluene	ND ug/L	5.0	1	03/24/09 04:30 108-88-3	
,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 04:30 71-55-6	
richloroethene	ND ug/L	5.0	1	03/24/09 04:30 79-01-6	
/inyl chloride	ND ug/L	2.0	1	03/24/09 04:30 75-01-4	
(ylene (Total)	ND ug/L	10.0	1	03/24/09 04:30 1330-20-7	
Dibromofluoromethane (S)	112 %	80-123	1	03/24/09 04:30 1868-53-7	
-Bromofluorobenzene (S)	98 %	70-126	1	03/24/09 04:30 460-00-4	
oluene-d8 (S)	100 %	80-116	1	03/24/09 04:30 2037-26-5	
53.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
litrogen, Nitrate	0.72 mg/L	0.10	1	03/18/09 17:49	
ASTM D516-9002 Sulfate Water	Analytical Method: ASTI	И D516-90,02			
Sulfate	82.4 mg/L	25.0	5	03/20/09 13:30 14808-79-8	

Date: 03/30/2009 03:52 PM

REPORT OF LABORATORY ANALYSIS

Page 436 ice Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

Sample: MMW-P-09D	Lab ID: 5024368003	Collected: 03/17/09	11:05	Received: 03/18/09 11:10 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qual
8260 MSV	Analytical Method: EPA 826	0		
Benzene	ND ug/L	5.0	1	03/24/09 05:06 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 05:06 56-23-5
Chloroform	ND ug/L	5.0	1	03/24/09 05:06 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 05:06 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 05:06 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 05:06 75-35-4
cis-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 05:06 156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 05:06 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/24/09 05:06 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/24/09 05:06 75-09-2
Naphthalene	ND ug/L	5.0	1	03/24/09 05:06 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/24/09 05:06 127-18-4
Toluene	ND ug/L	5.0	1	03/24/09 05:06 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 05:06 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/24/09 05:06 79-01-6
Vinyl chloride	85.1 ug/L	2.0	1	03/24/09 05:06 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/24/09 05:06 1330-20-7
Dibromofluoromethane (S)	112 %	80-123	1	03/24/09 05:06 1868-53-7
4-Bromofluorobenzene (S)	99 %	70-126	1	03/24/09 05:06 460-00-4
Toluene-d8 (S)	100 %	80-116	1	03/24/09 05:06 2037-26-5

Date: 03/30/2009 03:52 PM

Page 43 / ice Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-C-02	Lab ID: 5024368004	Collected: 03/17/09	11:25	Received: 03/18/09 11:10 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qual
8260 MSV	Analytical Method: EPA 826	60		
Benzene	ND ug/L	5.0	1	03/24/09 05:42 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 05:42 56-23-5
Chloroform	ND ug/L	5.0	1	03/24/09 05:42 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 05:42 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 05:42 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 05:42 75-35-4
cis-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 05:42 156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 05:42 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/24/09 05:42 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/24/09 05:42 75-09-2
Naphthalene	ND ug/L	5.0	1	03/24/09 05:42 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/24/09 05:42 127-18-4
Toluene	ND ug/L	5.0	1	03/24/09 05:42 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 05:42 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/24/09 05:42 79-01-6
Vinyl chloride	ND ug/L	2.0	1	03/24/09 05:42 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/24/09 05:42 1330-20-7
Dibromofluoromethane (S)	113 %	80-123	1	03/24/09 05:42 1868-53-7
4-Bromofluorobenzene (S)	96 %	70-126	1	03/24/09 05:42 460-00-4
Toluene-d8 (S)	99 %	80-116	1	03/24/09 05:42 2037-26-5

Page 438
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

Sample: MMW-C-01	Lab ID: 5024368005	Collected: 03/17/09	11:45	Received: 03/18/09 11:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
8260 MSV	Analytical Method: EPA 8260)				
Benzene	ND ug/L	5.0	1	03/24/09 06:	18 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 06:	18 56-23-5	
Chloroform	ND ug/L	5.0	1	03/24/09 06:	18 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 06:	18 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 06:	18 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 06:	18 75-35-4	
trans-1,2-Dichloroethene	7.3 ug/L	5.0	1	03/24/09 06:	18 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/24/09 06:	18 100-41-4	
Methylene chloride	ND ug/L	5.0	1	03/24/09 06:	18 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/24/09 06:	18 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	03/24/09 06:	18 127-18-4	
Toluene	ND ug/L	5.0	1	03/24/09 06:	18 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 06:	18 71-55-6	
Trichloroethene	ND ug/L	5.0	1	03/24/09 06:	18 79-01-6	
Vinyl chloride	ND ug/L	2.0	1	03/24/09 06:	18 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	03/24/09 06:	18 1330-20-7	
Dibromofluoromethane (S)	112 %	80-123	1	03/24/09 06:	18 1868-53-7	
4-Bromofluorobenzene (S)	97 %	70-126	1	03/24/09 06:	18 460-00-4	
Toluene-d8 (S)	100 %	80-116	1	03/24/09 06:	18 2037-26-5	

Date: 03/30/2009 03:52 PM

Page 439
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MMW-P-02	Lab ID: 5024368006	Collected: 03/17/09	12:15	Received: 03/18/09 11:10 Ma	atrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qua
8260 MSV	Analytical Method: EPA 829	60			
Benzene	ND ug/L	5.0	1	03/24/09 07:19	71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 07:19	56-23-5
Chloroform	ND ug/L	5.0	1	03/24/09 07:19	67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 07:19	75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 07:19	107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 07:19	75-35-4
cis-1,2-Dichloroethene	65.4 ug/L	5.0	1	03/24/09 07:19	156-59-2
trans-1,2-Dichloroethene	5.3 ug/L	5.0	1	03/24/09 07:19	156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/24/09 07:19	100-41-4
Methylene chloride	ND ug/L	5.0	1	03/24/09 07:19	75-09-2
Naphthalene	ND ug/L	5.0	1	03/24/09 07:19	91-20-3
Tetrachloroethene	23.4 ug/L	5.0	1	03/24/09 07:19	127-18-4
Toluene	ND ug/L	5.0	1	03/24/09 07:19	108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 07:19	71-55-6
Trichloroethene	ND ug/L	5.0	1	03/24/09 07:19	79-01-6
Vinyl chloride	68.4 ug/L	2.0	1	03/24/09 07:19	75-01-4
Xylene (Total)	15.5 ug/L	10.0	1	03/24/09 07:19	1330-20-7
Dibromofluoromethane (S)	103 %	80-123	1	03/24/09 07:19	1868-53-7
4-Bromofluorobenzene (S)	101 %	70-126	1	03/24/09 07:19	460-00-4
Toluene-d8 (S)	101 %	80-116	1	03/24/09 07:19	2037-26-5

Page 440
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-03S	Lab ID: 5024368007 Co	ollected: 03/17/0	9 12:35	Received: 03/18/09 11:10 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
2340B Hardness, Total (Calc.)	Analytical Method: SM 2340B			
Total Hardness	586 mg/L	1.0	1	03/26/09 11:28
8260 MSV	Analytical Method: EPA 8260			
Benzene	ND ug/L	5.0	1	03/24/09 12:14 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 12:14 56-23-5
Chloroform	ND ug/L	5.0	1	03/24/09 12:14 67-66-3
,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 12:14 75-34-3
,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 12:14 107-06-2
,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 12:14 75-35-4
is-1,2-Dichloroethene	904 ug/L	50.0	10	03/24/09 12:45 156-59-2
ans-1,2-Dichloroethene	38.7 ug/L	5.0	1	03/24/09 12:14 156-60-5
thylbenzene	ND ug/L	5.0	1	03/24/09 12:14 100-41-4
lethylene chloride	ND ug/L	5.0	1	03/24/09 12:14 75-09-2
laphthalene	ND ug/L	5.0	1	03/24/09 12:14 91-20-3
etrachloroethene	7.5 ug/L	5.0	1	03/24/09 12:14 127-18-4
oluene	ND ug/L	5.0	1	03/24/09 12:14 108-88-3
,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 12:14 71-55-6
richloroethene	ND ug/L	5.0	1	03/24/09 12:14 79-01-6
/inyl chloride	283 ug/L	2.0	1	03/24/09 12:14 75-01-4
(ylene (Total)	ND ug/L	10.0	1	03/24/09 12:14 1330-20-7
Dibromofluoromethane (S)	105 %	80-123	1	03/24/09 12:14 1868-53-7
-Bromofluorobenzene (S)	97 %	70-126	1	03/24/09 12:14 460-00-4
oluene-d8 (S)	98 %	80-116	1	03/24/09 12:14 2037-26-5
53.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.2			
litrogen, Nitrate	ND mg/L	0.10	1	03/18/09 17:50
ASTM D516-9002 Sulfate Water	Analytical Method: ASTM D51	6-90,02		
Sulfate	42.1 mg/L	12.5	2.5	03/20/09 13:30 14808-79-8

Page 441 ce Analytical Services, Inc. 7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-03D	Lab ID:	5024368008	Collected:	03/17/0	9 12:45	Received:	03/18/09 11:10	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 82	260						
Benzene	NE	O ug/L		5.0	1		03/24/09 13:15	71-43-2	
Carbon tetrachloride	N) ug/L		5.0	1		03/24/09 13:15	56-23-5	
Chloroform	N) ug/L		5.0	1		03/24/09 13:15	67-66-3	
1,1-Dichloroethane	NE) ug/L		5.0	1		03/24/09 13:15	75-34-3	
1,2-Dichloroethane	N) ug/L		5.0	1		03/24/09 13:15	107-06-2	
1,1-Dichloroethene	N) ug/L		5.0	1		03/24/09 13:15	75-35-4	
cis-1,2-Dichloroethene	65.3	2 ug/L		5.0	1		03/24/09 13:15	156-59-2	
trans-1,2-Dichtoroethene	N) ug/L		5.0	1		03/24/09 13:15	156-60-5	
Ethylbenzene	N) ug/L		5.0	1		03/24/09 13:15	100-41-4	
Methylene chloride	N) ug/L		5.0	1		03/24/09 13:15	75-09-2	
Naphthalene	NE) ug/L		5.0	1		03/24/09 13:15	91-20-3	
Tetrachloroethene	NE) ug/L		5.0	1		03/24/09 13:15	127-18-4	
Toluene	N) ug/L		5.0	1		03/24/09 13:15	108-88-3	
1,1,1-Trichloroethane	N) ug/L		5.0	1		03/24/09 13:15	71-55-6	
Trichloroethene	N	ug/L		5.0	1		03/24/09 13:15	79-01-6	
Vinyl chloride	69.	8 ug/L		2.0	1		03/24/09 13:15	75-01-4	
Xylene (Total)	NE) ug/L		10.0	1		03/24/09 13:15	1330-20-7	
Dibromofluoromethane (S)	109	9 %	8	10-123	1		03/24/09 13:15	1868-53-7	
I-Bromofluorobenzene (S)	94	8 %	7	0-126	1		03/24/09 13:15	460-00-4	
Toluene-d8 (S)	10	1 %	8	30-116	1		03/24/09 13:15	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical	Method: EPA 35	53.2						
Nitrogen, Nitrate	N) mg/L		0.10	1		03/18/09 17:51		
ASTM D516-9002 Sulfate Water	Analytical	Method: ASTM	D516-90,02						
Sulfate	N) mg/L		5.0	1		03/20/09 13:30	14808-79-8	

Page 442
Pace Analytical Services, Inc

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-05	Lab ID: 5024368009	Collected: 03/17/0	9 13:20	Received: 03/18/09 11:10 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
8260 MSV	Analytical Method: EPA 826	0		
Benzene	ND ug/L	5.0	1	03/24/09 13:45 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 13:45 56-23-5
Chloroform	ND ug/L	5.0	1	03/24/09 13:45 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 13:45 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 13:45 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 13:45 75-35-4
cis-1,2-Dichloroethene	13.7 ug/L	5.0	1	03/24/09 13:45 156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 13:45 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/24/09 13:45 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/24/09 13:45 75-09-2
Naphthalene	ND ug/L	5.0	1	03/24/09 13:45 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/24/09 13:45 127-18-4
Toluene	ND ug/L	5.0	1	03/24/09 13:45 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 13:45 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/24/09 13:45 79-01-6
Vinyl chloride	ND ug/L	2.0	1	03/24/09 13:45 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/24/09 13:45 1330-20-7
Dibromofluoromethane (S)	107 %	80-123	1	03/24/09 13:45 1868-53-7
4-Bromofluorobenzene (S)	100 %	70-126	1	03/24/09 13:45 460-00-4
Toluene-d8 (S)	102 %	80-116	1	03/24/09 13:45 2037-26-5

Page 443 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

Sample: MW-P-06	Lab ID: 5024368010	Collected: 03/17/0	9 13:40	Received: 03/18/09 11:10 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
3260 MSV	Analytical Method: EPA	8260			
Benzene	ND ug/L	5.0	1	03/24/09 15:15 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 15:15 56-23-5	
Chloroform	ND ug/L	5.0	1	03/24/09 15:15 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 15:15 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 15:15 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 15:15 75-35-4	
cis-1,2-Dichloroethene	292 ug/L	50.0	10	03/25/09 11:52 156-59-2	
rans-1,2-Dichloroethene	35.3 ug/L	5.0	1	03/24/09 15:15 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/24/09 15:15 100-41-4	
Methylene chloride	ND ug/L	5.0	1	03/24/09 15:15 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/24/09 15:15 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	03/24/09 15:15 127-18-4	
Toluene	ND ug/L	5.0	1	03/24/09 15:15 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 15:15 71-55-6	
Trichloroethene	ND ug/L	5.0	1	03/24/09 15:15 79-01-6	
/inyl chloride	ND ug/L	2.0	1	03/24/09 15:15 75-01-4	
Kylene (Total)	ND ug/L	10.0	1	03/24/09 15:15 1330-20-7	
Dibromofluoromethane (S)	109 %	80-123	1	03/24/09 15:15 1868-53-7	
I-Bromofluorobenzene (S)	99 %	70-126	1	03/24/09 15:15 460-00-4	
Toluene-d8 (S)	100 %	80-116	1	03/24/09 15:15 2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA	353.2			
Nitrogen, Nitrate	ND mg/L	0.10	1	03/18/09 17:52	
ASTM D516-9002 Sulfate Water	Analytical Method: ASTN	/ D516-90,02			
Sulfate	9.4 mg/L	5.0	1	03/20/09 13:30 14808-79-8	

Date: 03/30/2009 03:52 PM

REPORT OF LABORATORY ANALYSIS

Page 444
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-10S	Lab ID: 5024368011	Collected: 03/17/0	9 14:10	Received: 03/18/09 11:10 Matrix: Water	ır
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No	. Qua
8260 MSV	Analytical Method: EPA 826	i0			
Benzene	ND ug/L	5.0	1	03/24/09 15:45 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 15:45 56-23-5	
Chloroform	ND ug/L	5.0	1	03/24/09 15:45 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 15:45 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 15:45 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 15:45 75-35-4	
cis-1,2-Dichloroethene	1160 ug/L	50.0	10	03/24/09 16:15 156-59-2	
rans-1,2-Dichloroethene	71.5 ug/L	5.0	1	03/24/09 15:45 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/24/09 15:45 100-41-4	
Viethylene chloride	ND ug/L	5.0	1	03/24/09 15:45 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/24/09 15:45 91-20-3	
Tetrachloroethene	11.9 ug/L	5.0	1	03/24/09 15:45 127-18-4	
Toluene	ND ug/L	5.0	1	03/24/09 15:45 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 15:45 71-55-6	
Trichloroethene	8.6 ug/L	5.0	1	03/24/09 15:45 79-01-6	
/inyl chlodde	ND ug/L	2.0	1	03/24/09 15:45 75-01-4	
(ylene (Total)	ND ug/L	10.0	1	03/24/09 15:45 1330-20-7	,
Dibromofluoromethane (S)	110 %	80-123	1	03/24/09 15:45 1868-53-7	,
I-Bromofluorobenzene (S)	98 %	70-126	1	03/24/09 15:45 460-00-4	
Toluene-d8 (S)	101 %	80-116	1	03/24/09 15:45 2037-26-5	i
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353	0.2			
Nitrogen, Nitrate	ND mg/L	0.10	1	03/18/09 17:53	
ASTM D516-9002 Sulfate Water	Analytical Method: ASTM D	516-90.02			
Sulfate	54.6 mg/L	25.0	5	03/20/09 13:30 14808-79-	8

Page 445 ace Analytical Services, Inc. 7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-10D	Lab ID: 5024368012	Collected: 03/17/0	9 14:30	Received: 03/18/09 11:10) Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
8260 MSV	Analytical Method: EPA 8	260				
Benzene	ND ug/L	5.0	1	03/25/09 0	8:49 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/25/09 0	8:49 56-23-5	
Chloroform	ND ug/L	5.0	1	03/25/09 0	8:49 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/25/09 0	8:49 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/25/09 0	8:49 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/25/09 0	8:49 75-35-4	
cis-1,2-Dichloroethene	4860 ug/L	125	25	03/25/09 0	9:19 156-59-2	
trans-1,2-Dichtoroethene	12.9 ug/L	5.0	1	03/25/09 0	8:49 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/25/09 0	8:49 100-41-4	
Methylene chloride	ND ug/L	5.0	1	03/25/09 0	8:49 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/25/09 0	8:49 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	03/25/09 0	8:49 127-18-4	
Toluene	ND ug/L	5.0	1	03/25/09 0	8:49 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/25/09 0	8:49 71-55-6	
Trichloroethene	ND ug/L	5.0	1	03/25/09 0	8:49 79-01-6	
Vinyl chloride	2500 ug/L	50.0	25	03/25/09 0	9:19 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	03/25/09 0	8:49 1330-20-7	
Dibromofluoromethane (S)	111 %	80-123	1	03/25/09 0	8:49 1868-53-7	
4-Bromofluorobenzene (S)	100 %	70-126	1	03/25/09 0	8:49 460-00-4	
Toluene-d8 (S)	100 %	80-116	1	03/25/09 0	8:49 2037-26-5	

Page 446
Pace Analytical Services, Inc.
7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-08	Lab ID: 5024368013	Collected: 03/17/0	9 15:00	Received: 03/1	8/09 11:10 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2340B Hardness, Total (Calc.)	Analytical Method: SM 2340	В					
Total Hardness	794 mg/L	1.0	1	(03/26/09 11:34		
8260 MSV	Analytical Method: EPA 8266	0					
Benzene	ND ug/L	5.0	1		03/25/09 09:50	71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	(03/25/09 09:50	56-23-5	
Chloroform	ND ug/L	5.0	1	(03/25/09 09:50	67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	(03/25/09 09:50	75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	(03/25/09 09:50	107-06-2	
,1-Dichloroethene	ND ug/L	5.0	1	(03/25/09 09:50	75-35-4	
is-1,2-Dichloroethene	1130 ug/L	50.0	10	(03/25/09 10:20	156-59-2	
rans-1,2-Dichloroethene	47.1 ug/L	5.0	1	(03/25/09 09:50	156-60-5	
Ethylbenzene	ND ug/L	5.0	1	(03/25/09 09:50	100-41-4	
Nethylene chloride	ND ug/L	5.0	1	(03/25/09 09:50	75-09-2	
Naphthalene	ND ug/L	5.0	1	(03/25/09 09:50	91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	(03/25/09 09:50	127-18-4	
l'oluene	ND ug/L	5.0	1	(03/25/09 09:50	108-88-3	
,1,1-Trichloroethane	ND ug/L	5.0	1	(03/25/09 09:50	71-55-6	
[richloroethene	ND ug/L	5.0	1		03/25/09 09:50	79-01-6	
/inyl chloride	5680 ug/L	50.0	25	(03/25/09 16:27	75-01-4	
(ylene (Total)	ND ug/L	10.0	1	(03/25/09 09:50	1330-20-7	
Dibromofluoromethane (S)	110 %	80-123	1		03/25/09 09:50	1868-53-7	
I-Bromofluorobenzene (S)	97 %	70-126	1	(03/25/09 09:50	460-00-4	
Coluene-d8 (S)	98 %	80-116	1	•	03/25/09 09:50	2037-26-5	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Method: EPA 353.	.2					
Nitrogen, Nitrate	ND mg/L	0.10	1	(03/18/09 17:58		
ASTM D516-9002 Sulfate Water	Analytical Method: ASTM D5	516-90,02					
Sulfate	5.1 mg/L	5.0	1		03/20/09 13:30	14808-79-8	

Page 447
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-07	Lab ID: 5024368014	Collected: 03/17/0	15:20	Received: 03/18/09 11:10 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
8260 MSV	Analytical Method: EPA 82	60		
Benzene	ND ug/L	5.0	1	03/25/09 10:51 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/25/09 10:51 56-23-5
Chloroform	ND ug/L	5.0	1	03/25/09 10:51 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/25/09 10:51 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/25/09 10:51 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/25/09 10:51 75-35-4
cis-1,2-Dichloroethene	361 ug/L	50.0	10	03/25/09 11:21 156-59-2
trans-1,2-Dichloroethene	17.7 ug/L	5.0	1	03/25/09 10:51 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/25/09 10:51 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/25/09 10:51 75-09-2
Naphthalene	ND ug/L	5.0	1	03/25/09 10:51 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/25/09 10:51 127-18-4
Toluene	ND ug/L	5.0	1	03/25/09 10:51 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/25/09 10:51 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/25/09 10:51 79-01-6
Vinyl chloride	1830 ug/L	20.0	10	03/25/09 11:21 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/25/09 10:51 1330-20-7
Dibromofluoromethane (S)	109 %	80-123	1	03/25/09 10:51 1868-53-7
4-Bromofluorobenzene (S)	97 %	70-126	1	03/25/09 10:51 460-00-4
Toluene-d8 (S)	97 %	80-116	1	03/25/09 10:51 2037-26-5

Page 448 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: MW-P-01	Lab ID: 5024368015	Collected: 03/17/0	9 15:50	Received: 03/18/09 11:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qua
8260 MSV	Analytical Method: EPA 83	260				
Benzene	ND ug/L	5.0	1	03/24/09 1	3:58 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 1	3:58 56-23-5	
Chloroform	ND ug/L	5.0	1	03/24/09 1	3:58 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 1	3:58 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 1	3:58 107-06-2	
1,1-Dichloroethene	5.8 ug/L	5.0	1	03/24/09 1	3:58 75-35-4	
cis-1,2-Dichloroethene	12300 ug/L	500	100	03/26/09 1	7:51 156-59-2	
trans-1,2-Dichloroethene	143 ug/L	5.0	1	03/24/09 1	3:58 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/24/09 1	3:58 100-41-4	
Methylene chloride	ND ug/L	5.0	1	03/24/09 1	3:58 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/24/09 1	3:58 91-20-3	
Tetrachloroethene	17.5 ug/L	5.0	1	03/24/09 1	3:58 127-18-4	
Toluene	ND ug/L	5.0	1	03/24/09 1	3:58 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 1	3:58 71-55-6	
Trichloroethene	22.6 ug/L	5.0	1	03/24/09 1	3:58 79-01-6	
Vinyl chloride	3290 ug/L	200	100	03/26/09 1	7:51 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	03/24/09 1	3:58 1330-20-7	
Dibromofluoromethane (S)	106 %	80-123	1	03/24/09 1	3:58 1868-53-7	
4-Bromofluorobenzene (S)	99 %	70-126	1	03/24/09 1	3:58 460-00-4	
Toluene-d8 (S)	100 %	80-116	1	03/24/09 1	3:58 2037-26-5	

Page 449 ce Analytical Services, Inc. 7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: DUP 1	Lab ID: 5024368016	Collected: 03/17/09	00:80	Received: 03/18/09 11:10	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
8260 MSV	Analytical Method: EPA 820	60				
Benzene	ND ug/L	5.0	1	03/24/09 14	32 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 14	32 56-23-5	
Chloroform	ND ug/L	5.0	1	03/24/09 14	32 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 14	32 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 14	32 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 14	32 75-35-4	
cis-1,2-Dichloroethene	12200 ug/L	250	50	03/27/09 07	24 156-59-2	
trans-1,2-Dichloroethene	244 ug/L	5.0	1	03/24/09 14	32 156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/24/09 14	32 100-41-4	
Methylene chloride	ND ug/L	5.0	1	03/24/09 14	32 75-09-2	
Naphthalene	ND ug/L	5.0	1	03/24/09 14	32 91-20-3	
Tetrachloroethene	19.1 ug/L	5.0	1	03/24/09 14	32 127-18-4	
Toluene	ND ug/L	5.0	1	03/24/09 14	32 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 14	32 71-55-6	
Trichloroethene	24.1 ug/L	5.0	1	03/24/09 14	32 79-01-6	
Vinyl chloride	2930 ug/L	20.0	10	03/27/09 06	50 75-01-4	
Xylene (Total)	ND ug/L	10.0	1	03/24/09 14	32 1330-20-7	
Dibromofluoromethane (S)	102 %	80-123	1	03/24/09 14	32 1868-53-7	
4-Bromofluorobenzene (S)	101 %	70-126	1	03/24/09 14	32 460-00-4	
Toluene-d8 (S)	101 %	80-116	1	03/24/09 14	32 2037-26-5	

Page 450
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: DUP 2	Lab ID: 5024368017	Collected: 03/17/0	9 08:00	Received: 03/18/09 11:10 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qual
8260 MSV	Analytical Method: EPA 826	90		
Benzene	ND ug/L	5.0	1	03/24/09 15:40 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 15:40 56-23-5
Chloroform	ND ug/L	5.0	1	03/24/09 15:40 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 15:40 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 15:40 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 15:40 75-35-4
cis-1,2-Dichloroethene	1190 ug/L	50.0	10	03/27/09 07:58 156-59-2
trans-1,2-Dichloroethene	57.0 ug/L	5.0	1	03/24/09 15:40 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/24/09 15:40 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/24/09 15:40 75-09-2
Naphthalene	ND ug/L	5.0	1	03/24/09 15:40 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/24/09 15:40 127-18-4
Toluene	ND ug/L	5.0	1	03/24/09 15:40 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 15:40 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/24/09 15:40 79-01-6
Vinyl chloride	6770 ug/L	100	50	03/27/09 08:32 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/24/09 15:40 1330-20-7
Dibromofluoromethane (S)	110 %	80-123	1	03/24/09 15:40 1868-53-7
4-Bromofluorobenzene (S)	99 %	70-126	1	03/24/09 15:40 460-00-4
Toluene-d8 (S)	101 %	80-116	1	03/24/09 15:40 2037-26-5

Page 451
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project M01046 / Michigan Plaza

Sample: TB	Lab ID: 5024368018	Collected: 03/17/0	9 08:00	Received: 03/18/09 11:10 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
8260 MSV	Analytical Method: EPA 826	60		
Benzene	ND ug/L	5.0	1	03/24/09 16:48 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/24/09 16:48 56-23-5
Chloroform	ND ug/L	5.0	1	03/24/09 16:48 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/24/09 16:48 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/24/09 16:48 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/24/09 16:48 75-35-4
cis-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 16:48 156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/24/09 16:48 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/24/09 16:48 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/24/09 16:48 75-09-2
Naphthalene	ND ug/L	5.0	1	03/24/09 16:48 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/24/09 16:48 127-18-4
Toluene	ND ug/L	5.0	1	03/24/09 16:48 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/24/09 16:48 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/24/09 16:48 79-01-6
Vinyl chloride	ND ug/L	2.0	1	03/24/09 16:48 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/24/09 16:48 1330-20-7
Dibromofluoromethane (S)	115 %	80-123	1	03/24/09 16:48 1868-53-7
4-Bromofluorobenzene (S)	101 %	70-126	1	03/24/09 16:48 460-00-4
Toluene-d8 (S)	101 %	80-116	1	03/24/09 16:48 2037-26-5

Page 452 ace Analytical Services, Inc. 7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

QC Batch: WETA/3378 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, Unpres.

Associated Lab Samples: 5024368001, 5024368002, 5024368007, 5024368008, 5024368010, 5024368011, 5024368013

METHOD BLANK: 276278 Matrix: Water

Associated Lab Samples: 5024368001, 5024368002, 5024368007, 5024368008, 5024368010, 5024368011, 5024368013

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Nitrate mg/L ND 0.10 03/18/09 17:43

LABORATORY CONTROL SAMPLE: 276279

 Parameter
 Units
 Spike Conc.
 LCS Result
 LCS % Rec Limits
 Qualifiers

 Nitrogen, Nitrate
 mg/L
 1
 0.96
 96
 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 276280 276281

MS MSD

5024368001 MS **MSD** MS MSD % Rec Spike Spike Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Nitrogen, Nitrate ND 0.88 0.88 88 90-110 .3 20 M3 mg/L

Page 453 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

QC Batch: WETA/3393 Analysis Method: ASTM D516-90,02

QC Batch Method: ASTM D516-90.02 Analysis Description: ASTM D516-9002 Sulfate Water
Associated Lab Samples: 5024368001, 5024368002, 5024368007, 5024368008, 5024368010, 5024368011, 5024368013

METHOD BLANK: 277471 Matrix: Water

Associated Lab Samples: 5024368001, 5024368002, 5024368007, 5024368008, 5024368010, 5024368011, 5024368013

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 5.0 03/20/09 13:30

LABORATORY CONTROL SAMPLE: 277472

 Parameter
 Units
 Spike Conc.
 LCS Result
 LCS % Rec Limits
 Qualifiers

 Sulfate
 mg/L
 20
 19.1
 96
 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 277473 277474

MS MSD

5024331002 MS MSD MS MSD % Rec Spike Spike Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 20 20 27.3 75-125 20 mg/L 6.6 26.9 102 104

Page 454 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

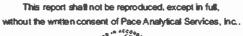
Pace Project No.: 5024368

QC Batch: MSV/15128 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024368001, 5024368002, 5024368003, 5024368004, 5024368005, 5024368006

METHOD BLANK: 278452 Matrix: Water

Associated Lab Samples: 5024368001, 5024368002, 5024368003, 5024368004, 5024368005, 5024368006


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	5.0	03/23/09 20:47	
1,1-Dichloroethane	ug/L	ND	5.0	03/23/09 20:47	
1,1-Dichloroethene	ug/L	ND	5.0	03/23/09 20:47	
1,2-Dichloroethane	ug/L	ND	5.0	03/23/09 20:47	
Benzene	ug/L	ND	5.0	03/23/09 20:47	
Carbon tetrachloride	ug/L	ND	5.0	03/23/09 20:47	
Chloroform	ug/L	ND	5.0	03/23/09 20:47	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/23/09 20:47	
Ethylbenzene	ug/L	ND	5.0	03/23/09 20:47	
Methylene chloride	ug/L	ND	5.0	03/23/09 20:47	
Naphthalene	ug/L	ND	5.0	03/23/09 20:47	
Tetrachloroethene	ug/L	ND	5.0	03/23/09 20:47	
Toluene	ug/L	ND	5.0	03/23/09 20:47	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/23/09 20:47	
Trichloroethene	ug/L	ND	5.0	03/23/09 20:47	
Vinyl chloride	ug/L	ND	2.0	03/23/09 20:47	
Xylene (Total)	ug/L	ND	10.0	03/23/09 20:47	
4-Bromofluorobenzene (S)	%	100	70-126	03/23/09 20:47	
Dibromofluoromethane (S)	%	106	80-123	03/23/09 20:47	
Toluene-d8 (S)	%	100	80-116	03/23/09 20:47	

LABORATORY CONTROL SAMPLE:	278453					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	40.1	80	69-136	
1,1-Dichloroethane	ug/L	50	42.9	86	67-133	
1,1-Dichloroethene	ug/L	50	48.2	96	63-128	
1,2-Dichloroethane	ug/L	50	45.3	91	69-139	
Benzene	ug/L	50	47.4	95	78-127	
Carbon tetrachloride	ug/L	50	40.8	82	62-143	
Chloroform	ug/L	50	48.6	97	74-131	
cis-1,2-Dichloroethene	ug/L	50	46.6	93	74-128	
Ethylbenzene	ug/L	50	46.4	93	81-126	
Methylene chloride	ug/L	50	46.7	93	32-164	
Naphthalene	ug/L	50	38.1	76	61-135	
Tetrachloroethene	ug/L	50	39.3	79	60-119	
Toluene	ug/L	50	45.0	90	75-129	
trans-1,2-Dichloroethene	ug/L	50	49.8	100	71-126	
Trichloroethene	ug/L	50	47.1	94	74-130	
Vinyl chloride	ug/L	50	41.4	83	55-141	
Xylene (Total)	ug/L	150	148	99	76 -132	

Date: 03/30/2009 03:52 PM REPORT

REPORT OF LABORATORY ANALYSIS

Page 24 of 35

Page 455
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

LABORATORY CONTROL SAMPLE: 278453

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			98	70-126	
Dibromofluoromethane (S)	%			103	80-123	
Toluene-d8 (S)	%			102	80-116	

MATRIX SPIKE SAMPLE:	278454						
		5024363009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	50	46.1	92	64-143	
1,1-Dichloroethane	ug/L	ND	50	52.2	104	68-139	
1,1-Dichloroethene	ug/L	ND	50	59.2	118	55-140	
1,2-Dichloroethane	ug/L	ND	50	52.1	104	63-148	
Benzene	ug/L	ND	50	54.2	108	63-141	
Carbon tetrachloride	ug/L	ND	50	47.7	95	54-145	
Chloroform	ug/L	ND	50	54.0	108	67-134	
cis-1,2-Dichloroethene	ug/L	ND	50	54.3	109	65-132	
Ethylbenzene	ug/L	ND	50	51.4	103	44-151	
Methylene chloride	ug/L	ND	50	67.7	135	46-154	
Naphthalene	ug/L	ND	50	39.7	79	44-138	
Tetrachloroethene	ug/L	ND	50	44.4	89	25-146	
Toluene	ug/L	ND	50	50.4	101	59-142	
trans-1,2-Dichloroethene	ug/L	ND	50	60.5	121	60-137	
Trichloroethene	ug/L	ND	50	53.2	106	61-137	
Vinyl chloride	ug/L	ND	50	56.6	113	51-144	
Xylene (Total)	ug/L	ND	150	163	109	44-152	
4-Bromofluorobenzene (S)	%				97	70-126	
Dibromofluoromethane (S)	%				106	80-123	
Toluene-d8 (S)	%				103	80-116	

Date: 03/30/2009 03:52 PM

Page 456 ice Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

 QC Batch:
 MSV/15146
 Analysis Method:
 EPA 8260

 QC Batch Method:
 EPA 8260
 Analysis Description:
 8260 MSV

 Associated Lab Samples:
 5024368007, 5024368008, 5024368009, 5024368010, 5024368011

METHOD BLANK: 278925 Matrix: Water

Associated Lab Samples: 5024368007, 5024368008, 5024368009, 5024368010, 5024368011

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND -	5.0	03/24/09 09:40	
1.1-Dichloroethane	ug/L	ND	5.0	03/24/09 09:40	
1,1-Dichloroethene	ug/L	ND	5.0	03/24/09 09:40	
1,2-Dichloroethane	ug/L	ND	5.0	03/24/09 09:40	
Benzene	ug/L	ND	5.0	03/24/09 09:40	
Carbon tetrachloride	ug/L	ND	5.0	03/24/09 09:40	
Chloroform	ug/L	ND	5.0	03/24/09 09:40	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/24/09 09:40	
Ethylbenzene	ug/L	ND	5.0	03/24/09 09:40	
Methylene chloride	ug/L	ND	5.0	03/24/09 09:40	
Naphthalene	ug/L	ND	5.0	03/24/09 09:40	
Tetrachloroethene	ug/L	ND	5.0	03/24/09 09:40	
Toluene	ug/L	ND	5.0	03/24/09 09:40	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/24/09 09:40	
Trichloroethene	ug/L	ND	5.0	03/24/09 09:40	
Vinyl chloride	ug/L	ND	2.0	03/24/09 09:40	
Xylene (Total)	ug/L	ND	10.0	03/24/09 09:40	
4-Bromofluorobenzene (S)	%	100	70-126	03/24/09 09:40	
Dibromofluoromethane (S)	%	109	80-123	03/24/09 09:40	
Toluene-d8 (S)	%	99	80-116	03/24/09 09:40	

LABORATORY CONTROL SAMPLE:	278926					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	42.0	84	69-136	
1,1-Dichloroethane	ug/L	50	46.7	93	67-133	
1,1-Dichloroethene	ug/L	50	53.5	107	63-128	
1,2-Dichloroethane	ug/L	50	49.6	99	69-139	
Benzene	ug/L	50	50.6	101	78-127	
Carbon tetrachloride	ug/L	50	43.2	86	62-143	
Chloroform	ug/L	50	50.0	100	74-131	
cis-1,2-Dichloroethene	ug/L	50	49.6	99	74-128	
Ethylbenzene	ug/L	50	49.5	99	81-126	
Methylene chloride	ug/L	50	53.9	108	32-164	
Naphthalene	ug/L	50	45.1	90	61-135	
Tetrachloroethene	ug/L	50	41.1	82	60-119	
Toluene	ug/L	50	47.3	95	75-129	
trans-1,2-Dichloroethene	ug/L	50	53.5	107	71-126	
Trichloroethene	ug/L	50	50.2	100	74-130	
Vinyl chloride	ug/L	50	51.1	102	55-141	
Xylene (Total)	ug/L	150	158	105	76 -132	

Date: 03/30/2009 03:52 PM REPORT OF LABORATORY ANALYSIS

Page 26 of 35

Page 457
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

LABORATORY CONTROL SAMPLE: 278926

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			100	70-126	
Dibromofluoromethane (S)	%			100	80-123	
Toluene-d8 (S)	%			102	80-116	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 278			7	•	278928		•	•	•			
			MS	MSD								
	50	024368009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	50	50	41.9	46.3	84	93	64-143	10	20	
1,1-Dichloroethane	ug/L	ND	50	50	48.1	50.4	96	101	68-139	5	20	
1,1-Dichloroethene	ug/L	ND	50	50	60.6	64.8	121	130	55-140	7	20	
1,2-Dichloroethane	ug/L	ND	50	50	46.8	50.1	94	100	63-148	7	20	
Benzene	ug/L	ND	50	50	49.5	53.2	99	106	63-141	7	20	
Carbon tetrachloride	ug/L	ND	50	50	44.2	48.4	88	97	54-145	9	20	
Chloroform	ug/L	ND	50	50	49.9	53.7	100	107	67-134	7	20	
cis-1,2-Dichloroethene	ug/L	13.7	50	50	63.9	67.7	100	108	65-132	6	20	
Ethylbenzene	ug/L	ND	50	50	47.0	50.5	94	101	44-151	7	20	
Methylene chloride	ug/L	ND	50	50	54.5	59.8	109	120	46-154	9	20	
Naphthalene	ug/L	ND	50	50	34.5	40.8	69	82	44-138	17	20	
Tetrachloroethene	ug/L	ND	50	50	39.3	42.0	79	84	25-146	7	20	
Toluene	ug/L	ND	50	50	45.4	48.1	91	96	59-142	6	20	
rans-1,2-Dichloroethene	ug/L	ND	50	50	59.3	63.4	114	123	60-137	7	20	
Trichloroethene	ug/L	ND	50	50	48.9	52.2	98	104	61-137	7	20	
Vinyl chloride	ug/L	ND	50	50	57.7	61.9	115	124	51-144	7	20	
Kylene (Total)	ug/L	ND	150	150	149	160	99	107	44-152	7	20	
4-Bromofluorobenzene (S)	%						99	99	70-126		20	
Dibromofluoromethane (S)	%						103	105	80-123		20	
Toluene-d8 (S)	%						100	101	80-116		20	

Date: 03/30/2009 03:52 PM

REPORT OF LABORATORY ANALYSIS

Page 458 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

QC Batch: MSV/15150 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024368018

METHOD BLANK: 279038 Matrix: Water

Associated Lab Samples: 5024368018

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	5.0	03/24/09 13:24	
1,1-Dichloroethane	ug/L	ND	5.0	03/24/09 13:24	
1,1-Dichloroethene	ug/L	ND	5.0	03/24/09 13:24	
1,2-Dichloroethane	ug/L	ND	5.0	03/24/09 13:24	
Benzene	ug/L	ND	5.0	03/24/09 13:24	
Carbon tetrachloride	ug/L	ND	5.0	03/24/09 13:24	
Chloroform	ug/L	ND	5.0	03/24/09 13:24	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/24/09 13:24	
Ethylbenzene	ug/L	ND	5.0	03/24/09 13:24	
Methylene chloride	ug/L	ND	5.0	03/24/09 13:24	
Naphthalene	ug/L	ND	5.0	03/24/09 13:24	
Tetrachloroethene	ug/L	ND	5.0	03/24/09 13:24	
Toluene	ug/L	ND	5.0	03/24/09 13:24	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/24/09 13:24	
Trichloroethene	ug/L	ND	5.0	03/24/09 13:24	
Vinyl chloride	ug/L	ND	2.0	03/24/09 13:24	
Xylene (Total)	ug/L	ND	10.0	03/24/09 13:24	
4-Bromofluorobenzene (S)	%	100	70-126	03/24/09 13:24	
Dibromofluoromethane (S)	%	115	80-123	03/24/09 13:24	
Toluene-d8 (S)	%	102	80-116	03/24/09 13:24	

LABORATORY CONTROL SAMPLE:	279039					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	48.0	96	69-136	
1,1-Dichloroethane	ug/L	50	50.6	101	67-133	
1,1-Dichloroethene	ug/L	50	45.9	92	63-128	
1,2-Dichloroethane	ug/L	50	50.6	101	69-139	
Benzene	ug/L	50	48.9	98	78-127	
Carbon tetrachloride	ug/L	50	52.9	106	62-143	
Chloroform	ug/L	50	47.8	96	74-131	
cis-1,2-Dichloroethene	ug/L	50	50.5	101	74-128	
Ethylbenzene	ug/L	50	47.4	95	81-126	
Methylene chloride	ug/L	50	54.8	110	32-164	
Naphthalene	ug/L	50	30.0	60	61-135	LO
Tetrachloroethene	ug/L	50	37.5	75	60-119	
Toluene	ug/L	50	49.9	100	75-129	
trans-1,2-Dichloroethene	ug/L	50	55.9	112	71-126	
Trichloroethene	ug/L	50	50.3	101	74-130	
Vinyl chloride	ug/L	50	59.2	118	55-141	
Xylene (Total)	ug/L	150	146	97	76 -132	

Date: 03/30/2009 03:52 PM

REPORT OF LABORATORY ANALYSIS

Page 28 of 35

Page 459
Pace Analytical Services, Inc.
7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

LABORATORY CONTROL SAMPLE: 279039

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			100	70-126	
Dibromofluoromethane (S)	%			103	80-123	
Toluene-d8 (S)	%			102	80-116	

Date: 03/30/2009 03:52 PM

REPORT OF LABORATORY ANALYSIS

7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

QC Batch: MSV/15166 EPA 8260 Analysis Method: EPA 8260 QC Batch Method: Analysis Description: 8260 MSV

Associated Lab Samples: 5024368012, 5024368013, 5024368014

METHOD BLANK: 279416 Matrix: Water

Associated Lab Samples: 5024368012, 5024368013, 5024368014

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	5.0	03/25/09 08:19	
1,1-Dichloroethane	ug/L	ND	5.0	03/25/09 08:19	
1,1-Dichloroethene	ug/L	ND	5.0	03/25/09 08:19	
1,2-Dichloroethane	ug/L	ND	5.0	03/25/09 08:19	
Benzene	ug/L	ND	5.0	03/25/09 08:19	
Carbon tetrachloride	ug/L	ND	5.0	03/25/09 08:19	
Chloroform	ug/L	ND	5.0	03/25/09 08:19	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/25/09 08:19	
Ethylbenzene	ug/L	ND	5.0	03/25/09 08:19	
Methylene chloride	ug/L	ND	5.0	03/25/09 08:19	
Naphthalene	ug/L	ND	5.0	03/25/09 08:19	
Tetrachloroethene	ug/L	ND	5.0	03/25/09 08:19	
Toluene	ug/L	ND	5.0	03/25/09 08:19	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/25/09 08:19	
Trichloroethene	ug/L	ND	5.0	03/25/09 08:19	
Vinyl chloride	ug/L	ND	2.0	03/25/09 08:19	
Xylene (Total)	ug/L	ND	10.0	03/25/09 08:19	
4-Bromofluorobenzene (S)	%	100	70-126	03/25/09 08:19	
Dibromofluoromethane (S)	%	108	80-123	03/25/09 08:19	
Toluene-d8 (S)	%	100	80-116	03/25/09 08:19	

LABORATORY CONTROL SAMPLI	E: 279417					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	44.3	89	69-136	
1,1-Dichloroethane	ug/L	50	49.9	100	67-133	
1,1-Dichloroethene	ug/L	50	58.7	117	63-128	
1,2-Dichloroethane	ug/L	50	51.3	103	69-139	
Benzene	ug/L	50	52.6	105	78-127	
Carbon tetrachloride	ug/L	50	46.7	93	62-143	
Chloroform	ug/L	50	53.5	107	74-131	
cis-1,2-Dichloroethene	ug/L	50	52.9	106	74-128	
Ethylbenzene	ug/L	50	48.6	97	81-126	
Methylene chloride	ug/L	50	58.8	118	32-164	
Naphthalene	ug/L	50	41.0	82	61-135	
Tetrachloroethene	ug/L	50	40.9	82	60-119	
Toluene	ug/L	50	47.8	96	75-129	
trans-1,2-Dichloroethene	ug/L	50	57.3	115	71-126	
Trichloroethene	ug/L	50	51.1	102	74-130	
Vinyl chloride	ug/L	50	55.4	111	55-141	
Xylene (Total)	ug/L	150	158	106	76-132	

Date: 03/30/2009 03:52 PM **REPORT OF LABORATORY ANALYSIS**

Page 30 of 35

Page 461
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

LABORATORY CONTROL SAMPLE: 279417

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			101	70-126	
Dibromofluoromethane (S)	%			103	80-123	
Toluene-d8 (S)	%			101	80-116	

Date: 03/30/2009 03:52 PM

Page 462 ace Analytical Services, Inc. 7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

QC Batch: MSV/15218 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024368015

METHOD BLANK: 280553 Matrix: Water

Associated Lab Samples: 5024368015

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	5.0	03/26/09 13:55	
1,1-Dichloroethane	ug/L	ND	5.0	03/26/09 13:55	
1,1-Dichloroethene	ug/L	ND	5.0	03/26/09 13:55	
1,2-Dichloroethane	ug/L	ND	5.0	03/26/09 13:55	
Benzene	ug/L	ND	5.0	03/26/09 13:55	
Carbon tetrachloride	ug/L	ND	5.0	03/26/09 13:55	
Chloroform	ug/L	ND	5.0	03/26/09 13:55	
Ethylbenzene	ug/L	ND	5.0	03/26/09 13:55	
Methylene chloride	ug/L	ND	5.0	03/26/09 13:55	
Naphthalene	ug/L	ND	5.0	03/26/09 13:55	
Tetrachloroethene	ug/L	ND	5.0	03/26/09 13:55	
Toluene	ug/L	ND	5.0	03/26/09 13:55	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/26/09 13:55	
Trichloroethene	ug/L	ND	5.0	03/26/09 13:55	
Xylene (Total)	ug/L	ND	10.0	03/26/09 13:55	
4-Bromofluorobenzene (S)	%	98	70-126	03/26/09 13:55	
Dibromofluoromethane (S)	%	105	80-123	03/26/09 13:55	
Toluene-d8 (S)	%	101	80-116	03/26/09 13:55	

LABORATORY CONTROL SAME	PLE: 280554					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	55.5	111	69-136	
1,1-Dichloroethane	ug/L	50	52.5	105	67-133	
1,1-Dichloroethene	ug/L	50	56.3	113	63-128	
1,2-Dichloroethane	ug/L	50	64.3	129	69-139	
Benzene	ug/L	50	59.1	118	78-127	
Carbon tetrachloride	ug/L	50	59.4	119	62-143	
Chloroform	ug/L	50	54.9	110	74-131	
Ethylbenzene	ug/L	50	52.8	106	81-126	
Methylene chloride	ug/L	50	60.5	121	32-164	
Naphthalene	ug/L	50	50.6	101	61-135	
Tetrachloroethene	ug/L	50	45.1	90	60-119	
Toluene	ug/L	50	57.4	115	75-129	
trans-1,2-Dichloroethene	ug/L	50	58.4	117	71-126	
Trichloroethene	ug/L	50	56.1	112	74-130	
Xylene (Total)	ug/L	150	169	113	76-132	
4-Bromofluorobenzene (S)	%			100	70-126	
Dibromofluoromethane (S)	%			106	80-123	
Toluene-d8 (S)	%			99	80-116	

Date: 03/30/2009 03:52 PM REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 463 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

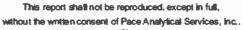
Pace Project No.: 5024368

QC Batch: MSV/15220 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024368016, 5024368017

METHOD BLANK: 280588 Matrix: Water

Associated Lab Samples: 5024368016, 5024368017


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	5.0	03/27/09 02:19	
1,1-Dichloroethane	ug/L	ND	5.0	03/27/09 02:19	
1,1-Dichloroethene	ug/L	ND	5.0	03/27/09 02:19	
1,2-Dichloroethane	ug/L	ND	5.0	03/27/09 02:19	
Benzene	ug/L	ND	5.0	03/27/09 02:19	
Carbon tetrachloride	ug/L	ND	5.0	03/27/09 02:19	
Chloroform	ug/L	ND	5.0	03/27/09 02:19	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/27/09 02:19	
Ethylbenzene	ug/L	ND	5.0	03/27/09 02:19	
Methylene chloride	ug/L	ND	5.0	03/27/09 02:19	
Naphthalene	ug/L	ND	5.0	03/27/09 02:19	
Tetrachloroethene	ug/L	ND	5.0	03/27/09 02:19	
Toluene	ug/L	ND	5.0	03/27/09 02:19	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/27/09 02:19	
Trichloroethene	ug/L	ND	5.0	03/27/09 02:19	
Vinyl chloride	ug/L	ND	2.0	03/27/09 02:19	
Xylene (Total)	ug/L	ND	10.0	03/27/09 02:19	
4-Bromofluorobenzene (S)	%	101	70-126	03/27/09 02:19	
Dibromofluoromethane (S)	%	102	80-123	03/27/09 02:19	
Toluene-d8 (S)	%	103	80-116	03/27/09 02:19	

LABORATORY CONTROL SAM	PLE: 280589					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	53.1	106	69-136	
1,1-Dichloroethane	ug/L	50	52.0	104	67-133	
1,1-Dichloroethene	ug/L	50	54.0	108	63-128	
1,2-Dichloroethane	ug/L	50	62.8	126	69-139	
3enzene	ug/L	50	56.5	113	78-127	
Carbon tetrachloride	ug/L	50	55.3	111	62-143	
Chloroform	ug/L	50	54.6	109	74-131	
is-1,2-Dichloroethene	ug/L	50	56.8	114	74-128	
Ethylbenzene	ug/L	50	51.3	103	81-126	
Methylene chloride	ug/L	50	62.0	124	32-164	
Naphthalene	ug/L	50	45.8	92	61-135	
Tetrachloroethene	ug/L	50	43.9	88	60-119	
Toluene	ug/L	50	55.9	112	75-129	
rans-1,2-Dichloroethene	ug/L	50	57.0	114	71-126	
[richloroethene	ug/L	50	59.2	118	74-130	
/inyl chloride	ug/L	50	61.5	123	55-141	
Xylene (Total)	ug/L	150	163	109	76-132	

Date: 03/30/2009 03:52 PM

REPORT OF LABORATORY ANALYSIS

Page 33 of 35

Page 464
Pace Analytical Services, Inc.
7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

LABORATORY CONTROL SAMPLE: 280589

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			100	70-126	
Dibromofluoromethane (S)	%			104	80-123	
Toluene-d8 (S)	%			99	80-116	

MATRIX SPIKE SAMPLE:	280590						
Dommotoe	Llaita	5024384004	Spike	MS	MS % Rec	% Rec	OverBland
Parameter	Units	Result	Conc.	Result	76 PKBC	Limits	Qualifiers
1,1.1-Trichloroethane	ug/L	ND	50	56.4	113	64-143	
1,1-Dichloroethane	ug/L	ND	50	51.2	102	68-139	
1,1-Dichloroethene	ug/L	ND	50	56.3	113	55-140	
1,2-Dichloroethane	ug/L	ND	50	61.0	122	63-148	
Benzene	ug/L	ND	50	55.5	111	63-141	
Carbon tetrachloride	ug/L	ND	50	59.9	120	54-145	
Chloroform	ug/L	ND	50	54.1	108	67-134	
cis-1,2-Dichloroethene	ug/L	ND	50	56.2	112	65-132	
Ethylbenzene	ug/L	ND	50	51.7	103	44-151	
Methylene chloride	ug/L	ND	50	58.4	117	46-154	
Naphthalene	ug/L	ND	50	46.0	92	44-138	
Tetrachloroethene	ug/L	ND	50	45.9	92	25-146	
Toluene	ug/L	ND	50	56.6	113	59-142	
trans-1,2-Dichloroethene	ug/L	ND	50	58.0	116	60-137	
Trichloroethene	ug/L	ND	50	55.5	111	61-137	
Vinyl chloride	ug/L	ND	50	62.6	125	51-144	
Xylene (Total)	ug/L	ND	150	163	109	44-152	
4-Bromofluorobenzene (S)	%				100	70-126	
Dibromofluoromethane (S)	%				103	80-123	
Toluene-d8 (S)	%				98	80-116	

Date: 03/30/2009 03:52 PM

Page 465 ce Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALIFIERS

Project M01046 / Michigan Plaza

Pace Project No.: 5024368

DEFINITIONS

DF - Dilution Factor, If reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobertzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

ANALYTE QUALIFIERS

4.0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.

Date: 03/30/2009 03:52 PM

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All reterant fields must be completed accurately.

Pace Analytical

Page 466 Reference 26 185099 Pace Project No./ Lab I.D. DRINKING WATER (NW) Sumples Intec SAMPLE CONDITIONS 5084368 OTHER (N/A) Custody Sealed Cook 00 400 88 800 000 009 010 Ke (Y/N) 0 GROUND WATER Received on Residual Chlorine (Y/V) O' ni qineT Page: 1 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/M) 61:11 TARE \$18/69 Site Location STATE: NPDES DATE UST X ACCEPTED BY ! AFFILIATION ther P.215 × × > 2,225 ×× 12.7 Mundell | JeaT alaylenA N/A 7.6456 Other Methanol OSSEN Preservatives HOBI Acols HCI " Invoice Information HNO³ Company Name OS H Manager: Pace Profite # Section C Teference PRINT Name of SAMPLER: A LALL SCH Quote 11:10 pervesendu vidress: # OF CONTAINERS M 7 SAMPLER NAME AND SIGNATURE 3.18.09 SAMPLE TEMP AT COLLECTION DATE 31719 12:35 3176 230p 3/0/00 10:40 Value 12: 150 Stola 10:00 3/10/4011:454 3/7/10 A:25A 3/17/09 7:100 347 PO 11:05A 37/4/10 TIME 3/11 10 luk stoles pix COMPOSTE DAY COLLECTED Project Name: Michigan Plaza hunder RELINQUISHED BY / AFFILIATION TIME Lean Lethe Project Number A O Coule START DATE Required Project Information (G=GRAB C=CONP) O Autohase Order No.: SAMPLE TYPE **DRIGINAL** (see Asyq coque to just) SIGNO XIMITAIN Report Ter, Section B Copy To ~ 획으≹ & ₹ P Metrix Codes Drinking Water Water Waste Water Product Solf/Soled secatoched short 1.57 For 7-630-9-0017-650-9065 sanoles house Associates Am- 2-05 (ASINSD ested Due Date/TAT: 2 WKS ADDITIONAL COMMENTS maire de signification (A.Z, 0-9 f...) Sample IDs AtUST BE UNIQUE 11 MAW- P-105 MAW- P. 634 12 MMW - P- 10D SAMPLE ID MAKES - P. 035 AMW- P. OGS 4-9- OAD Des. S. P. 07 MW- (68 7) MMW-C-01 110 S. Donney Section D Required Cácos Information Section A Required Clent Information Company Marcola MMW Some * MBTI ×

Kinpodant Note: By signing this form you are accepting Pacer's MET 30 day payment terms and agreeing libitate charges of 1,5% per month for ten

SIGNATURE OF SAMPLER

F-ALL-Q-020rev.07, 15-May-2007

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

	Contained to select incomments			invoice information	Amalion:				L		L	
COMPANY MANDELL & 1550 contes	Lova	athe		Attention: M	Verle"	2-99-21					118	85100
1105 Downey	Capy To:			Company Name:	lane: M	war !		REGULAT	REGULATÓRY AGENCY			
Tridols, IN 46219				Address				F NPDES	3	GROUND WATER	T DRINKE	DRINKING WATER
	Purchase Order No.:	- 1		Pace Guote Reference:				L UST	F RCRA		F" OTHER	
317-630-9060 37-630-9065	Project Marie: Michigan	P/02G		Page Project Neiragen				Site Location	uo,	-		
quested Due Date/TAT:	Project Number: MOIOYC	240		Page Profite				STATE:	E. T.			
								Requested Analysis Filtered (Y/N)	itered (Y/N)		7	ì
Section D Matrix Required Client information	(1) (1) (1)	COLLECTED	ED.		Preservatives	N/A Sp				S	202126X	80
Directing Water Water Water Water Water Product Sallsouth	A WAS COCK	COMPOSITE START	COMPOSITE	MOHORITA			اط الالالا			(N/,	4	
SAMPLE ID OI Who (A.Z. 0-97) AIT Sample ID: MIST RE IMPORT.	영 등 전 K			еязиіа		139T	353. 353.			/) eninol		
	5.P CO MATAN INTERNATE INTERNATE INT	A S	DATE TIME	SAMPLE TEN # OF CONT.	N®OH HCI HNO ² H ⁵ 2O [₹]	Na ₂ S ₂ S ₃ O ₃ Methanol sisylen Menalysis	المطابعة مناهاد جمالياد	SOMOTO		gesidual Ch		4
MMW- P-08	513	1	*	1			> > ×			9	3	Cap I'm
2 ~ MW. P-67	-	\ \frac{1}{2}	Shola 35200	٣	m	F	•				110	
MMW- 12-01		18/	8/018 3:50P	м	~		¥				015	
Duce 1	,			N	79		ye			0	9,0	
D472	3			2	20		y			0	7	
N.	>			M	m		><			0	810	
										+		
10				H		П						
12										+		
ADDITIONAL COMMENTS	RELINGUISHED	RELINQUISHED BY ! AFFILIATION	DATE	TIME		CCEPTED BY	ACCEPTED BY / AFFILIATION	DATE	TIME	"	SAMPLE CONDITIONS	ONS
sec Enst pase	Jum Am	A mundell	3.14.08	11:10	12	tim	telen	3/2/05	O TIVE	3.8	N	1
		1										
IZ.		SAMPLER NAME	AME AND SIGNATURE	E SE						+		136
***************************************	ORIGINAL /	PRI	PRINT Name of SAMPLER:	CTV	America.	IEPA/A	PATOL)' rá q o bevi	(AVA)	es Iras
SIGNATURE of SAMPLER	4 120	1018	Table A Dayson				A DATE Stangard	DATE Stoney		-	n)	

Reference 26 Page 468

Sa	imple Condition	n Upon Receipt		
Pace Analytical Client Name	:	dell	Project #_5	024368
Courier: Fed Ex UPS USPS Clie Tracking #:	ent Commercial	Pace Other	07,12	
Custody Seal on Cooler/Box Present: yes	no Seals	s intact: yes [J no	EXPERT TO THE
Packing Material: Bubble Wrap Bubble	e Bags None	Other		
Thermometer Used 12345/6	Type of Ice: We	Blue None	Bamples on ice, cooling	process has begun
Cooler Temperature 3.860 Temp should be above freezing to 6°C	Biological Tissue	is Frozen: Yes No		gerson examining
Chain of Custody Present:	Yes Ong ON/A	1.		
Chain of Custody Filled Out:	DYES ONO ONA	2.		
Chain of Custody Retinguished:	DVIS DNO DNA	3.		
Sampler Name & Signature on COC:	DVG DNG DNA	4.		
Samples Arrived within Hold Time:	DYOS DNO DNIA	5		
Short Hold Time Analysis (<72hr):	DV65 DNO DNA	8.3/18/39		
Rush Turn Around Time Requested:	□Yes □No □MA	7.		
Sufficient Volume:	Dres Ono ONA	8.		
Correct Containers Used:	Øres □No □N/A	9.		300
-Pace Containers Used:	DY68 ONG ONIA			Y.
Containers Intact:	DYES ONO ONA	10		
Filtered volume received for Dissolved tests	DYes Die Della	D'		
Sample Labels match COC:	-ENOS ONO ON/A			
-Includes date/time/ID/Analysis Matrix:	11)000			
all containers needing preservation have been checked.	DYSS DNO DNOTA	3/18/04		
Ak containers needing preservation are found to be in compliance with EPA recommendation.	Dres Ono On/A			
exceptions: VOA, caliform, TOC, O&G, WI-DRO (water)	Dyes ONo	Initial when completed	Lot # of added preservative	200
Samples checked for dechlorination:	TYES DAY DINA	14.		
leadspace in VOA Vials (>6mm):	ZYes DNO DNA	15. 2 - 7	Trip Blanks	has headso
Inp Blank Present:	THE DNO DNA			1
Frip Blank Custody Seals Present	THE ONO ONIA			1
Pace Trip Blank Lot # (if purchased):				1.0
Client Notification/ Resolution:	***************************************		Field Data Required?	Y / N
Person Contacted:	Date/T	Time:	1000 0000 ((0400002)	. , ,
Comments/ Resolution:				
		c c		
				- William III
				
Project Manager Review:			Date: 3-1	8-09

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 Phone: 317.875.5804

Phone: 317.875,5894 Fax: 317.872.6189

October 02, 2009

<u>Case Narrative</u> <u>Project 5024402 (Mundell & Associates, Inc.)</u>

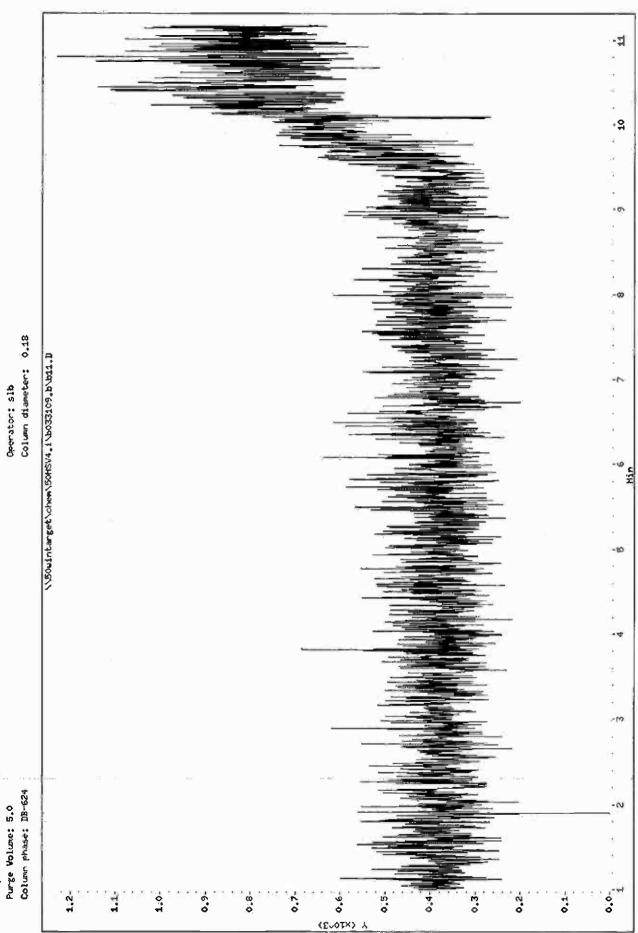
GC/MS Volatiles - Method 8260

Samples 5024402001 through 004 were first analyzed at a 10x dilution on 03/31/2009 beginning at 02:58 am. The samples were analyzed at a dilution due to their odor. The results of this initial analysis indicated that the samples had been over diluted. All four samples were then loaded, without dilution, onto another instrument on 03/31/2009 beginning at 12:13 pm. The results of the second analysis showed a significant matrix interference resulting in very poor purging efficiency. Chromatograms of each sample in question, along with the sample immediately following are attached to illustrate that the interference was matrix related and not a function of instrument condition. The matrix interference is believed to be an unknown contaminant that causes significant foaming of the sample when purged. As a result of this matrix interference, the samples were reported at the 10x dilution.

Beth Schrage Quality Manager

Pace Analytical Services

The review of this project and the associated case narrative are part of a review process for final reports that require a complete set of data deliverables. This process is completed by a member of the Quality Department as part of Pace Analytical's Indiana state requirements.

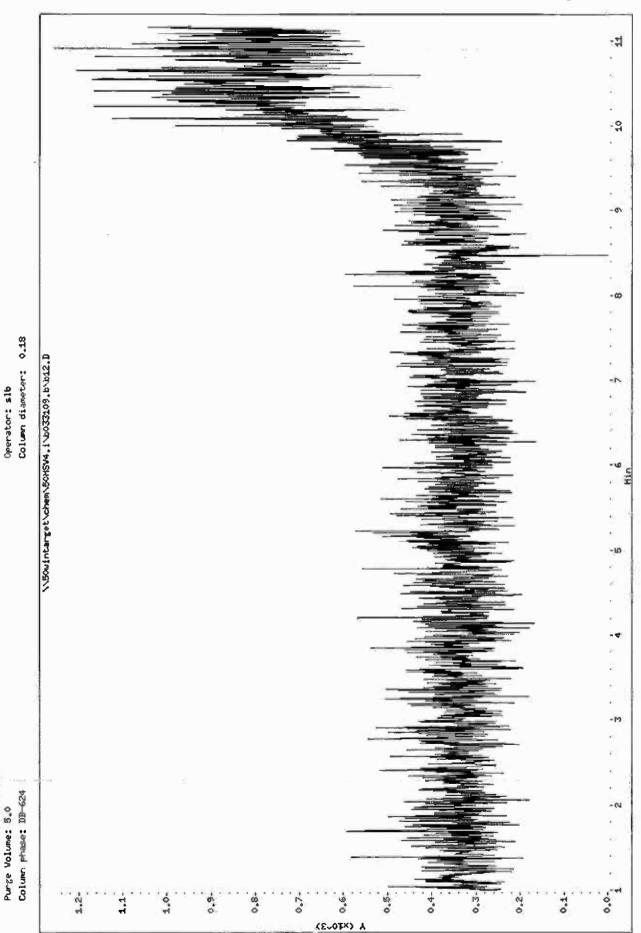

Instrument: SOMSW4.1

Data File: N50wintarget/chem/50M5V4.i/b033109.b/b10.D

Date : 31-MPR-2009 12:13

Sample Info: 5024402001

Client ID: 02001


Instrument; 50MSV4.1

Data File: \\SQuintarget\chem\SQNSV4.i\b033109.b\b11.D

Date : 31-HAR-2009 12:43

Sample Info: 5024402002

Client ID: 02002

Instrument: 50MSV4;i

Data File: \\SOwintarget\chem\SOHSV4.1\b033109.b\b12.D

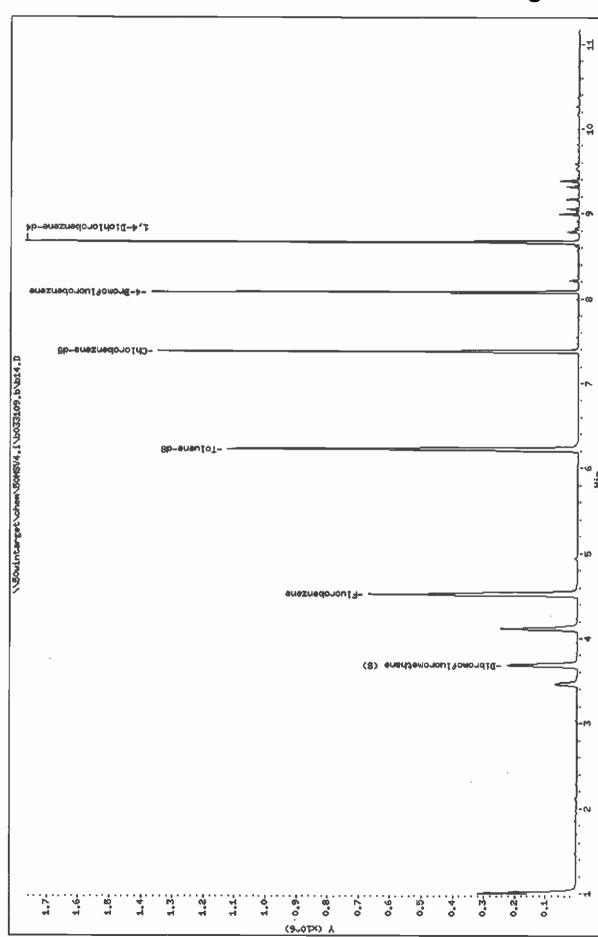
Date : 31-HAR-2009 13:13

Client ID: 02003

Sample Info: 5024402003

Purge Volume: 5.0

age 1


Instrument: SOMSV4.1

Operator: sib

Data File: \\SOwintarget\chem\SOMSV4.i\b033109.b\b13.D Date : 31-MAR-2009 13:44

Sample Info: 5024402004 Purge Volume: 5.0

Client ID: 02004

Operator: slb Column diameter: 0.18

Instrument: 5045V4.i

Data File: \\Sowintarget\chen\Som604.i\bo33109.b\b14.D

Date : 31-HAR-2009 14:15

Sample Info: 5024543001

Client ID: 13001

Purge Volume: 5.0 Column phase: IB-624 ;

Indianapolis, IN 46268

(317)875-5894

Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

RE: Project: Michigan Plaza_Revised report; j-Flags added per client request. 9/30/09tms

Pace Project No.: 5024402

Dear Leena Lothe:

Enclosed are the analytical results for sample(s) received by the laboratory on March 19, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tima

Tina Sayer for

Phaedra Zucksworth

phaedra.zucksworth@pacelabs.com

Saur

Project Manager

Illinois/NELAC Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky Certification #: 0042

Ohio VAP: CL0065 Pennsylvania: 68-00791

West Virginia Certification #: 330

Endosures

Page 476
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	Date Collected	Date Received
5024402001	SS-P-01	Water	03/18/09 14:30	03/19/09 11:57
5024402002	SS-A-01	Water	03/18/09 15:00	03/19/09 11:57
5024402003	SS-A-02	Water	03/18/09 14:55	03/19/09 11:57
5024402004	SS-A-03	Water	03/18/09 15:13	03/19/09 11:57

Page 477
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

SAMPLE ANALYTE COUNT

Lab ID	Sample ID	Method	Analysts	Analytes Reported
5024402001	\$\$.P-01	EPA 8260	AMV	20
5024402002	SS-A-01	EPA 8260	AMV	20
5024402003	SS-A-02	EPA 8260	AMV	20
5024402004	SS-A-03	EPA 8260	AMV	20

Page 478
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5024402

Sample: SS-P-01	Lab ID: 5024402001	Collected: 03/18/09	14:30	Received: 03	V19/09 11:57	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV	Analytical Method: EPA	8260					
Benzene	ND ug/L	50.0	10		03/31/09 02:58	71-43-2	3d
Carbon tetrachloride	ND ug/L	50.0	10		03/31/09 02:58	3 56-23-5	
Chloroform	70.7 ug/L	50.0	10		03/31/09 02:58	67-66-3	
1,1-Dichloroethane	ND ug/L	50.0	10		03/31/09 02:58	75-34-3	
1,2-Dichloroethane	ND ug/L	50.0	10		03/31/09 02:58	107-06-2	
1,1-Dichloroethene	ND ug/L	50.0	10		03/31/09 02:58	75-35-4	
cis-1,2-Dichloroethene	10.5J ug/L	50.0	10		03/31/09 02:58	156-59-2	J
trans-1,2-Dichtoroethene	ND ug/L	50.0	10		03/31/09 02:58	156-60-5	
Ethylbenzene	ND ug/L	50.0	10		03/31/09 02:58	100-41-4	
Methylene chloride	ND ug/L	50.0	10		03/31/09 02:58	75-09-2	
Naphthalene	ND ug/L	50.0	10		03/31/09 02:58	91-20-3	
Tetrachloroethene	ND ug/L	50.0	10		03/31/09 02:58	127-18-4	4d
Toluene	ND ug/L	50.0	10		03/31/09 02:58	108-88-3	
1,1,1-Trichloroethane	ND ug/L	50.0	10		03/31/09 02:58	71-55-6	
Trichloroethene	ND ug/L	50.0	10		03/31/09 02:58	3 79-01-6	3d
Vinyl chloride	ND ug/L	20.0	10		03/31/09 02:58	75-01-4	1d,2d
Xylene (Total)	ND ug/L	100	10		03/31/09 02:58	1330-20-7	
Dibromofluoromethane (S)	102 %	80-123	10		03/31/09 02:58	1868-53-7	
4-Bromofluorobenzene (S)	102 %	70-126	10		03/31/09 02:58	460-00-4	
Toluene-d8 (S)	104 %	80-116	10		03/31/09 02:58	2037-26-5	

Page 479
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5024402

Sample: SS-A-01	Lab ID: 5024402002	Collected: 03/18/09 15:00	Received: 03/19/09 11:57 Matrix: Water	
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No.	Qua
8260 MSV	Analytical Method: EPA 826	60		
Benzene	ND ug/L	50.0 10	03/31/09 03:32 71-43-2	3d
Carbon tetrachloride	ND ug/L	50.0 10	03/31/09 03:32 56-23-5	
Chloroform	ND ug/L	50.0 10	03/31/09 03:32 67-66-3	
1,1-Dichloroethane	ND ug/L	50.0 10	03/31/09 03:32 75-34-3	
1,2-Dichloroethane	ND ug/L	50.0 10	03/31/09 03:32 107-06-2	
1,1-Dichloroethene	ND ug/L	50.0 10	03/31/09 03:32 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	50.0 10	03/31/09 03:32 156-59-2	
trans-1,2-Dichtoroethene	ND ug/L	50.0 10	03/31/09 03:32 156-60-5	
Ethylbenzene	ND ug/L	50.0 10	03/31/09 03:32 100-41-4	
Methylene chloride	ND ug/L	50.0 10	03/31/09 03:32 75-09-2	
Naphthalene	ND ug/L	50.0 10	03/31/09 03:32 91-20-3	
Tetrachloroethene	ND ug/L	50.0 10	03/31/09 03:32 127-18-4	4d
Toluene	ND ug/L	50.0 10	03/31/09 03:32 108-88-3	
1,1,1-Trichloroethane	ND ug/L	50.0 10	03/31/09 03:32 71-55-6	
Trichloroethene	ND ug/L	50.0 10	03/31/09 03:32 79-01-6	3d
Vinyl chloride	ND ug/L	20.0 10	03/31/09 03:32 75-01-4	1d,2d
Xylene (Total)	ND ug/L	100 10	03/31/09 03:32 1330-20-7	
Dibromofluoromethane (S)	102 %	80-123 10	03/31/09 03:32 1868-53-7	
4-Bromofluorobenzene (S)	102 %	70-126 10	03/31/09 03:32 460-00-4	
Toluene-d8 (S)	101 %	80-116 10	03/31/09 03:32 2037-26-5	

Page 480
Pace Analytical Services, Inc.
7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5024402

Sample: SS-A-02	Lab ID: 5024402003	Collected: 03/18/09 14:	55 Received: 03/19/09 11:57	Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qua
8260 MSV	Analytical Method: EPA 826	0		
Benzene	ND ug/L	50.0 10	03/31/09 04:0	6 71-43-2 3d
Carbon tetrachloride	ND ug/L	50.0 10	03/31/09 04:0	6 56-23-5
Chloroform	ND ug/L	50.0 10	03/31/09 04:0	6 67-66-3
1,1-Dichloroethane	ND ug/L	50.0 10	03/31/09 04:0	6 75-34-3
1,2-Dichloroethane	ND ug/L	50.0 10	03/31/09 04:0	6 107-06-2
1,1-Dichloroethene	ND ug/L	50.0 10	03/31/09 04:0	6 75-35-4
cis-1,2-Dichloroethene	ND ug/L	50.0 10	03/31/09 04:0	6 156-59-2
trans-1,2-Dichloroethene	ND ug/L	50.0 10	03/31/09 04:0	6 156-60-5
Ethylbenzene	ND ug/L	50.0 10	03/31/09 04:0	6 100-41-4
Methylene chloride	ND ug/L	50.0 10	03/31/09 04:0	6 75-09-2
Naphthalene	ND ug/L	50.0 10	03/31/09 04:0	6 91-20-3
Tetrachloroethene	ND ug/L	50.0 10	03/31/09 04:0	6 127-18-4 4d
Toluene	ND ug/L	50.0 10	03/31/09 04:0	6 108-88-3
1,1,1-Trichloroethane	ND ug/L	50.0 10	03/31/09 04:0	6 71-55-6
Trichloroethene	ND ug/L	50.0 10	03/31/09 04:0	6 79-01-6 3d
Vinyl chloride	ND ug/L	20.0 10	03/31/09 04:0	6 75-01-4 1d,2d
Xylene (Total)	ND ug/L	100 10	03/31/09 04:0	6 1330-20-7
Dibromofluoromethane (S)	103 %	80-123 10	03/31/09 04:0	6 1868-53-7
4-Bromofluorobenzene (S)	100 %	70-126 10	03/31/09 04:0	6 460-00-4
Toluene-d8 (S)	102 %	80-116 10	03/31/09 04:0	6 2037-26-5

Page 481
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Project Michigan Plaza
Pace Project No.: 5024402

Sample: SS-A-03	Lab ID: 5024402004	Collected: 03/18/09 15:13	Received: 03/19/09 11:57 Matrix: Water	
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No.	Qua
8260 MSV	Analytical Method: EPA 826	0		
Benzene	ND ug/L	50.0 10	03/31/09 04:39 71-43-2 30	d
Carbon tetrachloride	ND ug/L	50.0 10	03/31/09 04:39 56-23-5	
Chloroform	ND ug/L	50.0 10	03/31/09 04:39 67-66-3	
1,1-Dichloroethane	ND ug/L	50.0 10	03/31/09 04:39 75-34-3	
1,2-Dichloroethane	ND ug/L	50.0 10	03/31/09 04:39 107-06-2	
1,1-Dichloroethene	ND ug/L	50.0 10	03/31/09 04:39 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	50.0 10	03/31/09 04:39 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	50.0 10	03/31/09 04:39 156-60-5	
Ethylbenzene	ND ug/L	50.0 10	03/31/09 04:39 100-41-4	
Methylene chloride	ND ug/L	50.0 10	03/31/09 04:39 75-09-2	
Naphthalene	ND ug/L	50.0 10	03/31/09 04:39 91-20-3	
Tetrachloroethene	ND ug/L	50.0 10	03/31/09 04:39 127-18-4 40	d
Toluene	ND ug/L	50.0 10	03/31/09 04:39 108-88-3	
1,1,1-Trichloroethane	ND ug/L	50.0 10	03/31/09 04:39 71-55-6	
Trichloroethene	ND ug/L	50.0 10	03/31/09 04:39 79-01-6 30	d
Vinyl chloride	ND ug/L	20.0 10	03/31/09 04:39 75-01-4 10	d,2d
Xylene (Total)	ND ug/L	100 10	03/31/09 04:39 1330-20-7	
Dibromofluoromethane (S)	103 %	80-123 10	03/31/09 04:39 1868-53-7	
4-Bromofluorobenzene (S)	100 %	70-126 10	03/31/09 04:39 460-00-4	
Toluene-d8 (S)	103 %	80-116 10	03/31/09 04:39 2037-26-5	

Page 482 ace Analytical Services, Inc. 7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

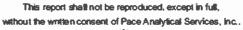
Project Michigan Plaza
Pace Project No.: 5024402

QC Batch: MSV/15262 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024402001, 5024402002, 5024402003, 5024402004

METHOD BLANK: 281391 Matrix: Water

Associated Lab Samples: 5024402001, 5024402002, 5024402003, 5024402004


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	5.0	03/31/09 01:16	
1,1-Dichloroethane	ug/L	ND	5.0	03/31/09 01:16	
1,1-Dichloroethene	ug/L	ND	5.0	03/31/09 01:16	
1,2-Dichloroethane	ug/L	ND	5.0	03/31/09 01:16	
Benzene	ug/L	ND	5.0	03/31/09 01:16	
Carbon tetrachloride	ug/L	ND	5.0	03/31/09 01:16	
Chloroform	ug/L	ND	5.0	03/31/09 01:16	
cis-1,2-Dichloroethene	ug/L	ND	5.0	03/31/09 01:16	
Ethylbenzene	ug/L	ND	5.0	03/31/09 01:16	
Methylene chloride	ug/L	ND	5.0	03/31/09 01:16	
Naphthalene	ug/L	ND	5.0	03/31/09 01:16	
Tetrachloroethene	ug/L	ND	5.0	03/31/09 01:16	
Toluene	ug/L	ND	5.0	03/31/09 01:16	
trans-1,2-Dichloroethene	ug/L	ND	5.0	03/31/09 01:16	
Trichloroethene	ug/L	ND	5.0	03/31/09 01:16	
Vinyl chloride	ug/L	ND	2.0	03/31/09 01:16	
Xylene (Total)	ug/L	ND	10.0	03/31/09 01:16	
4-Bromofluorobenzene (S)	%	102	70-126	03/31/09 01:16	
Dibromofluoromethane (S)	%	102	80-123	03/31/09 01:16	
Toluene-d8 (S)	%	102	80-116	03/31/09 01:16	

LABORATORY CONTROL SAM	PLE: 281392					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	54.4	109	69-136	
1,1-Dichloroethane	ug/L	50	56.0	112	67-133	
1,1-Dichloroethene	ug/L	50	62.4	125	63-128	
,2-Dichloroethane	ug/L	50	56.7	113	69-139	
Benzene	ug/L	50	56.6	113	78-127	
Carbon tetrachloride	ug/L	50	57.7	115	62-143	
Chloroform	ug/L	50	59.1	118	74-131	
is-1,2-Dichloroethene	ug/L	50	58.2	116	74-128	
Ethylbenzene	ug/L	50	57.7	115	81-126	
Methylene chloride	ug/L	50	55.5	111	32-164	
Naphthalene	ug/L	50	45.6	91	61-135	
Tetrachloroethene	ug/L	50	51.6	103	60-119	
Toluene	ug/L	50	55.7	111	75-129	
rans-1,2-Dichloroethene	ug/L	50	61.5	123	71-126	
richloroethene	ug/L	50	56.9	114	74-130	
/inyl chloride	ug/L	50	61.7	123	55-141	
Xylene (Total)	ug/L	150	165	110	76-132	

Date: 09/30/2009 10:04 AM

REPORT OF LABORATORY ANALYSIS

Page 8 of 10

Page 483
Pace Anafrical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5024402

LABORATORY CONTROL SAMPLE: 281392

Parameter	Units	Spike Canc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			101	70-126	
Dibromofluoromethane (S)	%			105	80-123	
Toluene-d8 (S)	%			99	80-116	

Date: 09/30/2009 10:04 AM

REPORT OF LABORATORY ANALYSIS

Page 9 of 10

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Page 484 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALIFIERS

Project Michigan Plaza Pace Project No.: 5024402

DEFINITIONS

DF - Dilution Factor, If reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azoberzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

ANALYTE QUALIFIERS

•	1d	Analysis at a lower dilution was not reportable due to toaming of the sample. AMV 4-1-09
4	2d	evaluated to 17.9 ug/L per MDL. AMV 4-1-09
	3d	evaluated to 5 ug/L per MDL. AMV 4-1-09
4	4d	evaluated to 5.8 ug/L per MDL. AMV 4-1-09
	1	Analyte detected helow reporting limit, therefore result is an estimate

Page 485 ce Analytical Services, Inc. 7726 Moller Roa

7/26 Moller Road Indianapolis, IN 46268 (317)875-5894

April 03, 2009

Leena Lothe Mundell & Associates, Inc. 110 South Downey Avenue Indianapolis, IN 46219

RE: Project: Michigan Plaza
Pace Project No.: 5024404

Dear Leena Lothe:

Enclosed are the analytical results for sample(s) received by the laboratory on March 19, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raedra Zuckowoth

Phaedra Zucksworth

phaedra.zucksworth@pacelabs.com Project Manager

Illinois/NELAC Certification #: 100418 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky Certification #: 0042 Ohio VAP: CL0065 Pennsylvania: 68-00791

West Virginia Certification #: 330

Enclosures

Page 486
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	Date Collected	Date Received
5024404001	MMW-14D	Water	03/18/09 12:30	03/19/09 11:57
5024404002	MMW-P-04	Water	03/18/09 13:30	03/19/09 11:57
5024404003	EQ BLANK	Water	03/18/09 13:00	03/19/09 11:57
5024404004	TRIP BLANK	Water	03/18/09 08:00	03/19/09 11:57

Page 487
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

SAMPLE ANALYTE COUNT

Lab ID	Sample ID	Method	Analysts	Analytes Reported
5024404001	MMW-14D	EPA 8260	AMV	20
5024404002	MMW-P-04	EPA 8260	AMV	20
5024404003	EQ BLANK	EPA 8260	AMV	20
5024404004	TRIP BLANK	EPA 8260	AMV	20

Page 488
Pace Analytical Services, Inc.
7726 Moller Road
Indianapolis, IN 46268

(317)875-5894

ANALYTICAL RESULTS

Sample: MMW-14D	Lab ID: 5024404001	Collected: 03/18/0	9 12:30	Received: 03	V19/09 11:57	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MS V	Analytical Method: EPA	8260					
Benzene	ND ug/L	5.0	1		03/31/09 05:13	3 71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1		03/31/09 05:13	3 56-23-5	
Chloroform	ND ug/L	5.0	1		03/31/09 05:13	3 67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1		03/31/09 05:13	3 75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1		03/31/09 05:13	3 107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1		03/31/09 05:13	3 75-35-4	
cis-1,2-Dichloroethene	454 ug/L	50.0	10		03/31/09 14:5	7 156-59-2	
trans-1,2-Dichtoroethene	9.9 ug/L	5.0	1		03/31/09 05:13	3 156-60-5	
Ethylbenzene	ND ug/L	5.0	1		03/31/09 05:13	3 100-41-4	
Methylene chloride	ND ug/L	5.0	1		03/31/09 05:13	3 75-09-2	
Naphthalene	ND ug/L	5.0	1		03/31/09 05:13	3 91-20-3	
Tetrachloroethene	ND ug/L	5.0	1		03/31/09 05:13	3 127-18-4	
Toluene	ND ug/L	5.0	1		03/31/09 05:13	3 108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1		03/31/09 05:13	3 71-55-6	
Trichloroethene	ND ug/L	5.0	1		03/31/09 05:13	3 79-01-6	
Vinyl chloride	70.0 ug/L	2.0	1		03/31/09 05:13	3 75-01-4	
Xylene (Total)	ND ug/L	10.0	1		03/31/09 05:13	3 1330-20-7	
Dibromofluoromethane (S)	101 %	80-123	1		03/31/09 05:13	3 1868-53-7	
4-Bramofluarobenzene (S)	100 %	70-126	1		03/31/09 05:13	3 460-00-4	
Toluene-d8 (S)	102 %	80-116	1		03/31/09 05:13	3 2037-26-5	

Page 489
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Sample: MMW-P-04	Lab ID: 5024404002	Collected: 03/18/0	9 13:30	Received: 03/19/09 11:57 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
8260 MSV	Analytical Method: EPA 826	0		
Benzene	ND ug/L	5.0	1	03/31/09 05:47 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/31/09 05:47 56-23-5
Chloroform	ND ug/L	5.0	1	03/31/09 05:47 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/31/09 05:47 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/31/09 05:47 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/31/09 05:47 75-35-4
cis-1,2-Dichloroethene	304 ug/L	50.0	10	03/31/09 15:31 156-59-2
trans-1,2-Dichloroethene	10.8 ug/L	5.0	1	03/31/09 05:47 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/31/09 05:47 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/31/09 05:47 75-09-2
Naphthalene	ND ug/L	5.0	1	03/31/09 05:47 91-20-3
Tetrachloroethene	19.4 ug/L	5.0	1	03/31/09 05:47 127-18-4
Toluene	ND ug/L	5.0	1	03/31/09 05:47 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/31/09 05:47 71-55-6
Trichloroethene	5.4 ug/L	5.0	1	03/31/09 05:47 79-01-6
Vinyl chloride	ND ug/L	2.0	1	03/31/09 05:47 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/31/09 05:47 1330-20-7
Dibromofluoromethane (S)	102 %	80-123	1	03/31/09 05:47 1868-53-7
4-Bromofluorobenzene (S)	103 %	70-126	1	03/31/09 05:47 460-00-4
Toluene-d8 (S)	104 %	80-116	1	03/31/09 05:47 2037-26-5

Page 490
Pace Analytical Services, Inc.

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Sample: EQ BLANK	Lab ID: 5024404003	Collected: 03/18/0	13:00	Received: 03/19/09 11:57	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
8260 MSV	Analytical Method: EPA 82	60				
Benzene	ND ug/L	5.0	1	03/31/09 06:21	71-43-2	
Carbon tetrachloride	ND ug/L	5.0	1	03/31/09 06:21	56-23-5	
Chloroform	ND ug/L	5.0	1	03/31/09 06:21	67-66-3	
1,1-Dichloroethane	ND ug/L	5.0	1	03/31/09 06:21	75-34-3	
1,2-Dichloroethane	ND ug/L	5.0	1	03/31/09 06:21	107-06-2	
1,1-Dichloroethene	ND ug/L	5.0	1	03/31/09 06:21	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	5.0	1	03/31/09 06:21	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/31/09 06:21	156-60-5	
Ethylbenzene	ND ug/L	5.0	1	03/31/09 06:21	100-41-4	
Methylene chloride	ND ug/L	5.0	1	03/31/09 06:21	75-09-2	
Naphthalene	ND ug/L	5.0	1	03/31/09 06:21	91-20-3	
Tetrachloroethene	ND ug/L	5.0	1	03/31/09 06:21	127-18-4	
Toluene	ND ug/L	5.0	1	03/31/09 06:21	108-88-3	
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/31/09 06:21	71-55-6	
Trichloroethene	ND ug/L	5.0	1	03/31/09 06:21	79-01-6	
Vinyl chloride	ND ug/L	2.0	1	03/31/09 06:21	75-01-4	
Xylene (Total)	ND ug/L	10.0	1	03/31/09 06:21	1330-20-7	
Dibromofluoromethane (S)	103 %	80-123	1	03/31/09 06:21	1868-53-7	
4-Bromofluorobenzene (S)	100 %	70-126	1	03/31/09 06:21	460-00-4	
Toluene-d8 (S)	102 %	80-116	1	03/31/09 06:21	2037-26-5	

Page 491
Pace Analytical Services, Inc.
7726 Moller Road

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

ANALYTICAL RESULTS

Sample: TRIP BLANK	Lab ID: 5024404004	Collected: 03/18/09	00:80	Received: 03/19/09 11:57 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
8260 MSV	Analytical Method: EPA 82	60		
Benzene	ND ug/L	5.0	1	03/31/09 06:55 71-43-2
Carbon tetrachloride	ND ug/L	5.0	1	03/31/09 06:55 56-23-5
Chloroform	ND ug/L	5.0	1	03/31/09 06:55 67-66-3
1,1-Dichloroethane	ND ug/L	5.0	1	03/31/09 06:55 75-34-3
1,2-Dichloroethane	ND ug/L	5.0	1	03/31/09 06:55 107-06-2
1,1-Dichloroethene	ND ug/L	5.0	1	03/31/09 06:55 75-35-4
cis-1,2-Dichloroethene	ND ug/L	5.0	1	03/31/09 06:55 156-59-2
trans-1,2-Dichloroethene	ND ug/L	5.0	1	03/31/09 06:55 156-60-5
Ethylbenzene	ND ug/L	5.0	1	03/31/09 06:55 100-41-4
Methylene chloride	ND ug/L	5.0	1	03/31/09 06:55 75-09-2
Naphthalene	ND ug/L	5.0	1	03/31/09 06:55 91-20-3
Tetrachloroethene	ND ug/L	5.0	1	03/31/09 06:55 127-18-4
Toluene	ND ug/L	5.0	1	03/31/09 06:55 108-88-3
1,1,1-Trichloroethane	ND ug/L	5.0	1	03/31/09 06:55 71-55-6
Trichloroethene	ND ug/L	5.0	1	03/31/09 06:55 79-01-6
Vinyl chloride	ND ug/L	2.0	1	03/31/09 06:55 75-01-4
Xylene (Total)	ND ug/L	10.0	1	03/31/09 06:55 1330-20-7
Dibromofluoromethane (S)	103 %	80-123	1	03/31/09 06:55 1868-53-7
4-Bromofluorobenzene (S)	101 %	70-126	1	03/31/09 06:55 460-00-4
Toluene-d8 (S)	102 %	80-116	1	03/31/09 06:55 2037-26-5

Page 492
Pace Analytical Services, In

7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5024404

QC Batch: MSV/15262 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 5024404001, 5024404002, 5024404003, 5024404004

METHOD BLANK: 281391 Matrix: Water
Associated Lab Samples: 5024404001, 5024404002, 5024404003, 5024404004

%

%

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers ND 5.0 03/31/09 01:16 1.1.1-Trichloroethane ug/L ug/L ND 5.0 03/31/09 01:16 1,1-Dichloroethane 1,1-Dichloroethene ug/L ND 5.0 03/31/09 01:16 1,2-Dichloroethane ug/L ND 5.0 03/31/09 01:16 Benzene ug/L ND 5.0 03/31/09 01:16 Carbon tetrachloride ug/L ND 5.0 03/31/09 01:16 Chloroform ug/L ND 5.0 03/31/09 01:16 cis-1,2-Dichloroethene ND 5.0 03/31/09 01:16 ug/L Ethylbenzene ug/L ND 5.0 03/31/09 01:16 Methylene chloride ug/L ND 5.0 03/31/09 01:16 ug/L Naphthalene ND 5.0 03/31/09 01:16 ND Tetrachloroethene ug/L 5.0 03/31/09 01:16 ND 5.0 03/31/09 01:16 Toluene ug/L ND 5.0 03/31/09 01:16 trans-1,2-Dichloroethene ug/L ND 5.0 03/31/09 01:16 Trichloroethene ug/L ND Vinyl chloride ug/L 2.0 03/31/09 01:16 Xylene (Total) ug/L ND 10.0 03/31/09 01:16 4-Bromofluorobenzene (S) % 102 70-126 03/31/09 01:16

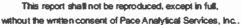
LABORATORY CONTROL SAMPLE:	281392					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	50	54.4	109	69-136	
1,1-Dichloroethane	ug/L	50	56.0	112	67-133	
1,1-Dichloroethene	ug/L	50	62.4	125	63-128	
1,2-Dichloroethane	ug/L	50	56.7	113	69-139	
Benzene	ug/L	50	56.6	113	78-127	
Carbon tetrachloride	ug/L	50	57.7	115	62-143	
Chloroform	ug/L	50	59.1	118	74-131	
cis-1,2-Dichloroethene	ug/L	50	58.2	116	74-128	
Ethylbenzene	ug/L	50	57.7	115	81-126	
Methylene chloride	ug/L	50	55.5	111	32-164	
Naphthalene	ug/L	50	45.6	91	61-135	
Tetrachloroethene	ug/L	50	51.6	103	60-119	
Toluene	ug/L	50	55.7	111	75-129	
trans-1,2-Dichloroethene	ug/L	50	61.5	123	71-126	
Trichloroethene	ug/L	50	56.9	114	74-130	
Vinyl chloride	ug/L	50	61.7	123	55-141	
Xylene (Total)	ug/L	150	165	110	76 -132	

102

102

80-123 03/31/09 01:16

80-116 03/31/09 01:16


Date: 04/03/2009 03:17 PM

Dibromofluoromethane (S)

Toluene-d8 (S)

REPORT OF LABORATORY ANALYSIS

Page 8 of 10

Page 493
Pace Analytical Services, Inc.
7726 Moller Road

Indianapolis, IN 46268 (317)875-5894

QUALITY CONTROL DATA

Project Michigan Plaza
Pace Project No.: 5024404

LABORATORY CONTROL SAMPLE: 281392

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
4-Bromofluorobenzene (S)	%			101	70-126	
Dibromofluoromethane (S)	%			105	80-123	
Toluene-d8 (S)	%			99	80-116	

Page 494 ace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)875-5894

QUALIFIERS

Project Michigan Plaza
Pace Project No.: 5024404

DEFINITIONS

DF - Dilution Factor, If reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azoberzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

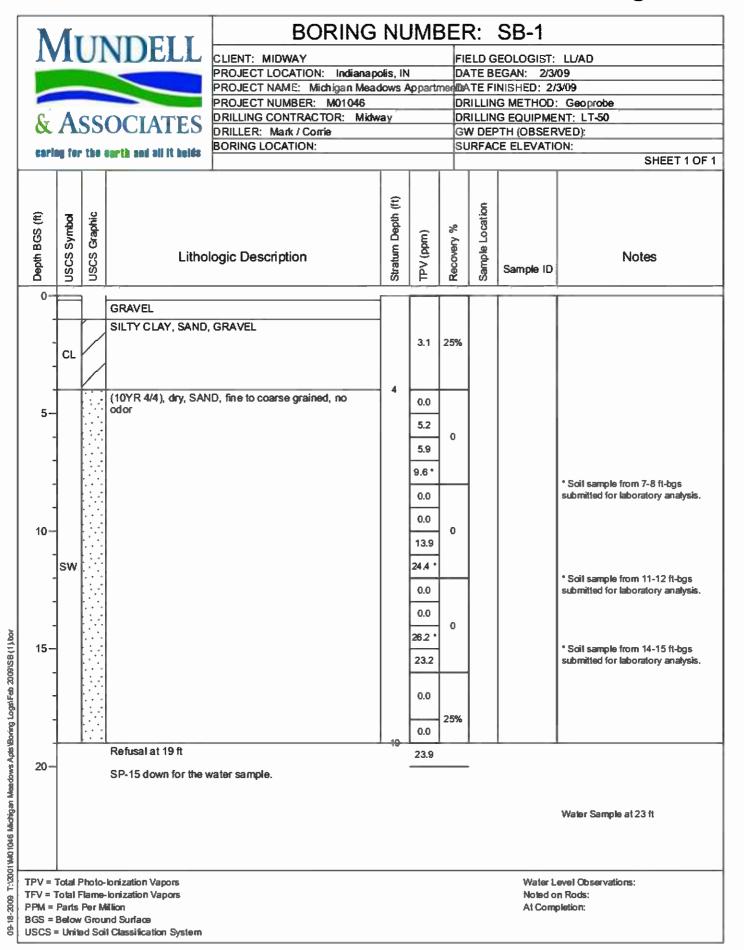
U - Indicates the compound was analyzed for, but not detected.

Date: 04/03/2009 03:17 PM

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

3

Pace Analytical www.paceites.com

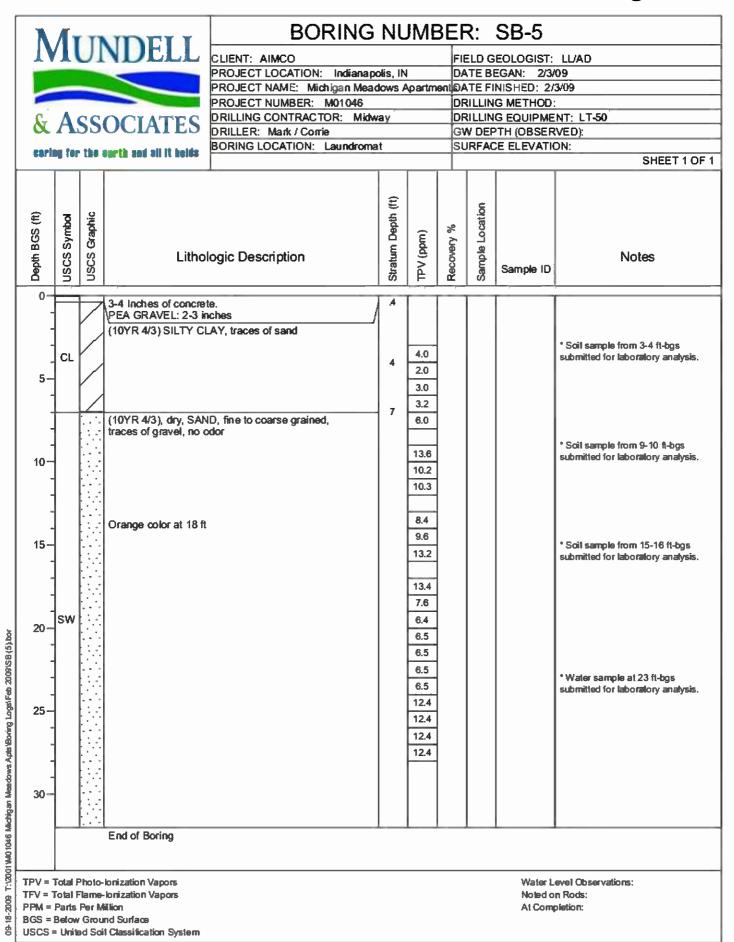

Page 495 Reference 26 1247702 Pace Project No./ Lab f.D. DRINKING WATER (NVA) 5024+0+ SAMPLE CONDITIONS F-ALL-Q-020rev.07, 15-May-2007 888 OTHER (N/A) Sealed Cooler Custody Received on los (Y/N) GROUND WATER Residual Chlorine (Y/N) Cemp in °C REGULATORY AGENCY 3 Requested Analysis Fiftered (Y/N) THE 19/69 STATE Site Location NPDES DATE CMM.DD.PT. 3 |19| 69 ST Mandley Per ACCEPTED BY ! AFFILIATION Sed 65 + 100 15 8260 N/A JasT aisylenA иры Methanol not paid eather 30 days Attention Mask Tebs Company Name. Minuse. Preservatives Na2S2O3 MENT DAMARK CT HOBN HCI 47 M 64 M [€]ONH Para Geode Reference: Pace Project Manager Pece Profic & POS⁷H 11:57 Section C Unpreserved M Address: # OF CONTAINERS PRINT Name of SAMPLER. "Important Hote: By argming linis form you are adventing Peces's HET 30 day payment terms and agreeing to take charges of 1,5% per nameh for SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION ज्ञान वि DATE 28 HE I COMPOSITE Sieles DATE COLLECTED RELINGUISHED BY JAFFILIATION TIME Project Name: Mastry our Plaze START Lothe Molow. WIT Charl Colonial DATE Required Project Information Report To: SAMPLE TYPE Junchase Order No.: (G=GBVB C=COMP) S 5 Project Number MATRIX CODE Section B O NO SA AS CO Matrix Codes Ornking Water Water Waster Waster Waster Product Sout-Sold: Oil Winge Au Phone: \$75-630-9065 \$17-630-6000 307-630-9065 Requested Due DateffAt: ZLMS * Sec aboched short 1:54 JOHNSEY BUT. Company Margell & 18500 cates ADDITIONAL COMMENTS (A-Z, 0-97,-) Sample IDs MUST BE UNIQUE SAMPLE ID Man D-04 MMM-149 Required Client Information Section A Required Client Information: E a Blenk Tre Hank Austrens. Eman To: 5 E 4 6 7 € 6 # MBTI 8

Sample Condition Upon Receipt Client Name: Project # Courier: Fed Ex UPS USPS CKent Commercial Pace Other Tracking #: Custody Seal on Cooler/Box Present: ☐ yes ☐ yes Seals intact: Packing Material: Bubble Wrap Bubble Bags None Thermometer Used Type of Ice: Wet Blue None Samples on ice, cooling process has begun Date and initials of person examining Biological Tissue is Frozen: Yes No Cooler Temperature contents: Temp should be above freezing to 6°C Comments: Chain of Custody Present: Des ONO ONA Chain of Custody Filled Out: ZDYes □No DNA 2. Chain of Custody Relinquished: Des ONO □N/A 3. DYGS DNO Sampler Name & Signature on COC: **DN/A** Samples Arrived within Hold Time: DYes ONO **DN/A** Short Hold Time Analysis (<72hr): ☐Yes ☐No PINTA □Yes □No Rush Turn Around Time Requested: ENVA Sufficient Volume: Pres ONO □N/A Correct Containers Used: DNo. DN/A 9. -Pace Containers Used: □Øs □No **□**N/A Containers Intact: ☑9es □No □N/A 10. Filtered volume received for Dissolved tests ☐Yes ☐No PAUA 11. Sample Labels match COC: Pes ONO ONIA 12. -includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. ☐Yes ☐No (NIA) 13. All containers needing preservation are found to be in ☐Yes ☐No compliance with EPA recommendation. Initial when Lot # of added Wes UNO exceptions: VOA, coliform, TOC, O&G, Wt-DRO (water) completed preservative Samples checked for dechlorination: TYES THO BINA 14. Headspace in VOA Vials (>6mm): TYPES TONO THE 15. Trip Blank Present: THE DNO DNA Trip Blank Custody Seals Present ☐Yes ☐N/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Raquired? Y / N Person Contacted: Date/Time: Comments/ Resolution: 09 Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR: Certification Office (i.e out of hold, Incorrect preservative, nut of temp, Incorrect containers)

Date:

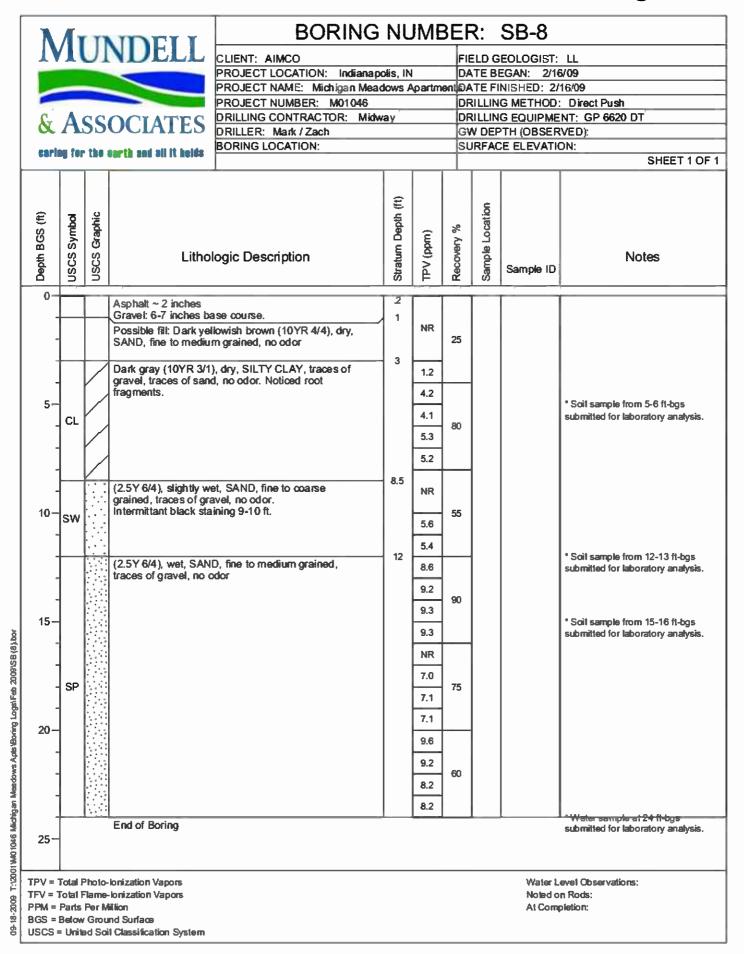
APPENDIX B SOIL BORING LOGS


A	Æι	60 8	MACLI	BORING NUMBER: SB-2							
1	VI.	U)	NDELL	CLIENT: AIMCO			FIE	FIELD GEOLOGIST: LL/AD			
				PROJECT LOCATION: Indianap	olis, IN	1	\rightarrow	DATE BEGAN: 2/3/09			
	_	_		PROJECT NAME: Michigan Meadows Apartment							
-				PROJECT NUMBER: M01046			-		G METHOD		
&	A	SS	OCIATES	DRILLING CONTRACTOR: Midw DRILLER: Mark / Corrie	/ay				G EQUIPME PTH (OBSER		
				BORING LOCATION:					CE ELEVATION		
sari	ing for	r the	earth and all it helds				1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SHEET 1 OF 1	
				1							
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	Stratum Depth (ft)		Recovery %	Sample Location	Sample ID	Notes		
0-			4 lookes of seconds		1 2			_			
	-		4 Inches of concrete, PEA GRAVEL aprox Base course. Possible fill 2 inches, Yellowish brown (10)	2-3*			25				
	CL	/	Dry, SILTY CLAY wit	th trace SAND and GRAVEL,		2.0					
5-	-	ľ									
	1	\vee				10.8	55			* Soil sample from 6-7 ft-bgs submitted for laboratory analysis.	
	+	1.5	Dark yellowish brown	n (10YR 4/3), dry, SAND, , fine	7	5.6				Submitted for laboratory analysis.	
	-		to coarse grained, no	o odor		-		1			
	-					3.6					
10-	-					_	50				
	-					7.8				* Soil sample from 11-12 ft-bgs	
	-					6.8				submitted for laboratory analysis.	
	-										
	1						50				
15-						5.5				* Soil sample from 15-16 ft-bgs	
"]					8.2				submitted for laboratory analysis.	
]										
	sw										
8	1					7.2	55				
	1		Slight Yellowish Oran	nge at 19°		8.8					
호 20-	1					7.4					
8	1					6.5					
<u> </u>	1					8.7	1				
8	-					9.8				* Water sample at 23 ft-bgs	
	-					8.8				submitted for laboratory analysis.	
ố 25-	-					\vdash					
8	-					8.2					
<u>5</u>	-	: :				9.9					
5	-		End of Posics			10.1					
9	-		End of Boring								
30-	-										
TFV =	FPV = Total Photo-lonization Vapors FFV = Total Flame-lonization Vapors PPM = Parts Per Million 3GS = Below Ground Surface									evel Observations: on Rods: pletion:	
S DSCS			ind Surface if Classification System								

A	Λı		MARTI	BORING NUMBER: SB-3								
11	/11	U	NDELL	CLIENT: AIMCO			FIE	FIELD GEOLOGIST: LL/AD				
				PROJECT LOCATION: Indianap	olis, IN	1		DATE BEGAN: 2/3/09				
		-			lows /	rs Apartment DATE FINISHED: 2/3/09						
	_			PROJECT NUMBER: M01046			_		G METHOD			
1 &	A	SS	OCIATES	DRILLING CONTRACTOR: Midw DRILLER: Mark / Corrie	ay				G EQUIPME TH (OBSER			
				BORING LOCATION:					E ELEVATION			
sarii	ig for	the i	parth and all it helds					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SHEET 1 OF 1		
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description .		TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes		
0-			4 Inches of concrete	-	2							
-	1		GRAVEL: 2-3 inches									
-	CL		Possible fill	s of gravel and sand		9.7	50			* Soil sample from 2-3 ft-bgs		
-	-		, SILIT CLAT, Dace	sol graver and saild		8.7				submitted for laboratory analysis.		
.		<u>, , </u>	Day CAND San and		4	7.1						
5-			Dry, SAND, line gras	ned, traces of gravel, no odor		_						
.						6.4	75					
.						7.1						
.						L						
	1					7.6						
10-	1					8.9	75					
-	1					9.6				* Soil sample from 11-12 ft-bgs submitted for laboratory analysis.		
-	1					-				Submitted for laboratory arrayas.		
-	1					9.7						
-	1		Orange color at 14-1	5' 5YR 6/8 (reddish yellow)			75					
15	-		color			10.9				* Soil sample from 15-16 ft-bgs		
.	sw					10.2				submitted for laboratory analysis.		
.												
.						10.3	75					
: .						12.9	'					
200						12.6						
20-	1							1				
-	1					10.5						
] -	1					8.5	75					
1 -	1					8.0				* Water sample at 23 ft-bgs submitted for laboratory analysis.		
-	1									Submitted for laboratory arrayses.		
25-												
-												
-	_		End of Posins						L			
	-		End of Boring									
30-												
- r	Total F	lame-	lonization Vapors Ionization Vapors							evel Observations: in Rods: pletion:		
BGS = Betow Ground Surface USCS = United Soil Classification System												

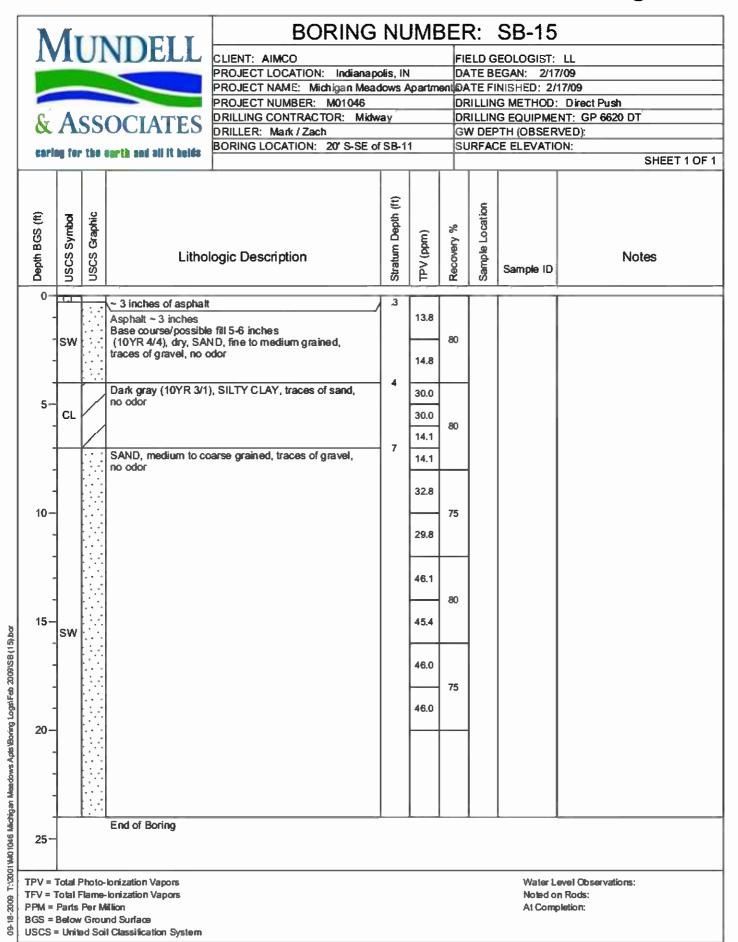
A	Α×	-	MART I	BORING NUMBER: SB-4								
- 11	Щ	U	NDELL	CLIENT: AIMCO			FII	FIELD GEOLOGIST: LL/AD				
				PROJECT LOCATION: Indianap	olis, IN	1	\rightarrow	DATE BEGAN: 2/3/09				
	_	_		PROJECT NAME: Michigan Mea	dows /	4partm	ent D/	DATE FINISHED: 2/3/09				
				PROJECT NUMBER: M01046					G METHOD			
S	Α	22	OCIATES	DRILLING CONTRACTOR: Midw	/ay				G EQUIPME			
CC	A Mi		OCLILLS	DRILLER: Mark / Corrie	311	GW DEPTH (OBSERVED): st SURFACE ELEVATION:						
sarii	og for	the:	earth and all it helds	BORING LOCATION: Merridian S	Street		50	JKFAC	E ELEVAIR	SHEET 1 OF 1		
									I	SHEET TOT T		
					Stratum Depth (ft)			8				
E	Symbol	Graphic			ફ		%	Sample Location				
Š	λy.	<u>ක</u>			٦	IPV (ppm)	چ	١٩				
ŧ	ဗ္ဂ	છ	Litho	logic Description	真	<u>s</u>	Зесомелу	홍		Notes		
Depth BGS (ft)	nscs	nscs			EE	6	8	Jag	Sample ID			
	=											
		\vdash	4 Inches of concrete. GRAVEL: 3 inches b		A	4						
•		Y	Fill: 3 inches of SAN		0.0							
•	CL	/	Dark yellowish brown	n (10YR 4/4), slightly moist	1	0.0	60					
•		Υ.	(forzen), no odor			2.5						
-		 	l Dry, Sill it CLAT, tra Nodor	aces of sand and gravel, no	4	0.0	_	1				
5-			GRAVEL at 4 feet									
-			D- 0411D 54			7.6	95			* Soil sample from 6-7 ft-bgs		
			I Dry, SAND, time to $lpha$ I no odor	parse grained, traces of gravel,		13.2				submitted for laboratory analysis.		
_	sw		Gravel layers from h	eaving.		12.4						
		[:::				6.4]				
	1					7.9						
10-	1					14.9	70			* Soil sample from 10-11 ft-bgs submitted for laboratory analysis.		
-			Dry, SAND, fine grain	ned, no odor	11	14.2						
	SP					<u> </u>		1				
	"											
-			Dade brown (10VB 2	/3), dry, SAND, fine to medium	14	10.0						
15			grained, traces of gra			18.3		-				
_						21.7	70			* Soil sample from 16-17 ft-bgs		
						30.4		_		submitted for laboratory analysis.		
						27.4						
						12.5	90					
-						25.3						
20 –	1	: :						1				
-	SW	.'.'.										
-	1					28.8	75	27.7				
•	1					14.9				* Water sample at 23 ft-bgs		
-	1					18.1	-	1		submitted for laboratory analysis.		
25-												
-						17.2	90					
-						17.0						
16.8												
-			End of Boring									
30-	30_											
			lonization Vapors lonization Vapors							evel Observations: n Rods:		
PPM =			*						At Com			

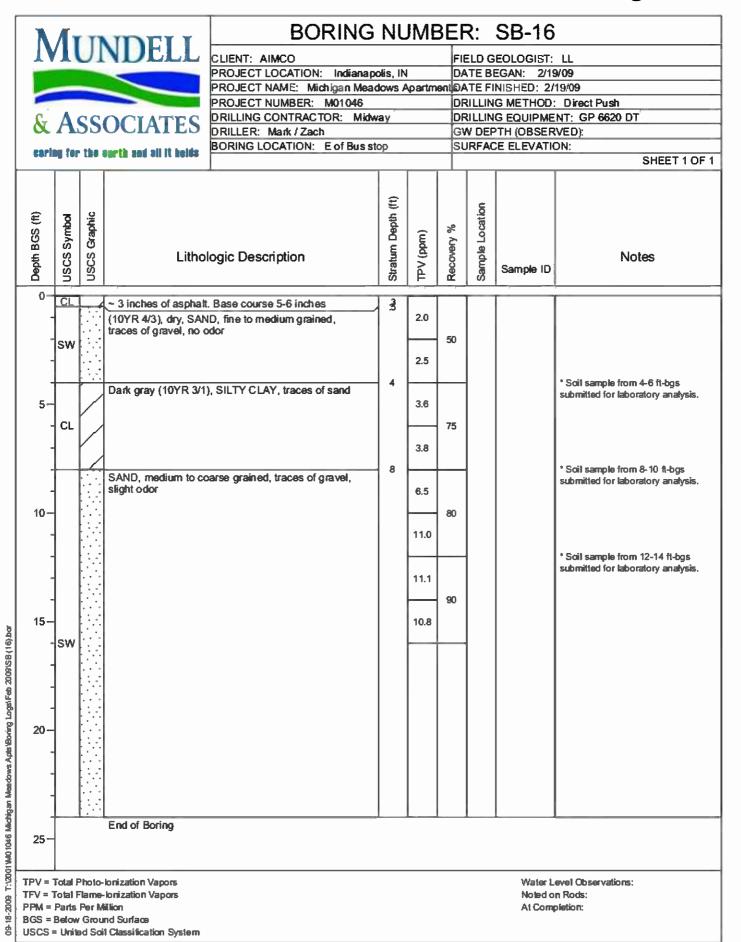
09-18-2009 T:\2001\W01046\Michigan Meadows Apis\Boring Logs\Feb 2009\SB {4}bor


BGS = Below Ground Surface USCS = United Soil Classification System

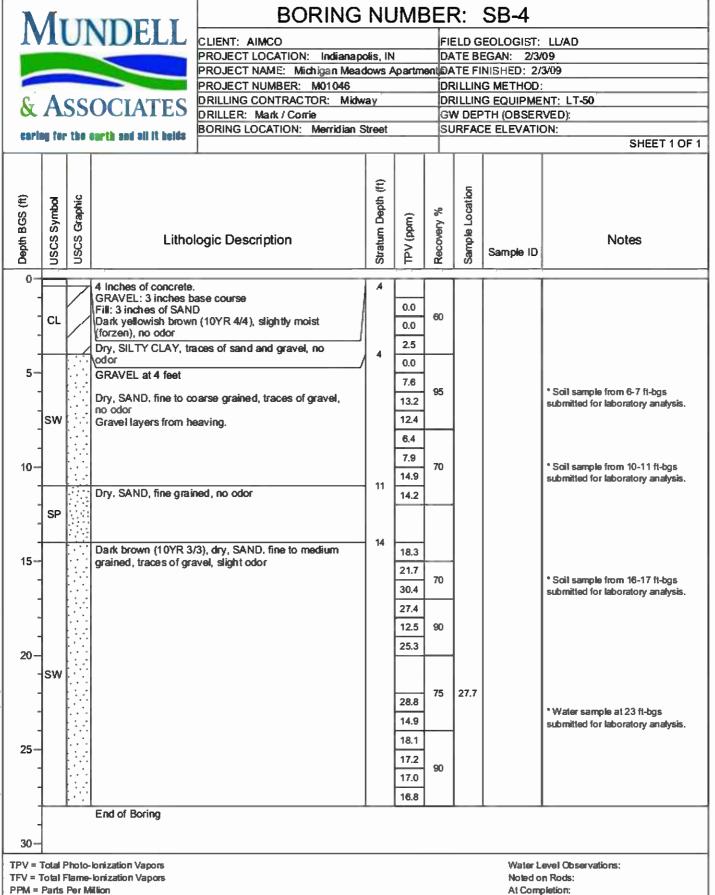
A	Æ1		MACTI	BORING	Νl	JME	3EF	₹:	SB-6			
+1		U]	NDELL	CLIENT: AIMCO			FIE	FIELD GEOLOGIST: LL/AD				
				PROJECT LOCATION: Indianap	olis, IN	1	\rightarrow	DATE BEGAN: 2/3/09				
	_	_		PROJECT NAME: Michigan Mead	dows /	4partm	entDA	TE F	NISHED: 2/	3/09		
-				PROJECT NUMBER: M01046			-		G METHOD			
S.	Α	22	OCIATES	DRILLING CONTRACTOR: Midw	/ay		$\overline{}$		G EQUIPME			
•	A N.	JU	OCLILLS	DRILLER: Mark / Corrie					TH (OBSER			
sar	ing for	r the	earth and all It helds	BORING LOCATION: Laundroma	at		50	JKFAC	E ELEVATION	SHEET 1 OF 1		
-	Т	1		1	1			П	1	SHEET FOF T		
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description		TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes		
0-	CL		4 Inches of concrete. PEA GRAVEL: 3 incl Possible fill 3-4 inche (10YR 4/4), dry, no o Dry, SILTY CLAY, tre	hes. es	A	2.2						
5-	-sw		Dry, SAND, fine to or	parse grained, no odor	5	3.5 2.0 2.6				Soil sample from 5-6 ft-bgs submitted for laboratory analysis. Soil sample from 7-8 ft-bgs submitted for laboratory analysis.		
10-	SP		(10YR 4/6), dry, SAN	ID, fine grained, no odor	9	1.7 1.8 2.0						
15-	sw		odor. Slight ORANGE colo	or from 15'-16°		6.5 2.1				* Sait sample from 14-15 ft-bgs submitted for laboratory analysis.		
20- 20-	SP SW		(10YR 4/6), dry, SAN	ID, fine grained, no odor	17	5.2 6.4 7.0						
vs Apter Boring Logsk Fe	SP		Wet		22 23	7.3				" Water sample at 23 ft-bgs submitted for laboratory analysis.		
20-200-2008 1.0000	sw		End of Boring									
30-	-											
TPV = TFV = PPM = BGS = USCS	Total I Parts Below	Flame Per iv Grou	lonization Vapors lonization Vapors Milion and Surface il Classification System		Water Level Observations: Noted on Rods: At Completion:					n Rods:		

A	Æ,	e a	TENT I	BORING NUMBER: SB-7								
1	Щ	U	NDELL	CLIENT: AIMCO			FII	FIELD GEOLOGIST: LL/AD				
		-		PROJECT LOCATION: Indianap				DATE BEGAN: 2/4/09				
		_		PROJECT NAME: Michigan Mead	dows /	\partm						
0	A	~ ~		PROJECT NUMBER: M01046 D DRILLING CONTRACTOR: Midway D					G METHOD: G EQUIPME			
de	A	55	OCIATES	DRILLER: Mark / Corrie	м		\rightarrow		TH (OBSER			
			Carth and all it helds	BORING LOCATION:					E ELEVATION			
SAFII	all tot	. LEG 1	official similating matter							SHEET 1 OF 1		
					E			_				
Œ	তু	Ę.			Stratum Depth (ft)			atio.				
Depth BGS (ft)	JSCS Symbol	USCS Graphic		logic Description		Ê	Зесочелу %	၂ ၀				
E.	SS	SG	Litho			IPV (ppm)	ž (8		Notes		
)ept	ည္က	<u> </u>		ogio Bossiipaoi.)trait	≥	ğ	Sample Location	Sample ID	. 10100		
	-				(,0	<u> </u>	<u> </u>	(0)				
0-			4 Inches of concrete.		A							
-			GRAVEL: 3 inches. Gravel base is cours	8.			NR					
-			Fil material about 3 is	nches of sand Dark yellowish		0.0		1				
-			brown (10YR 4/4)	amounts of SAND and GRAVEL.	3	3.2	50			* Soit sample from 3-4 ft-bgs submitted for laboratory analysis.		
-		//	OLIT OLAT, GITAL	SHOULD OF CAMP CHAPEL.				1				
5-												
-	CL						0					
-	-	/										
-		Ľ.						1				
-		/					NR					
10-	<u> </u>	<u> </u>	CAND See seeined.	dille about a final	10	<u> </u>		-		* Soit sample from 10-11 ft-bgs		
-			SAND, INE GLANIEUV	with chunks of rock.		1.6	50			submitted for laboratory analysis.		
						1.6		-				
-	sw						NR					
_												
15	L_				15	0.4	50			* Soit sample from 15-16 ft-bgs		
			Yellowish brown (10)	/R 5/6), SAND, fine grained	.	0.3				submitted for laboratory analysis.		
_							NR					
							1411					
	sw					0.3	50					
~~						0.4	30					
20-								1				
-						0.6						
-	SP	111		(10YR 3/4), moist, SAND,	22	1.8	75					
-			poorly graded	MOVE 244) The SAND STA	23	1.2				* Water sample at 23 ft-bgs submitted for laboratory analysis.		
-			grained	n (10YR 3/4), moist, SAND, fine				1				
25-	sw					4.4						
-						4.6	75					
-						6.4						
-	<u> </u>	<u> </u>	End of Boring						L			
-	End of Boring											
30 —	30-											
TPV = 1	Total F	hoto-	Ionization Vapors						Water L	evel Observations:		
TFV = 1	FV = Total Flame-lonization Vapors Noted on Rods:											
PPM = BGS = 1			Milion Ind Surface						At Com	рієтю п:		
			I Classification System									

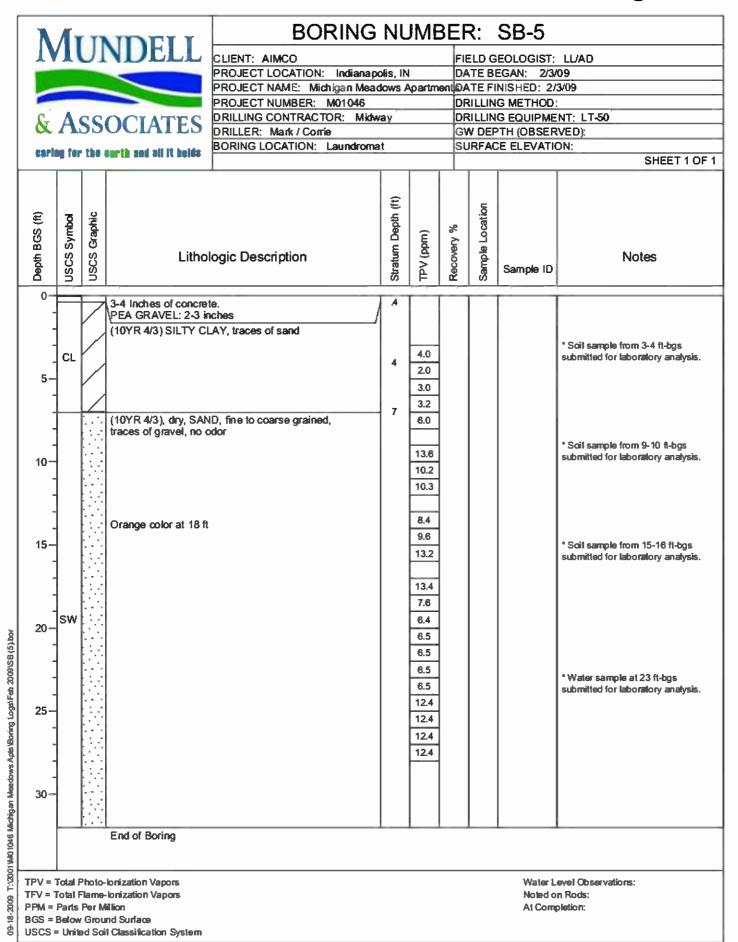

09-18-2009 T:\2001\W01046\Michigan Meadows Apis\Boring Logs\Feb 2009\SB\(7\)bor



&	A	SS	NDELL OCIATES BERT IN AND BILL IT BOILDS	BORING CLIENT: AIMCO PROJECT LOCATION: Indiana PROJECT NAME: Michigan Me: PROJECT NUMBER: M01046 DRILLING CONTRACTOR: Mid DRILLER: Mark / Zach BORING LOCATION:	polis, II adows :	۷	FI D/ nen/5/ D/ G/	ELD C ATE B ATE F RILLIN RILLIN	SEOLOGIST EGAN: 2/1 INISHED: 2/1 IG METHOD	6/09 116/09 b: Direct Push ENT: GP 6620 DT RVED):
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes
0-	CL		Asphalt ~ 2 inches Gravel: ~ 4-6 inches Dark gray (10YR 3/1 gravel, medlum to co), dry, SILTY CLAY, traces of parse grained, no odor		1.5 1.7	50			
5-	sw		Dark brown (7.5yr 3/ coarse grained, trace grained, no odor Light yellowish brown	4), dry, SAND, medium to es of gravel, fine to medium n (2.5y 6/4) at 6.5 ft	4	5.0 5.5 6.0 5.2	90			* Soit sample from 5-7 ft-bgs submitted for laboratory analysis.
10-			Gravel/cobble layer : SW from 10 ft	et 9 ft n (2.5Y 6/4), SAND, fine to	11.5	7.1 5.2 5.2	65			
15-			medium grained, tra	ces of silt		10.2 8,9 7.2 10.1	90			Soil sample from 12-13 ft-bgs submitted for laboratory analysis. Soil sample from 15-16 ft-bgs submitted for laboratory analysis.
20-	SP					7.1 7.2 7.1	60			
20-							NR			" Water sample and DUP at 24 ft-bgs submitted for laboratory analysis.
25-	Intel f	iholo-!	End of Boring						infainr I -	ual Ohservahinae
TFV = 1 PPM = 1 BG\$ = 1	lotal F Parts Below	lame- Per Mi Grour	Onization Vapors Ionization Vapors Illion ad Surface Classification System		_				Water Le Noted on At Compl	


	A	Λ'n		MOTT	BORING	NL	JME	3EF	FIELD GEOLOGIST: LL			
	11		U	NDELL	CLIENT: AIMCO			FIE	ELD G	EOLOGIST:	LL	
			-		PROJECT LOCATION: Indiana;	oolis, IN		\rightarrow		EGAN: 2/10		
					PROJECT NAME: Michigan Mea	dows /	\partm					
		_			PROJECT NUMBER: M01046			_			: Direct Push	
	&	A	SS	OCIATES	DRILLING CONTRACTOR: Mids DRILLER: Mark / Zach	way				TH (OBSER	NT: GP 6620 DT	
					BORING LOCATION:					E ELEVATION		
	SBFII	101	. CEO	oarth and all it helds						*	SHEET 1 OF 1	
	Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes	
	0-	CL		Asphalt ~ 2 inches Gravel: ~ 4-6 inches Dark gray (10YR 3/1 gravel, medium to co), dry, SILTY CLAY, traces of parse grained, no odor		NA 1.5	50				
	-			Dark brown (7.5yr 3/	4), dry, SAND, medium to	- 4	5.0	\vdash	l			
	5-	-		coarse grained, trace	es of gravel, fine to medium			1				
	grained, no odor						5.5	90			* Soil sample from 6-7 ft-bgs	
	_			Light yellowish brown	n (2.5y 6/4) at 6.5 ft		6.0				submitted for laboratory analysis.	
		sw					5.2					
	-	1						\vdash	1			
	-	1		Gravel/cobble layer	at 9 ft		7.1	ł				
	10-	-		SW from 10 ft			<u> </u>	65				
							5.2					
		<u> </u>		Light vellowish brown	n (2.5Y 6/4), SAND, fine to	11.5	5.2				* Soil sample from 12-13 ft-bgs	
	-	1	· · · .	medium grained, trad	ces of silt		10.2		1		submitted for laboratory analysis.	
	•	1					8.9	1				
	-	1					7.2	90				
	15-						1.2				* Soil sample from 15-16 ft-bgs	
Ĕ							10.1				submitted for laboratory analysis.	
88												
8	-	SP					7.1	1				
8	-	3					7.2	60				
8	-	ł					7.1	-				
8	20-	-					7.1	<u> </u>				
09-18-2009 T:\2001 W0 1046 Michigan Meadows Apis Boring Logs\Feb 2009\SB (9) bor	-							NR			*Water sample and DUP at 24 ft-bgs submitted for laboratory analysis.	
皇	-			End of Boring								
11 WAO 1046	25-											
09-18-2009 T:\200	TFV = 7 PPM = BGS =	Total i Parts Below	Flame Per M Grou	lonization Vapors lonization Vapors Milion nd Surface I Classification System						Water L Noted o At Com		

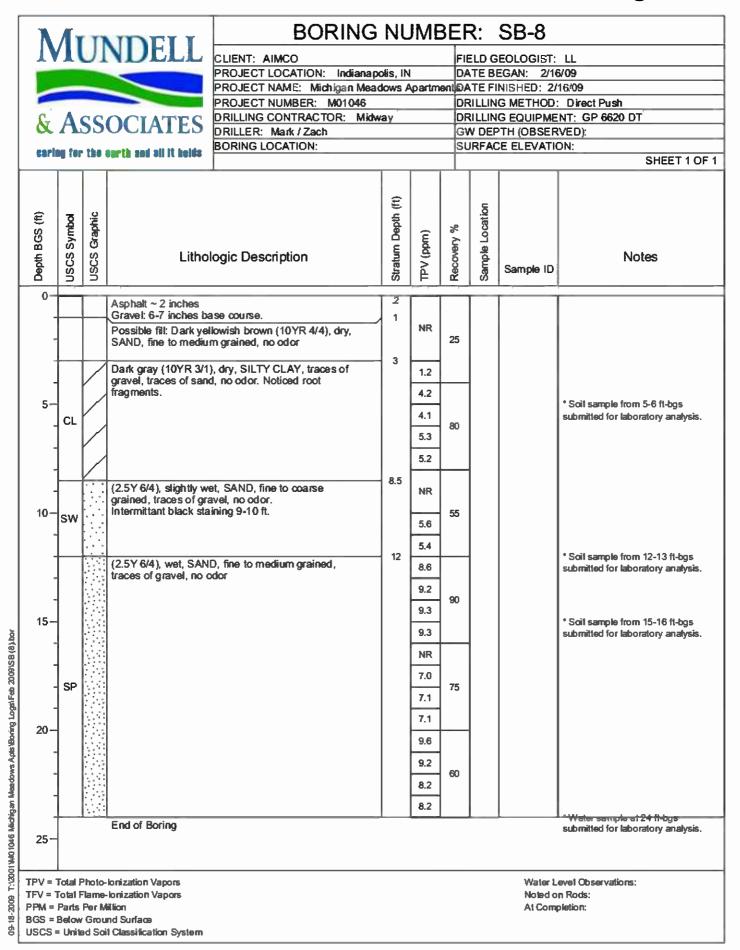
A	Æ1		MATT	BORING	NU	JME	3EF	ER: SB-10			
11	AT	U	NDELL	CLIENT: AIMCO			FIE	ELD G	EOLOGIST:	LL	
				PROJECT LOCATION: Indianap	olis, IN	1	\rightarrow		EGAN: 2/1		
	_	_		PROJECT NAME: Michigan Mead	dows /	Apartm	entDA	TE F	NISHED: 2/	17/09	
	_			PROJECT NUMBER: M01046						Direct Push	
. Sy	Α	22	OCIATES	DRILLING CONTRACTOR: Midw	/ay					NT: GP 6620 DT	
•	4 1		CCHILD	DRILLER: Mark / Zach BORING LOCATION:					TH (OBSER		
sari	ing fo	the:	oarth and all it helds	BORING LOCATION.			30	JAFAC	E ELEVAIN	SHEET 1 OF 1	
	T			1					1	5,,22, , 6, ,	
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes	
0-	1		~ 3 inches of asphalt		. 3		Г				
	\vdash			ase course ~ 6 inches.	1	-	-				
		[/	(10YR 3/4), dry, SILT	TY CLAY, traces of sand,		0.5	75				
	CL	\vee	medium grained, no	odor		1.8	′ ັ				
'	1	/				1.8	1				
.	╫	/ .	(10VP 4/3) doz SAN	ID, fine to coarse grained,	4		\vdash	ł		* Soil sample from 4-6 ft-bgs	
5-	1		traces of gravel, very	fine grained, no odor		<u> </u>				submitted for laboratory analysis.	
						3.2	80				
	1					2.3	1 80				
·	-sw					-	ł				
	-					2.3	<u> </u>			* Soil sample from 8-10 ft-bgs	
		: : :				10.1				submitted for laboratory analysis.	
'	1					10.2	1				
10-	\vdash		(10YR 4/4) dry SAN	ID, fine to medium grained,	10	9.1	90				
	SP		traces of silt, no odor			9.1	1				
					12	9.1					
				ine to coarse grained, traces of] '*						
1 '	1		gravel, with some 2.5	51 R 5/8 color.		7.9	1				
.	-					<u> </u>	75			* Soil sample from 14-16 ft-bgs	
. 15-						9.8				submitted for laboratory analysis.	
A	sw					9.8					
<u>.</u>						9.8		1			
. 865 .	-					<u> </u>	1				
Ř .	-					9.4	80				
	\vdash	1.7.2	(10YR 4/3) wet SAN	ND, fine grained, no odor	18.5	10.1					
<u>ق</u> ا	1		(10111 110), 1104 011	10, 1110 5		10.1]				
ੈਂ 20-	1					_		l			
ğ .	SP										
Ì .] "										
8		:									
<u>₹</u> .	1									* Water sample at 24 ft-bgs submitted for laboratory analysis.	
<u>.</u>	+-	14:11	End of Boring								
물 일 25-	-										
<u> </u>											
TFV =	Total i Parts	Flame Per M	lonization Vapors Ionization Vapors Milion Ind Surface						Water L Noted o At Com		
8 USCS			1 Classification System								


A	/In		MACTI	BORING	ΝL	JME	3EF	₹:	SB-3	
1	YI	U	NDELL	CLIENT: AIMCO			FII	ELD G	EOLOGIST:	LL/AD
		-		PROJECT LOCATION: Indianapa	olis, IN	1	\rightarrow		EGAN: 2/3/	
	_	_		PROJECT NAME: Michigan Mead	lows /	Apartm				
-				PROJECT NUMBER: M01046					G METHOD	
1 &	A	SS	OCIATES	DRILLING CONTRACTOR: Midw	ay				G EQUIPME	
				DRILLER: Mark / Corrie BORING LOCATION:					PTH (OBSER	
sari	ing for	the i	earth and all it helds	BORING LOCATION.			30	JICH	E ELEVAIN	SHEET 1 OF 1
	T			1					1	5,,22, , 6, ,
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes
0-	H		4 Inches of concrete		2		Г		T	
	-	\vee	GRAVEL: 2-3 inches							
	CL	[/	Possible fill				50			* Soil sample from 2-3 ft-bgs
			, SILTY CLAY, trace:	s of gravel and sand		8.7				submitted for laboratory analysis.
					4	7.1				
5-			Dry, SAND, fine grait	ned, traces of gravel, no odor	`					
5-	1					6.4	1			
	1						75			
	1					7.1				
	-					<u> </u>	-	1		
	-						-			
10-						7.6	75			
"						8.9	'`			1 5 mil 1 1 1 2 /4 h
	1					9.6]			Soil sample from 11-12 ft-bgs submitted for laboratory analysis.
	-							1		, ,
1 '	1	: : :				9.7	1			
	1		Orange color at 14-1	5' 5YR 6/8 (reddish yellow)		-	75			
15~	4		color			10.9	-			* Soil sample from 15-16 ft-bgs
	-sw					10.2				submitted for laboratory analysis.
		. : :								
١.						10.3	75			
2	1					12.9	75			
9	1					12.6	1			
§ 20-	1							1		
8	-					10.5	1			
§	-	: .				10.5	75			
	~					8.5	-			* Water sample at 23 ft-bgs
8	_	. : :				8.0		1		submitted for laboratory analysis.
일 25-		; · · ·								
8 23										
	1									
5	1									
9	+-	<u>. </u>	End of Boring					_		
8	-		_ in or boring							
30-	-									
TPV = TFV = PPM = BGS =	Total I Parts Below	Flame Per M / Grou	nd Surface						Water L Noted o At Com	
5 USCS	= Unit	ed Sai	il Classification System							

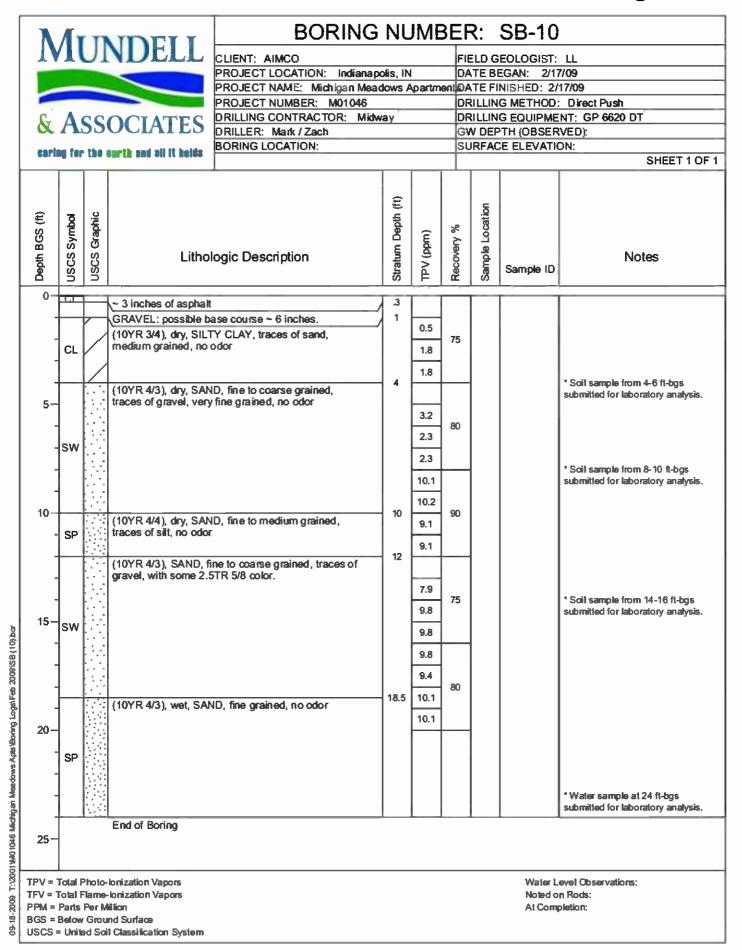
19-18-2009 T:120011M01046 Michigan Mandows Apis Boring LogsiFeb 20091SB (4) box

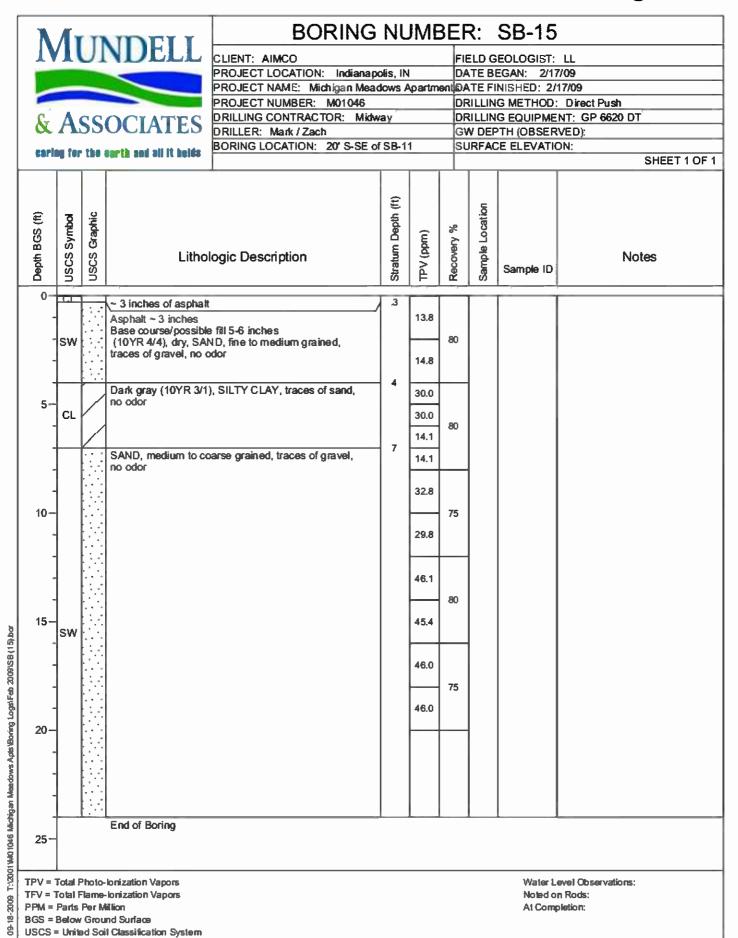
BGS = Below Ground Surface

USCS = United Soil Classification System

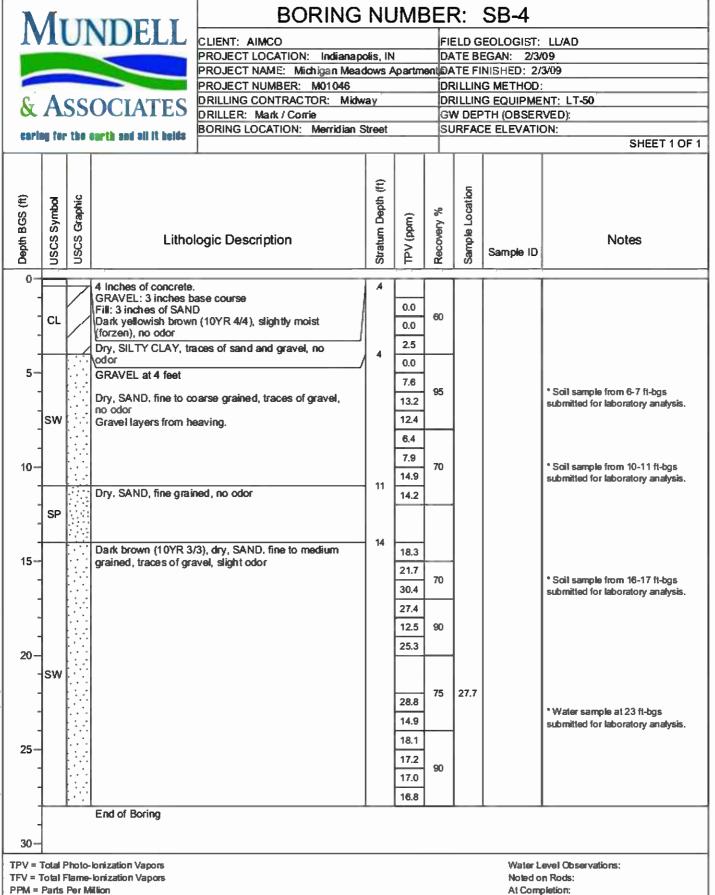


A	Æ,		MACK T	BORING	NU	JME	3EF	₹:	SB-6	
17	Ц		NDELL	CLIENT: AIMCO			-		EOLOGIST:	
		-		PROJECT LOCATION: Indianage					EGAN: 2/3/	
	-	_		PROJECT NAME: Michigan Mea	dows /	Apartm	-			
				PROJECT NUMBER: M01046			_		G METHOD	
S _T	\mathbf{A}	CC	OCIATES	DRILLING CONTRACTOR: Mich	vay				G EQUIPME	
OC.	Z Ni	30	OCIAILS	DRILLER: Mark / Corrie					TH (OBSER	
sarin	u for	the i	Carth and all it helds	BORING LOCATION: Laundrom	at		SU	JRFAC	CE ELEVATION	
					,					SHEET 1 OF
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	ologic Description	Stratum Depth (ft)	PV (ppm)	Recovery %	Sample Location	Sample ID	Notes
			L		l o	<u> </u>	l ex	S	L	
0-	CL		4 Inches of concrete PEA GRAVEL: 3 inch Possible fill 3-4 inch (10YR 4/4), dry, no o Dry, SILTY CLAY, tr	hes. es	A	2.2				
5		<u> </u>			- 5	<u> </u>	ł			* Soil sample from 5-6 ft-bgs
_			Dry, SAND, time to d	oarse grained, no odor		3.5				submitted for laboratory analysis.
	CVAL					2.0				
- 1	SW					2.6	1			* Soil sample from 7-8 ft-bgs submitted for laboratory analysis.
-							1			addition for laboratory arrayass.
4					9					
10-	SP		(10) YR 41/6), oliry, SAI 	ND, fine grained, no odor		1.7				
רטי	J-					1.8]			
†			(10YR 4/6), drv. SAI	ND, fine to coarse grained, no	11	2.0	1			
~			odor.	3		\vdash	1			
						3.8				
	sw	1	Slight ORANGE cok	or from 15'-16"						* Soit sample from 14-15 ft-bgs
	344					6.5				submitted for laboratory analysis.
15						2.1	1			
-						F	-			
					17					
	SP		(10YR 4/6), dry, SAI	ND, fine grained, no odor	1	5.2				
1					18					
1						6.4	1			
20-	SW						1			
-						7.0	-			
					22					
1	SP		Wet		1	7.3				
1					23	8.9	1			* Water sample at 23 ft-bgs
-						<u> </u>	1			submitted for laboratory analysis.
25-										
	SW									
1										
-										
+			End of Bosins			_				
_			End of Boring							
30										
30-										
PV = 1	Fotal F	hoto-	Ionization Vapors						Water L	evel Observations:
			lonization Vapors							n Rods:
PM = 1									At Com	pletion:
			nd Surface 1 Classification System							
			·							

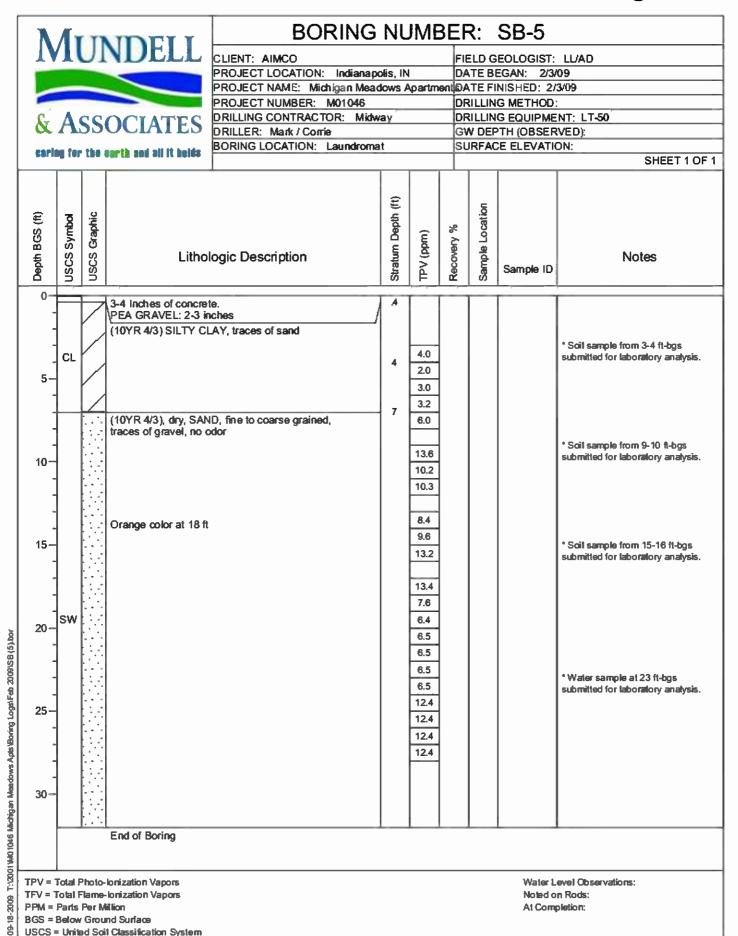

A	A		MATER I	BORING	NU	JME	3EF	₹:	SB-7				
- 11	/11		NDELL	CLIENT: AIMCO			FIE	FIELD GEOLOGIST: LL/AD					
			-	PROJECT LOCATION: Indianap	olis, IN	1	\rightarrow		EGAN: 2/4/				
	_	_		PROJECT NAME: Michigan Mea	dows A	\partm	entDA	ATE FI	NISHED: 2/	4/09			
	_			PROJECT NUMBER: M01046			DF	RILLIN	G METHOD	Indoor			
ST.	A	22	OCIATES	DRILLING CONTRACTOR: Midw	/ay				G EQUIPME				
OC.	∡ a u	30	OCIMILIS	DRILLER: Mark / Corrie					TH (OBSER				
sarii	ng for	the i	Carth and all it helds	BORING LOCATION:			St	JKFAC	E ELEVATION	SHEET 1 OF 1			
				1	1			Ι	1	SHEETTOFT			
SS (ff)	mbol	aphic			Stratum Depth (ft)	(c)	% '	ocation					
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum [TPV (ppm)	Recovery	Sample Location	Sample ID	Notes			
0-			4 Inches of concrete.		T 4								
-			GRAVEL: 3 inches. Gravel base is cours	€.	~		NR						
			Fil material about 3 ii brown (10YR 4/4)	nches of sand Dark yellowish	3	0.0	50			* Soit sample from 3-4 ft-bgs			
_			· · · · · · · · · · · · · · · · · · ·	amounts of SAND and GRAVEL.	1	3.2				submitted for laboratory analysis.			
_													
5-	1						_						
-	CL	/					0						
-	1												
-		/ /					NR	1					
10-	_	\vdash	24110 5 : .	***	10	<u> </u>				* Soil sample from 10-11 ft-bgs			
-			SAND, fine grained v	vith chunks of rock.		1.6	50			submitted for laboratory analysis.			
						1.6							
	sw						NR NR						
_							""						
45						0.4]					
15			Yellowish brown (10)	YR 5/6), SAND, fine grained	15	0.3	50			* Soit sample from 15-16 ft-bgs submitted for laboratory analysis.			
-	1							1					
-	1						NR						
•	sw					0.3	_	1					
-						0.4	50						
20 –	l					-	\vdash	ł					
-	1					0.6	1						
-	-	1111	Dark vollowich how	n (10YR 3/4), moist, SAND,	22	⊢—	75						
	SP		poorly graded	retorn say, most, same,	23	1.8	-			* Water sample at 23 ft-bgs			
-				n (10YR 3/4), moist, SAND, fine		1.2	<u> </u>			submitted for laboratory analysis.			
25-			grained										
_	sw					4.4	75						
						4.6							
						6.4							
			End of Boring										
20													
30-													
			lonization Vapors lonization Vapors							evel Observations:			
PPM =			•				Water Level Coservations: Noted on Rods: At Completion:						
BGS =	Below	Grou	nd Surface										


09-18-2009 T:\2001\W01046\Michigan Meadows Apis\Boring Logs\Feb 2009\SB\(7\)bor

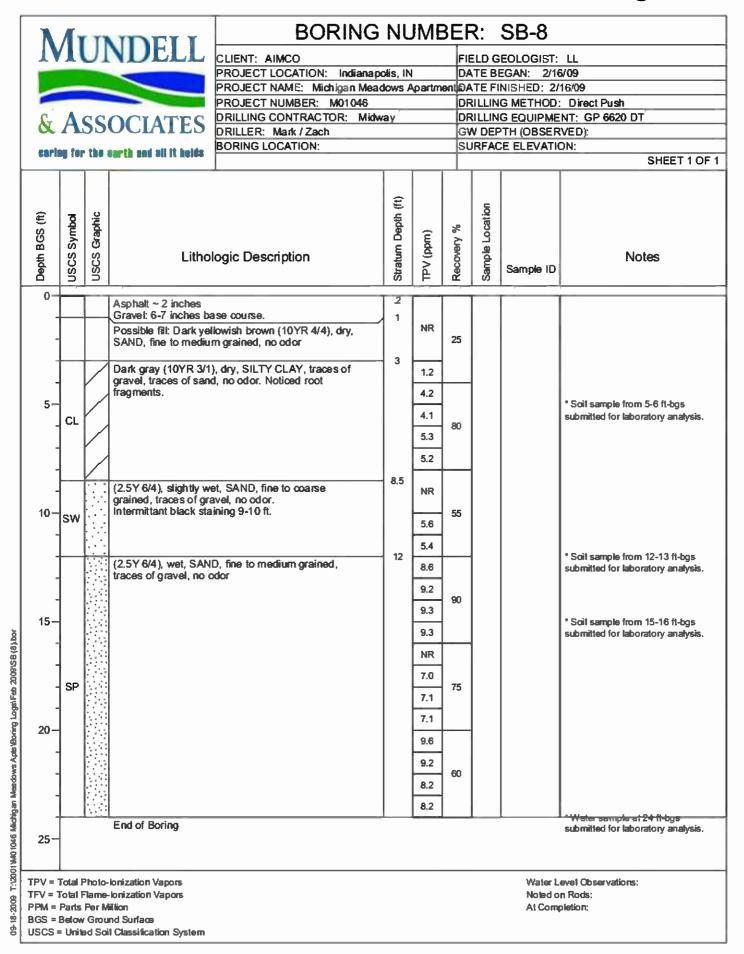
USCS = United Soil Classification System


A	Λī		MOTT	BORING	NL	JME	3EF	ER: SB-8			
11		U	NDELL	CLIENT: AIMCO			FIE	ELD G	EOLOGIST:	LL	
				PROJECT LOCATION: Indianap	olis, IN	<u> </u>	\rightarrow		EGAN: 2/10		
		_		PROJECT NAME: Michigan Mea-	dows A	\partm	-				
-	-			PROJECT NUMBER: M01046	-		-			: Direct Push	
\ \mathbb{\chi}	A	SS	OCIATES	DRILLING CONTRACTOR: Midw	vay					NT: GP 6620 DT	
				DRILLER: Mark / Zach BORING LOCATION:					TH (OBSER		
sari	ng for	the:	earth and all it helds	BORING LOCATION.			30)NFA	E ELEVAIN	SHEET 1 OF 1	
				1	T				1	1	
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes	
0-	<u> </u>		Asphalt ~ 2 inches		Т	_			<u> </u>	,	
-	-	//	Gravel: ~ 4-6 inches			NA					
	CL	ľ /	Dark gray (10YR 3/1), dry, SILTY CLAY, traces of parse grained, no odor			50				
	165	\vee	graver, modelin to co	also grained, ito odor		1.5] 30				
-	1	/				1.7	1				
-	-	/ .	Dark brown (7 5ur 3/	4), dry, SAND, medium to	4	<u> </u>	-	ł			
5-			coarse grained, trace	es of gravel, fine to medium		5.0					
_			grained, no odor			5.5	90			18-7	
-	1		Light yellowish brown	n (2.5v 6/4) at 6.5 ft		6.0	90			* Soil sample from 6-7 ft-bgs submitted for laboratory analysis.	
-	1					F.2	1				
	sw					5.2					
_											
_]		Gravel/cobble layer	at 9 ft		7.1					
10-	1		SW from 10 ft			5.2	65				
	-						-				
			Light yellowish brown	n (2.5Y 6/4), SAND, fine to	11.5	5.2				* Soil sample from 12-13 ft-bgs	
			medium grained, trad			10.2				submitted for laboratory analysis.	
•	1					8.9	1				
-	1					7.2	90				
15-						1.2				* Soil sample from 15-16 ft-bgs	
						10.1				submitted for laboratory analysis.	
	1]			
-	1					7.1					
-	SP					├─	60				
	1					7.2					
						7.1					
20 –	1							1			
-	1										
							NR				
										* Water sample and DUP at 24 ft-bgs	
										submitted for laboratory analysis.	
25-			End of Boring								
TFV = ' PPM = BGS =	Total I Parts Below	Flame Per M Grou	lonization Vapors lonization Vapors Milion and Surface il Classification System							evel Observations: n Rods: pletion:	

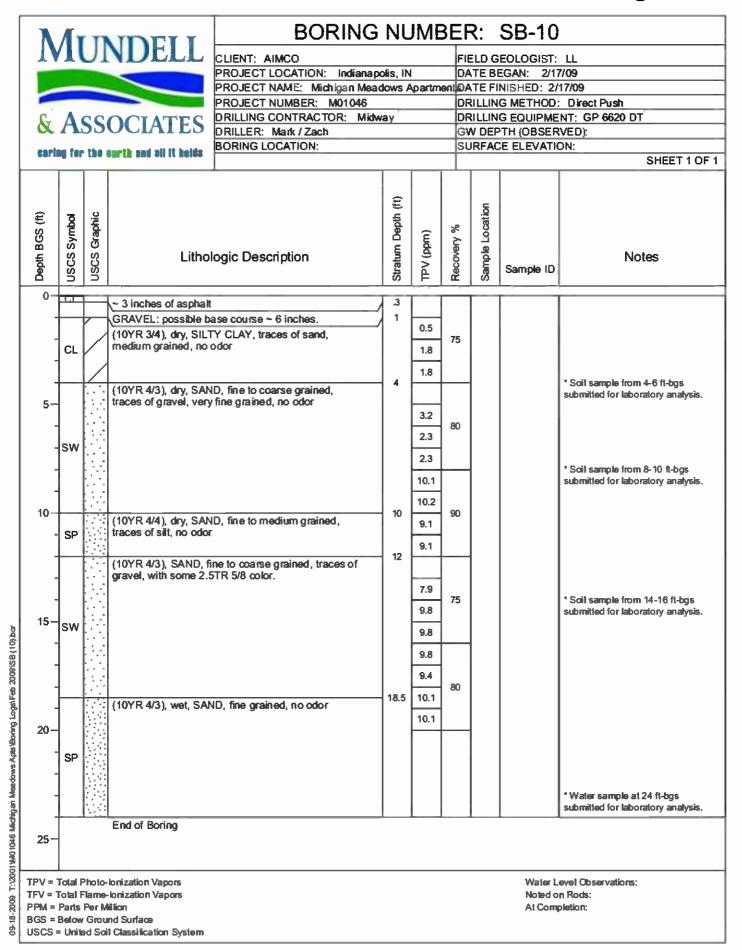
A	Æ		mart t	BORING	NL	R: SB-17				
1		U	NDELL	CLIENT: AIMCO			FIE	ELD G	EOLOGIST:	LL
		-		PROJECT LOCATION: Indianap					EGAN:	
				PROJECT NAME: Michigan Mea	dows A	\partm				
0	A	~~		PROJECT NUMBER: M01046 DRILLING CONTRACTOR: Midw	V971		_		G METHOD G EQUIPME	
8	A	55	OCIATES	DRILLER:	у-д у				TH (OBSER	
zarlı	na fai	the :	parth and all it helds	BORING LOCATION: E of Bus st	top				E ELEVATI	DN:
-	-9 141		offi (5 test on 14 solor							SHEET 1 OF 1
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes
0-	 	1	Grass ~ 2 inches		_3	_			T .	
-	\vdash		(7.5YR 6/3), SILTY 0 of sand, slight odor	CLAY, traces of gravel, traces	1	2.7				
-						3.2				
5-	CL					6.9				* Soit sample from 4-6 ft-bgs submitted for laboratory analysis.
-						6.4				
-						0.4				
10-			(0.5V.7/0) CAND 5	and an addition of the state of	10	16.5				* Soil sample from 10-12 ft-bgs
۰			gravel	ne to medium grained, traces of		73.2				submitted for laboratory analysis.
-						102				* Soit sample from 12-14 ft-bgs submitted for laboratory analysis.
15-	sw					125				
-										
-										
20 –			End of Boring		•	•		•		
TFV = 1 PPM =	Total I Parts	Flame- Per M	lonization Vapors Ionization Vapors illion nd Surface							evel Observations: n Rods: pletion:
USCS :	= Unit	ed Sai	1 Classification System							


\\	/In		mart t	BORING	NL	JME	3EF	₹:	SB-3	
$\perp 1$	VII	U	NDELL	CLIENT: AIMCO			FIE	FLD G	EOLOGIST:	II/AD
				PROJECT LOCATION: Indianap	olis. IN	_	\rightarrow		EGAN: 2/3/	
		_		PROJECT NAME: Michigan Mead			1			
	_			PROJECT NUMBER: M01046					G METHOD	
1 2	Δ	CC.	OCIATES	DRILLING CONTRACTOR: Midw	/ay		DF	RILLIN	G EQUIPME	NT: LT-50
OC		22	OCIAIES	DRILLER: Mark / Corrie					TH (OBSER	
EAT	lan tar	the:	oarth and all it helds	BORING LOCATION:			SL	JRFAC	E ELEVATION	
				<u> </u>						SHEET 1 OF 1
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes
0-					2					
	-	//	4 Inches of concrete GRAVEL: 2-3 inches							
]	Υ.	Possible fill				50			* Soit sample from 2-3 ft-bgs
	CL	//	, SILTY CLAY, trace	s of gravel and sand		8.7	30			submitted for laboratory analysis.
	1	r,				7.1				
	\vdash	1	Dry, SAND, fine grai	ned, traces of gravel, no odor	4			1		
5-	-			•		6.4				
	-					0.4	75			
	1	· : :				7.1				
	1	· : :								
	1					7.6				
10-	-					8.9	75			
	-					<u> </u>				* Soit sample from 11-12 ft-bgs
	_					9.6				submitted for laboratory analysis.
	1					9.7				
	1			5' 5YR 6/8 (reddish yellow)		10.9	75			
15-	-		color			10.2				* Soil sample from 15-16 ft-bgs
	-sw					10.2				submitted for laboratory analysis.
	1									
<u>.</u>						10.3	75			
2						12.9	,,,			
2	1					12.6				
§ 20-	1									
8	-					105				
6	-					10.5	75			
2						8.5				* Water sample at 23 ft-bgs
B		: :				8.0				submitted for laboratory analysis.
¥	1									
ĝ 25∙	1									
ğ	1									
5	-									
<u> </u>						L	L			
9			End of Boring							
30 30										
30	1									
– r			Ionization Vapors							evel Observations:
B PPM =			-lonization Vapors Wion						Noted o	n Rods:
BGS =			nd Surface						AL DOTH	
∄ uscs	= Unit	ed Sai	il Classification System							

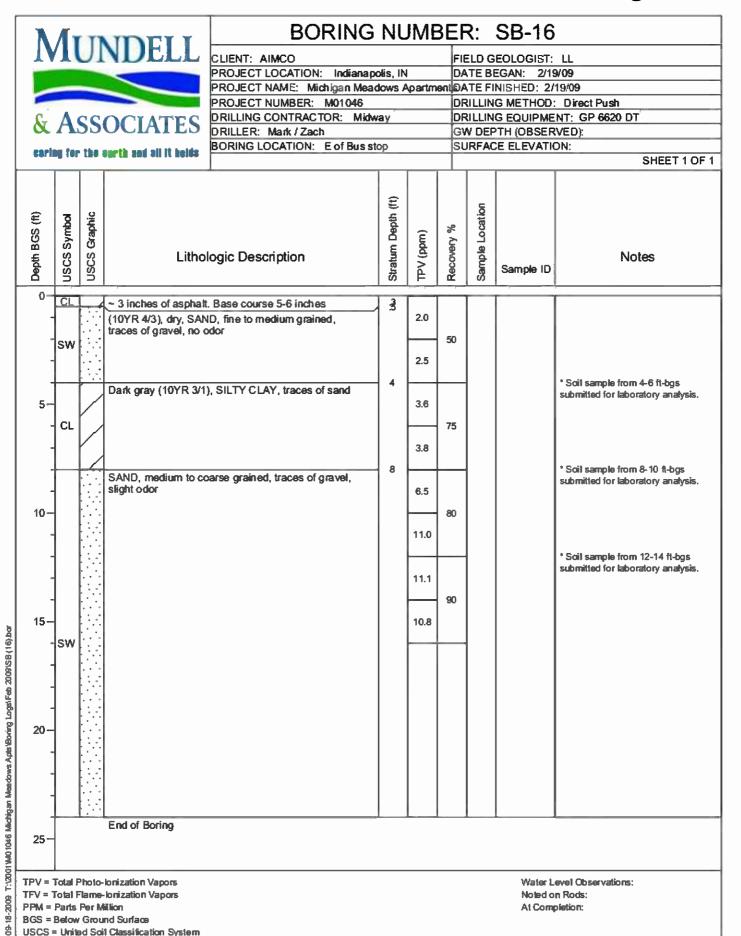
19-18-2009 T:12001 M40 1046 Michigan Mandows Apis Boring LogshFeb 20091SB (4) box


BGS = Below Ground Surface

USCS = United Soil Classification System



A	A •		MATER I	BORING	NU	JME	3EF	₹:	SB-6	
11	/11		NDELL	CLIENT: AIMCO			FIE	ELD G	EOLOGIST:	LL/AD
		-		PROJECT LOCATION: Indianap	olis, IN	1	DA	ATE B	EGAN: 2/3/	09
	_	_		PROJECT NAME: Michigan Mea	dows /	\partm				
				PROJECT NUMBER: M01046			_		G METHOD	
S	A	22	OCIATES	DRILLING CONTRACTOR: Midw	/ay				G EQUIPME	
1				DRILLER: Mark / Corrie BORING LOCATION: Laundroma					TH (OBSER	
sari	ig for	the i	parth and all it helds	BORING LOCATION: Laurice Office	1 L		50	JKFAC	CE ELEVATION	SHEET 1 OF 1
				1	Т				1	SHEET TOT T
					£			_		
I€	ত	울			Stratum Depth (ft)			sample Location		
Depth BGS (ft)	USCS Symbol	USCS Graphic			🖺	Ê	Recovery %	၂ ဒို		
<u>m</u>	S	ည	Litho	logic Description	§	IPV (ppm)	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>8</u>		Notes
\$	ပ္တ	မြည်	Little	logic Description	trat	2	8	E	Sample ID	Notes
	>	\supset			S	ĻĘ	l œ	ဟ	L	
0-			4 Inches of concrete.		A					
-	1		PEA GRAVEL: 3 incl		A					
-	-		Possible fill 3-4 inche (10YR 4/4), dry, no d		'					
.	CL	$ \mathcal{L} $		aces of sand, no odor						
Ι.						2.2				
					5					* S-1
5-			Dry, SAND, fine to α	oarse grained, no odor	1 3	3.5	1			* Soil sample from 5-6 ft-bgs submitted for laboratory analysis.
-	1					2.0				
-	sw					2.6				* Soil sample from 7-8 ft-bgs
-		; '				2.0				submitted for laboratory analysis.
.					9					
10-	SP		(10YR 4/6), dry, SAN	ID, fine grained, no odor		1.7				
'0					۱.,	1.8				
				ID, fine to coarse grained, no	11	2.0	1			
Ι.	1		odor.			3.8				
-		·								
-	sw		Slight ORANGE colo	or from 15'-16"		-				* Soil sample from 14-15 ft-bgs
15-		`.`				6.5				submitted for laboratory analysis.
Ι.						2.1				
					17					
	SP		(10YR 4/6), dry, SAN	ID, fine grained, no odor	1	5.2				
Ι.		• •			18					
						6.4				
20-	sw					7.0				
-						···				
					22	<u> </u>				
	SP		Wet		23	7.3				* Water sample at 23 ft-bgs
					20	8.9				submitted for laboratory analysis.
25-	sw									
	"									
-	ł									
		٠,٠	Fod of Bodes			L	L			
			End of Boring							
30-										
			lonization Vapors lonization Vapors						Water L Noted o	evel Observations:
PPM =			*						At Com	••••
BGS =	Below	Grou	nd Surface							


A	Æ1	m	MACT I	BORING	NL	JME	3EF	₹:	SB-7			
- 11	/11	UI	NDELL	CLIENT: AIMCO			FII	FIELD GEOLOGIST: LL/AD DATE BEGAN: 2/4/09				
			-	PROJECT LOCATION: Indianap	olis. IN		\rightarrow					
				PROJECT NAME: Michigan Mead								
				PROJECT NUMBER: M01046					G METHOD			
o.	Α.	00	O CY APPRO	DRILLING CONTRACTOR: Midw	/av		-		G EQUIPME			
X	A	55	OCIATES	DRILLER: Mark / Corrie					TH (OBSER			
				BORING LOCATION:					E ELEVATION			
Sarii	of Lot	r the i	parth and all it helds							SHEET 1 OF 1		
				L					1	1		
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes		
0-	<u> </u>		A looken of concrete		1 4		<u> </u>					
-			4 Inches of concrete GRAVEL: 3 inches.		A .		NR					
			Gravel base is cours	8.								
			Fil material about 3 i brown (10YR 4/4)	nches of sand Dark yellowish	_	0.0						
-				amounts of SAND and GRAVEL.	3	3.2	50			* Soit sample from 3-4 ft-bgs submitted for laboratory analysis.		
-	1	/	OLITOLAT, SITANI	BRIDGING OF GARD GROVEL.								
5-		r ,										
-							0					
	CL	r .					-					
-	1											
-	1	r l					\vdash					
-	-						NR					
10	_	\mathbb{K}			10					* Soit sample from 10-11 ft-bgs		
10		: .:	SAND, fine grained v	vith chunks of rock.	"	1.6				submitted for laboratory analysis.		
-	1					1.6	50			, ,		
-	6,4,					<u> </u>						
	sw						NR					
						0.4						
15			Yellowish brown (10)	YR 5/6), SAND, fine grained	15	0.3	50			* Soil sample from 15-16 ft-bgs		
-	1			- A			\vdash			submitted for laboratory analysis.		
_	1						NR					
-	sw					0.3						
-	1					0.4	50					
0-	-					0.4	_					
_	1											
		. : :			20	0.6	75					
-	SP	14.5		n (10YR 3/4), moist, SAND,	22	1.8	75					
	 	1	poorly graded	·	23	1.2	1			* Water sample at 23 ft-bgs		
-	-			n (10YR 3/4), moist, SAND, fine		1.2				submitted for laboratory analysis.		
25 –			grained									
	sw					4.4						
-	1					4.6	75					
-	1					-	1					
-	_	ŀ., ·				6.4						
_			End of Boring									
200												
30-	1											
οV = .	Total I	Photo-	Ionization Vapors						evel Observations:			
			lonization Vapors						Noted o			
		Per M	illion nd Surface						At Com	pletion:		
			nd Sunace 1 Classification System									
			· and the state of									

A	Λī		MOTT	BORING	NL	JME	3EF	ER: SB-8			
11		U	NDELL	CLIENT: AIMCO			FIE	ELD G	EOLOGIST:	LL	
				PROJECT LOCATION: Indianap	olis, IN	<u> </u>	\rightarrow		EGAN: 2/10		
		_		PROJECT NAME: Michigan Mea-	dows A	\partm	-				
-	-			PROJECT NUMBER: M01046	-		-			: Direct Push	
\ \mathbb{\chi}	A	SS	OCIATES	DRILLING CONTRACTOR: Midw	vay					NT: GP 6620 DT	
				DRILLER: Mark / Zach BORING LOCATION:					TH (OBSER		
sari	ng for	the:	earth and all it helds	BORING LOCATION.			30)NFA	E ELEVAIN	SHEET 1 OF 1	
				1	T				1	1	
Depth BGS (ft)	USCS Symbol	USCS Graphic	Litho	logic Description	Stratum Depth (ft)	TPV (ppm)	Recovery %	Sample Location	Sample ID	Notes	
0-	<u> </u>		Asphalt ~ 2 inches		Т	_			<u> </u>	,	
-	-	//	Gravel: ~ 4-6 inches			NA					
	CL	ľ /	Dark gray (10YR 3/1), dry, SILTY CLAY, traces of parse grained, no odor			50				
	165	\vee	graver, modelin to co	also grained, ito odor		1.5] 30				
-	1	/				1.7	1				
-	-	/ .	Dark brown (7 5ur 3/	4), dry, SAND, medium to	4	<u> </u>	-	ł			
5-			coarse grained, trace	es of gravel, fine to medium		5.0					
_			grained, no odor			5.5	90			18-7	
-	1		Light yellowish brown	n (2.5v 6/4) at 6.5 ft		6.0	90			* Soil sample from 6-7 ft-bgs submitted for laboratory analysis.	
-	1					F.2	1				
	sw					5.2					
_											
_]		Gravel/cobble layer	at 9 ft		7.1					
10-	1		SW from 10 ft			5.2	65				
	-						-				
			Light yellowish brown	n (2.5Y 6/4), SAND, fine to	11.5	5.2				* Soil sample from 12-13 ft-bgs	
			medium grained, trad			10.2				submitted for laboratory analysis.	
•	1					8.9	1				
-	1					7.2	90				
15-						1.2				* Soil sample from 15-16 ft-bgs	
						10.1				submitted for laboratory analysis.	
	1]			
-	1					7.1					
-	SP					├─	60				
	1					7.2					
						7.1					
20 –	1							1			
-	1										
							NR				
										* Water sample and DUP at 24 ft-bgs	
										submitted for laboratory analysis.	
25-			End of Boring								
TFV = ' PPM = BGS =	Total I Parts Below	Flame Per M Grou	lonization Vapors lonization Vapors Milion and Surface il Classification System							evel Observations: n Rods: pletion:	

APPENDIX C INJECTION LOGS

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: <u>B-1</u>		
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks BORING LOCATION: Source Area B (Parking Lot of Michigan Piaza)				DATE BEGAN: 2/9/2009 (10:00AM) DATE FINISHED: 2/9/2009 (10:33 AM) DRILL-LING MEATHOD: Direct Push DRILL-EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 38ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
GEOLOGIC DESCRIPTION	STRATUM DEPTH, JI	DEPTH FT	GALLOAN INJECTED PER INTERVAL	COMMENTS		
Grand surface is Asphalt.		1 2				
		3 4 4 5 6 7 7 8 9 10 11 12 13 13 14 15 16 17 18 18 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	tt tt tt tt 5	Total 65 Gallons		
		42 43 44 45 46 47 48 49				
Water Level Observations:	Sampling Me	ded:	Netra:			
Nated on Risk	LBS - Large i	lure Sampler	TPV - Tutal Photosomodele Va	p uz-		
AtCompletion	MBS - Maxu HSA - Hollow		ND - Not Detected * - Writer Sample(s) Returned	fur Laboratory Analysis		
	GBO - Gospahe		for the same and the	Page ⊥ of		

Mundell & Associates, Inc.					
FIELD BORING LOG					
				Injection NO: B-2	
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks BORING LOCATION: Source Area B (Parking Lot of Michigan Piaza)				DATE BEGAN: 2/9/2009 (10:40 AM) DATE FINISHED: 2/9/2009 (11:50 AM) DRILL ING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 38ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A	
GEOLOGIC DESCRIPTION	STRATUM DEPTH. p	BEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS	
Grand surface is Asphalt.		1			
		2 3 4 3 6 6 7 8 9 80 111 121 131 131 131 131 131 131	†† †† ††		
		31 32 33 34	11		
		35 36 37	5		
White I and Charmeter -		38 39 40 41 42 43 44 45 46 47 48 49		Total 65 Gallions	
Water Lind Observations: Nated on Reds	Sampling Ma LBS - Large i		Notes: TPV - Total Photosomobile Vi	guz.	
At Completion	MBS - Mazu	Bure Sumpler	ND - Nat Detected		
	HSA - Hullaw Stem Auger GBO - Geapndre		* - Witter Sumple(s) Returned	for Laboratory Analysis Page of	

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: B-3		
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks BORING LOCATION: Source Area B (Parking Lot of Michigan Piaza)				DATE BEGAN: 2/9/2009 (12:05 PM) DATE FINISHED: 2/9/2009 (1:12 PM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 35ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
GEOLOGIC DESCRIPTION	STRATUM	DEPTH FT	GALLONS INJECTED PER	COMMENTS		
	DEPTH. A		INTERVAL			
Constitution and analysis						
Greated star face to Asphalt.		1 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8 9 9 20 21 22 22 23 24 25 26 27 22 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	1	hardpan encountered at 35' began injections accordingly Total 65 Gallions		
		45 46 47 48 49				
		50				
Water Level Observations: Nated on Reals	Sampling Me LBS - Large i		Notes: TPV - Total Photosomobile Vi	pur-		
AtCompletant	MBS - Mazu	Bure Sumpler	ND - Not Detected			
	HSA - Hullan GBO - Gospo		* - Witter Sample(s I Retained	for Lidensions Analysis Page of		
	revs + restante			·		

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: B-4		
PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks BORING LOCATION: Source Area B (Parking Lot of Michigan Plaza)				DATE BEGAN: 2/9/2009 (2:30 PM) DATE FINISHED: 2/9/2009 (3:25 PM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 38ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
GEOLOGIC DESCRIPTION	STRATUM DEPTH. p	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS		
Grand surface is Asphalt.		1				
		2 3 4 4 5 5 6 6 7 7 8 8 9 9 20 21 22 22 23 24 22 25 26 27 22 30 31 32 33 34 33 36 37 38 39 40 41 42		Total 65 Gallons Hardpan encountered at 40'		
		43 44 45 46 47 48 49				
Water Lord Observation:	Sampling Me	ded:	Netez			
Noted on Reds* At Completion	LBS - Large i MBS - Mazu	Bure Sumpler Bure Sumpler	TPV - Tutal Photomosoble Vi ND - Not Detected	thr.		
· · · · · · · · · · · · · · · · · · ·	HSA - Hollow	Stem Auger	* - Wister Sample()-I Returned			
	GBO - Gospodie			Page 1 of		

Mundell & Associates, Inc.					
FIELD BORING LOG					
				Injection NO: <u>B-5</u>	
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area B (Michigan Plaza Parking Lot)				DATE BEGAN: 2/9/2009 (15:35) DATE FINISHED: 2/9/2009 (17:00) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 38ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A	
GEOLOGIC DESCRIPTION	STRATUM DEPTH, JI	BEPTH FT	GALLONS INTECTED PER INTERVAL	COMMENTS	
Grand surface is Asphalt.		1			
		2 3 4 5 4 5 6 7 8 9 10 11 12 13 13 13 15 16 17 18 19 20 21 22 23 24 25 26 27 22 29 30 31 32	** ** **		
		34 35	5		
		36 37 38 39 40 48 42 43 44 45	5	Total 65 Gallons	
Water Lord Observations: Nated on Reds	Sampling Me LHS - Large E MES - bhazu HSA - Hollaw	lure Sampler Bure Sampler	Netus: TPV - Tutal Phatasomodule Vs ND - Nat Detected * - Wider Samplets I Returnel		
	GBO - Gospodie		Page		

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: <u>B-6</u>		
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area B (Michigan Plaza Parking Lot)				DATE BEGAN: 2/10/2009 (8:45) DATE FINISHED: 2/10/2009 (10:05) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 39th. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
GEOLOGIC DESCRIPTION	STRATUM	DEPTH FT	GALLONS INJECTED PER	COMMENTS		
	DEPTH. p		INTERVAL			
Grand surface is Asphalt		i				
		23 34 44 35 60 77 83 99 60 111 121 131 131 135 136 177 188 199 20 218 222 231 244 225 226 227 228 229 300 311 312 313 32 33 34 35 36 37 38 39 40 40 41 41 41 41 41 41 41 41 41 41	tt tt tt 5	Total 65 Gallons Two hard ubits encountered here: one at 32'; the other at 39'		
		43 44 45 46 47				
		48 49				
Water Land Observations:	C	50	Note:			
Noted on Rade.	Sampling Me LBS - Large i		Notes: TPV - Total Photosomodele Va	p cz.		
AtCumplebug	MBS - Mazu	Elure Sumpler	ND - Not Detected			
	HSA - Hollow Stem Auger GBO - Geopodie		Page 1.		of	

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: <u>B-7</u>		
PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area B (Michigan Plaza Parking Lot) FIELD SCIENTIST: LL/AD/				DATE BEGAN: 2/10/2009 (10:10) DATE FINISHED: 2/10/2009 (11:35) DRILL.ING MEATHOD: Direct Push DRILL. EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 38ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
GEOLOGIC DESCRIPTION	STRATUM DEPTH. A	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS		
	DEFIN, JI					
Grand surface is Asphalt		1				
		2 3 4 5 6				
		9 80				
		8 8 8				
		36 17 88				
		30 21	tt			
		22 23	tt			
		24 25 26	۱t			
		27 28 29	11			
		30 31				
		32 33 34	ti			
		35 36 37	5			
		38 39		Total 65 Gallons		
		40 41 42		Hard pan at 38		
		43				
		45 46 47				
		48 49 50				
Water Level Observations:	Sampling Ma	ded:	Netras			
Noted un Reals	1.05 - Large i MBS - Mazu	Bure Sumpler Bure Sumpler	TPV - Total Photosomobile Vi ND - Not Detected	proz.		
	HSA - Hullaw Stem Auger GBO - Geopodic		* - Water Sample(s) Retained	for Laboratory Analysis Page 1 of		

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: B-8		
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks BORING LOCATION: Source Area B (Park: FIELD SCIENTIST: LL/AD/	tments es, Inc.	Michigan P	DATE BEGAN: 2/9/2009 (2:30 PM) DATE FINISHED: 2/9/2009 (3:25 PM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 38ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A			
GEOLOGIC DESCRIPTION		DEPTH FT	GALLONS INJECTED PER	COMMENTS		
	DEPTH, p		INTERVAL			
Grand surface is Asphalt		1				
		3				
		4 5				
		6				
		7				
		3				
		80 11				
		E.				
		N N				
		8				
		36				
		रो				
		es.				
		99				
		20	11			
		21				
		22				
		23	11			
		24				
		25				
		26	11			
		27				
		28	11			
		29	"			
		30				
		31 32	11			
		32	.,			
		34				
		35	5			
		36				
		37				
		38	5	Total 65 Gallons		
		39				
		40		Pump for CAP-18 went out		
		41		1:35 P Mark working to get it fixed		
		42				
		43				
		44				
		45				
		46				
		47				
		48				
		49				
		50				
Water Level Observation: Noted on Reds	Sampling Me LBS - Large i		Notes: TPV - Total Photosomobile Vi	fi(2).		
At Completion		Bure Sumpler	ND - Nat Detected	T		
	HSA - Hollow	Stem Auger	* - Witter Sample(s) Retained			
	GBO - Gcupe	die		Page 1 of		

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: <u>B-9</u>		
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks BORING LOCATION: Source Area B (Parking Lot of Michigan Piaza)				DATE BEGAN: 2/10/2009 (2:45 PM) DATE FINISHED: 2/10/2009 (4:00 PM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 38ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
GEOLOGIC DESCRIPTION	STRATUM DEPTH, JI	DEPTH FT	GALLONS INSECTED PER INTERVAL	COMMENTS		
Greamid star face to Assilhalit.		1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 9 20 21 22 22 23 24 25 26 27 28 29 30 31 32 23 34 35 36 37 38 39 40 41 42 43	tt tt tt tt 5	Total 65 Gallona		
		44 45 46 47 48 49				
Water Level Observations:	Sampling Ma	ded:	Netra:			
Noted on Reals	LBS - Large i MBS - Mazu		TPV - Tutal Photomooble Vi ND - Not Detected	dis-		
	HSA - Hullan		* - Water Sample(x) Returned	fur Laboratory Analysis		
	GBO - Gospodie			Page_l_of		

MUNDELL & ASSOCIATES, INC				
FIELD BORING LOG				
				Injection NO: CI
CLIENT: AIMCO			DATE BEGAN: 2/11/2009 (9:00AM)	
PROJECT LOCATION: Indianapolis, Indian			DATE BEGAN: 2/11/2009 (9:00/ASI) DATE FINISHED: 2/11/2009 (10:15AM)	
PROJECT LOCATION: Indianapoles, Indian PROJECT NAME: Michigan Meadows Apar	iiii taa aa ta			DATE FINISHED: 2/11/2009 (10:15/ASI) DRILLING MEATHOD: Direct Push
PROJECT NO: M01046	1.000.03			DRILL EQUIP: Geoprobe
DRILLING CONTRACTOR: Midway Service				GW Depth (OBSERVED):
DRILLER: Mark Hicks / Zack	es, inc.			OW DEPTH OF BORING: 40%.
BORING LOCATION: Source Area C (West	af Rolldir	ia 13		SURFACE ELEVATION: N/A
FIELD SCIENTIST: LL/AD/		-m - /		TOP OF CASING ELEVATION: N/A
	CT-0 477/47	DEPTH FT	GALLON INJECTED PER	COMMENTS
THE TALL PART IN SERIES AND A SERIES	DEPTH, A	374.7 777 1	INTERVAL	C42/01/02/24 8 79
Circumd surface is grass.		2		
		3		
		4		
		5		
		7		
		¥		
		9		
		11		
		N N		
		8		
		36		
		ET .		
		13		
		99		
		30		
		21		
		<u>n</u>	11	
		23		
		24		
		25	11	
			- ''	
		26		
		27		
		28	1t	
		29		
		30		
		31	11	
		32	- ''	
		33		
		34	11	
		35		
		36		
		37	5	
		38		
		39		
			5	TMALCE PARAGO
		40	3	Total 65 Gallons
		41		
		42		
		43		
		44		
		45		
		46		
		47		
		48		
		49		
		50		
Water Lord Chomatica:	Sampling Ma		Notes:	
Noted on Reals* At Completion	LBS - Large i		TPV - Total Photoumodole Vo ND - Not Detected	thrisy.
Car with 1970 (HSA - Hullar	Bure Sumpler Stem Auser	* - Water Sample(s I Returne)	for Liberture Anabase
	GBO - Gospo		- viene santiants vienes	Page of
		•		- 4

Mundell & Associates, Inc.					
FIELD BORING LOG					
				Injection NO: <u>C2</u>	
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks / Zack BORING LOCATION: Source Area C (West of Building 1)				DATE BEGAN: 2/11/2009 (10:30AM) DATE FINISHED: 2/11/2009 (11:45AM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A	
GEOLOGIC DESCRIPTION	STRATUM DEPTH, p	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS	
	DEF I II. JI				
Grant surface is Asphalt		1			
		2 3 4 5 6 7 8 9			
		E E			
		<u>н</u>	10		
		16			
		27 28	10		
		19	,-		
		20			
		21 22	10		
		23	10		
		25			
		26 27	10		
		28			
		29	5		
		30 31	,		
		32			
		33 34	5		
		35			
		36	5	Total of 65 Gallons	
		37 38			
		39			
		40			
		4t 42			
		43			
		44 45			
		46			
		47			
		48			
		50			
Water Level Observations: Nated on Reds.	Sampling Me LBS - Large i		Notes: TPV - Tutal Photosomobile Vi	diny	
At Completion		Bure Sumpler	ND - Not Detected * - Water Sample(s) Returned		
	GBO - Gospo		- what surjudy i results	Page 1 of	

Mundell & Associates, Inc.					
FIELD BORING LOG				Injection NO: <u>C-3</u>	
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIEL D SCIENTIST: SW	tments es, Inc.	ng 1)	DATE BEGAN: 2/11/2009 DATE FINISHED: 2/11/2009 (14:15) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
GE OLOGIC DE SCRIPTION	STRATUM DEPTH, p	DEPTH FT	GALLONI INJECTED PER INTERVAL	COMMENTS	
Granted sour face to Asophult.		1 2 3 4 4 5 4 5 4 5 6 6 6 7 7 8 8 6 6 7 7 8 8 6 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8	0	formation would not accept CAP-18 at these depths (between 30 and 36') ~ 5 gallons accepted between 36 and 30 feet Total 64 Gallons 13:15 Really having trouble here, injection tip seems to be getting dogged with sill from the formation. Pulled all rods and tip, deared and cleaned. Reinserted at C-3 location and are trying again for acceptance of CAP-18 by the formation. C-3 completed at 14:15.6 gallons were injected at this bostion - formation was very resistant at all intervals, but especially after 29 feet (29-36). Once completed, CAP-18 visible at the top of the borehole.	
		45 46 47 48 49			
Water Lord Characters:	Sampling Me	ded:	Notes:		
Noted on Reals	1.05 - Large i MBS - Mazu	lure Sampler Bure Sampler	TPV - Tutal Photosumodole Vi ND - Not Detected	prez-	
	HSA - Hollow GBO - Gospo	Stem Auger	* - Witter Sample(s.) Returned	for Laboratory Analysis Page 1 of	

Mundell & Associates, Inc.						
FIELD BORING LOG				Particular NGN CLA		
				Injection NO: <u>C-4</u>		
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIELD SCIENTIST: SW	tments es, Inc.	ng 1)	DATE BEGAN: 2/11/2009 (14:30) DATE FINISHED: 2/11/2009 (15:20) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36th. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A			
GEOLOGIC DESCRIPTION	STRATUM	DEPTH FT	GALLONS INJECTED PER	COMMENTS		
	DEPTH. JI		INTERVAL			
Grand surface is Asphalt		1 2				
		3 4 5 5 7 7 8 9				
		H B	10			
		16	10			
		27				
		88	10			
		20 21	10			
		22	10			
		23 24	10			
		25				
		26				
		27 28	13			
		19				
		30	4			
		31				
		32 33	4			
		34				
		35				
		36	4	Total 65 Gallons		
		37 38				
		39				
		40				
		41				
		42 43				
		44				
		45				
		46				
		47 48				
		49				
Water Lord Observations:	Sampling Me	ded:	Notes:			
Noted on Reals	LBS - Large i MBS - Mazu	Bure Sumpler Bure Sumpler	TPV - Total Photosumodule Va ND - Not Detected	the state of the s		
, ==	HSA - Hollow	Stem Auger	* - Water Sample(s.) Returned			
	GBO - Gospo	die		Page <u>1</u> of		

MUNDELL & ASSOCIATES, INC.						
FIELD BORING LOG				Injection NO: <u>C-5</u>		
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIELD SCIENTIST: SW	tments es, Inc.	ng 1)	DATE BEGAN: 2/11/2009 (15:25) DATE FINISHED: 2/11/2009 (16:30) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A			
GEOLOGIC DE SCRIPTION	STRATUM DEPTH, p	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS		
Ground surface is Asplicit.		1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 12 13 13 14 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	10 10 10 10 5 5	Total 65 Gallons No problems with formstion acceptance at this location. All borings filled with bentonite chips and covered in asphall patch.		
		44 45 46 47 48 49				
Winter Lord Observations: Nated on Reds	Sompling Mo LBS - Large E MBS - Mazu HSA - Hullaw GBO - Gospo	lure Sumpler Bure Sumpler / Stem Auger	Notin: TPV - Tutal Photosomodule Vo ND - Not Detected * - Water Sample(s) Retained			

Mundell & Associates, Inc.						
FIELD BORING LOG						
				Injection NO: <u>C-6</u>		
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIELD SCIENTIST: SW	tments es, Inc.	ng 1)	DATE BEGAN: 2/12/2009 (9:15) DATE FINISHED: 2/12/2009 (10:10) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A			
GEOLOGIC DESCRIPTION	STRATUM	DEPTH FT	GALLONS INJECTED PER	COMMENTS		
	DEPTH, A		INTERVAL			
Grand surface is Asphalt.		1 2				
		3				
		3				
		6				
		Ť ¥				
		9				
		80 11				
		E.				
		N N				
		8	10			
		16				
		27				
		18	10			
		19				
		20				
		2t	10			
		22				
		23				
		24	10			
		25				
		26	40			
		27	10			
		28				
		29	5			
		30	3			
		31				
		33	5			
		34	-			
		35				
		36	5	Total 65 Gallons		
		37				
		38				
		39				
		40				
		41		Probe pushed easily through the entire interval.		
		42				
		43				
		44				
		45				
		46				
		47				
		48				
		49				
m' - 1 - 100 1	e:	50	#1 •			
Water Level Observations: Noted on Reds	Sampling Me LBS - Large i		Notes: TPV - Total Photosomobile Vi	pus.		
At Completion		Bure Sumpler	ND - Nat Detected			
	HSA- Hullar		* - Water Sample(s I Retained			
	GBO - Gospodie			Page <u>1</u> of		

Mundell & Associates, Inc.					
FIELD BORING LOG					
				Injection NO: <u>C-7</u>	
PROJECT LOCATION: Indianapolis, Indiana PROJECT NAME: Michigan Meadows Apartments PROJECT NO: M01046 PROJECT NO: M01046 PRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West of Building 1)				DATE BEGAN: 2/12/2009 (14:00) DATE FINISHED: 2/12/2009 (15:00) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A	
GEOLOGIC DESCRIPTION	STRATUM	DEPTH FT	GALLONS INJECTED PER	COMMENTS	
	DEPTH. A		INTERVAL		
Circumd surface is asphala.		1			
		2 3 4 5 6 7			
		11 11 12 13 14 15			
		16	10		
		87			
		18	10		
		19			
		21	10		
		22			
		23 24	10		
		25			
		26	40		
		27 28	10		
		29			
		30	5		
		31 32			
		33	5		
		34 35			
		36	5	Total 65 Gallons	
		37			
		38 39			
		40			
		41		Formation accepted all CAP-18 with no issues at any interval.	
		42 43			
		44			
		45			
		46 47			
		48			
		49			
Water Level Observations:	Sampling Ma		Note:		
Nated on Reds	LBS - Large i MBS - Maxu		TPV - Total Photourochile Vi ND - Nat Detected	dra-	
, 	HSA - Hollow	Stem Auger	Water Sample(s I Returned		
	GBO - Gospothe			Page 1 of	

MUNDELL & ASSOCIATES, INC.						
FIELD BORING LOG				Injection NO: <u>C-8</u>		
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indians PROJECT NAME: Michigan Meadows Apart PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Service DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (Westerfeld Scientist: SW	iments es, Inc.	ng 1)		DATE BEGAN: 2/12/2009 (12:45) DATE FINISHED: 2/12/2009 (13:50) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A		
	STRATUM DEPTH, JI	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS		
Grant surface is as that:		1				
		2 3 4 5 5 7				
		11 11 12 14				
		16	10			
		£7 £8.	10			
		19 20 21	10			
		22 23				
		24 25 26	10			
		27 28	10			
		29 30 31	5			
		32	_			
		33 34 35	5			
		36 37	5	Total 65 Gallona		
		38				
		40 41 42		Formation accepted all CAP-18 with no problems at any interval.		
		43				
		45 46 47				
		48 49				
Water Lord Observation:	Sampling Me	50 Bob:	Notes:			
Nated on Reals.	LBS - Large i MBS - Maxu	lare Samples	TPV - Total Photosomodule Va ND - Not Detected	p uza		
•	MES - MAZU HSA - Hullaw GBO - Gospo	Stem Auger	* - Water Sample(s) Returned	fur Laburancy Analysis Page 1 of		

MUNDELL & ASSOCIATES, INC	2			
FIELD BORING LOG				Injection NO: <u>C-9</u>
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIELD SCIENTIST: SW	tments	ng 1)	DATE BEGAN: 2/12/2009 (11:35) DATE FINISHED: 2/12/2009 (12:30) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A	
GEOLOGIC DESCRIPTION	STRATUM DEPTH. P	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS
Circumed start face as Citas ss.		2 3 4 4 5 5 6 7 7 8 8 9 9 10 8 1 8 1 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10 10 5 5	Total 65 Gallons No difficult intervals encountered, CAP-18 accompted by the formation without issue.
		47 48 49 50		
Water Level Observations: Noted on Rods.	Sampling Mo LBS - Large I		Notes: TPV - Total Photoconochile Va	our v
At Completion	MBS - Maru	Bure Sampler	MD - Not Detected	
	HSA - Huthur GBO - Geope	-	* - Water Sumple(st Returned	for Laboratory Attalysis. Pageof

MUNDELL & ASSOCIATES, INC.						
FIELD BORING LOG				Injection NO: <u>C-10</u>		
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIELD SCIENTIST: SW	tments es, Inc.	ng 1)	DATE BEGAN: 2/12/2009 (11:35) DATE FINISHED: 2/12/2009 (12:30) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A			
	STRATUM DEPTH, p	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS		
Graund surface is Gittass.		1 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8 6 6 7 7 8 8 8 19 20 22 8 22 23 24 25 26 27 22 8 29 30 31 32 33 34 35 36 37 38 39 40	10 10 10 10 5	Total 65 Gallons		
		48 42 43 44 45		No difficult intervals encountered. CAP-18 accepted by the formation without issue.		
Water Lord Observation:	Sampling Me	47 48 49 50	Note:			
Ast Completana	LBS - Large i	lure Sampler Bure Sampler / Stem Auger	TPV - Tutal Photosomodule Vo ND - Not Detected * - Water Sample(s) Retained			

MUNDELL & ASSOCIATES, INC.						
FIELD BORING LOG				Injection NO: <u>C-11</u>		
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIELD SCIENTIST: SW	tments es, Inc.	ng 1)	DATE BEGAN: 2/12/2009 (10:15) DATE FINISHED: 2/12/2009 (11:25) DRILL ING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A			
GEOLOGIC DE SCRIPTION	STRATUM DEPTH, p	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS		
Gircamid searface is Cistass.		1 2 3 3 4 4 5 5 6 6 7 7 8 8 6 6 8 7 7 8 8 6 6 8 7 7 8 8 6 6 8 7 7 8 8 6 6 8 7 7 8 8 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 8	10 10 10 10 5 5	Total 65 Gallons No extremely hard intervals encountered in the boring interval (0-36). Formation accepted all CAP-18 with no problems.		
		44 45 46 47 48 49				
Water Level Observations:	Sampling Me	ded:	Notes:			
Noted on Reals* At Completion	LBS - Large i MBS - Mazu	lure Sampler Bure Sampler	TPV - Total Photosomodile Vi ND - Not Detected	thr.		
. —	HSA - Hullan GBO - Gospo	Stem Auger	* - Water Sample(s) Retained	for Laboratory Analysis Page of		

Mundell & Associates, Inc.					
FIELD BORING LOG					
				Injection NO: <u>C-12</u>	
PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Services, Inc. DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West of Building 1)				DATE BEGAN: 2/12/2009 (15:10) DATE FINISHED: 2/12/2009 (16:00) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A	
GE OLOGIC DE SCRIPTION	STRATUM DEPTH, JI	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS	
Grand surface is grass.		1 2			
		2 3 4 5 6 7 8 9 00 111			
		В	10		
		16 27 28	10		
		19 20 21	10		
		22 23 24	10		
		25 26 27	10		
		28 29 30	7.5		
		31 32 33	7.5 0		
		34 35			
		36 37 38	O .	Total 65 Gallons	
		39 40 41		Probe Encountered hard unit at ~30. Mark pushed to 36 and attempted CAP-18 injection. The formation would not accept it. Mark pulled up to 33'-still could not	
		42 43 44		Inject. At 32' we were able to get 7.5 gallons in, also 30'. Smooth sailing after 30'.	
		45 46 47			
		48 49 50			
Water Level Observation: Nated on Reds. At Completion	Sampling Mo LBS - Large I	lure Sampler	Note: TPV - Total Phatmonodisc Vi ND - Nat Detected	grus.	
Pie - Urripascau (I	HSA - Hullar GBO - Gospe		ND - Nat Detected - Water Sample(s) Returned	for Laboratory Analysis Page of	

MUNDELL & ASSOCIATES, INC				
FIELD BORING LOG				Injection NO: <u>C-13</u>
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks and Zach BORING LOCATION: Source Area C (West FIELD SCIENTIST: SW	tments res, Inc.	ng 1)	DATE BEGAN: 2/12/2009 (16:10) DATE FINISHED: 2/12/2009 (17:20) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 36ft. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A	
GEOLOGIC DE SCRIPTION	STRATUM DEPTH, JI	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS
		\$ 2 3 4 4 5 6 7 7 8 9 80 88 82 83		
		14 15	10	
		16 27 28	10	
		19 20 21	10	
		22 23 24	10	
		25 26 27	10	
		2# 29 30	5*	* Difficult Injection
		31 32	5°	
		33 34 35	•	
		36 37	5	Total 65 Gallons
		38		
		40 48 42		Again, hard unit encountered at 30 feet. Pushed through and was able to inject 5 gallons at 35°, 33 would not accept CAP-18 so we putted up to 32°; this depth easilf accepted 5 gallons, 30 resisted injection but we got 5 gallons in despite it.
		43 44 45		
		46 47 48		
		49		
Water Lared Observations: Nascel on Reals. As Completion		thoth: lure Sumpler Bure Sumpler	Notes: TPV - Tutal Photosomodele Vi ND - Nat Detected	
	HSA - Hullaw GBO - Gospo		* - Water Sample(s I Retained	for Laboratory Analysis Page 1 of

MUNDELL & ASSOCIATES, INC				
FIELD BORING LOG				
				Injection NO: SB-1
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, India PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks BORING LOCATION: Source Area A (insid FIELD SCIENTIST: LL/AD/	ia tments es. Inc. e Zacateca	¹s)		DATE BEGAN: 2/4/2009 (2:47 PM) DATE FINISHED: 2/4/2009 (3:50 PM) DRILL ING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 32ñ. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A
GEOLOGIC DESCRIPTION	STRATUM DEPTH. A	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS
Grand surface is Asphalt.		1		
		2 3 4 5 6 7		
		9 10 11 E		
		14 25 26 27		
		89 30	9	
		21 22 23	15	
		24 25 26	15	
		27 28 29	15	
		30 31 32	10	Total 64 Gallions
		33 34 35		
		36 37 38		
		39 40 48 42		
		43 44 45		
		46 47 48		
		49		
Water Lord Observation:	Sampling Ma	ded:	Netra:	
Noted on Reals	LBS - Large i MBS - Maxo	lure Sumpler Bure Sumpler	TPV - Tutal Photoumodole Va ND - Nat Detected	do ray
·	HSA - Hullan GBO - Gospo	Stem Auger	* - Water Sample(s I Retained	l fur Labranius y Analysis Page of
				0

MUNDELL & ASSOCIATES, INC	2.			
FIELD BORING LOG				
				Injection NO: SB-2
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Service DRILLER: Mark Hicks BORING LOCATION: Source Area A (insidential Location)	na tments es, Inc. e Zacateca	¹s)		DATE BEGAN: 2/4/2009 (4:00 PM) DATE FINISHED: 2/4/2009 (5:02 PM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 32ñ. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A
GEOLOGIC DESCRIPTION	STRATUM DEPTH, JI	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS
		4 5 6 7 8 9 80 11 11 12 13 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	9 15 15	
Winter Level Observations:	Sampling M.	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	to Notes:	Total 64 Gallons
w and Eurori Construence: Nated on Reals. At Completance	LBS - Large i	lure Sumpler Bure Sumpler / Stem Auger	TPV - Total Photosumoniste Vi ND - Not Detected * - Water Sample(s) Retained	

MUNDELL & ASSOCIATES, INC	7			
FIELD BORING LOG				
				Injection NO: SB-3
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Service DRILLER: Mark Hicks BORING LOCATION: Source Area A (insidential Location)	na timents ves, Inc. e Zacateca	¹s)		DATE BEGAN: 2/5/2009 (8:50 AM) DATE FINISHED: 2/5/2009 DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 32ñ. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A
GEOLOGIC DESCRIPTION	STRATUM DEPTH, JI	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS
Grand surface is Vanyl Tile, Concrete.		ı.		
S.FCORRIG. Near Ed CC 86 Y NEWS 1 REC. C. ORECFORE.		2 3 4 4 4 5 6 7 8 9 10 81 82 83 84 85 16 87 88 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31	10 16 15	Total 67 Gallons
		48 49 50		
Water Lord Observations	Sampling Ma	ded:	Notes:	
Noted un Reals	LBS - Large i MBS - Mazu		TPV - Total Photoumodole Vi ND - Nat Detected	puz-
	HSA - Hullan GBO - Geapo	Stem Auger	Witter Sample(s I Returned	fur Laboratory Analyses Page of

MUNDELL & ASSOCIATES, INC	-			
o encour decemberate Boldes				Injection NO: SB-4
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks BORING LOCATION: Source Area A (insidented SCIENTIST: LL/AD/	tments es, Inc.	's)		DATE BEGAN: 2/5/2009 (8:50 AM) DATE FINISHED: 2/5/2009 DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 32/L. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A
GEOLOGIC DESCRIPTION	STRATUM DEPTH. p	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS
Ground surface is Vinyi Tile, Concrete.		8		
Residence to Very Title, Concrete.		2 3 4 5 5 6 7 8 8 9 10 10 13 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	16 16 15	Total 67 Gallons
		48 49		
		50		
Water I. ovel Observa flow: Noted on Rods	Sampling Mo LBS - Large I MBS - Macro	ded:	Note:: TPV = Tutal Photosonochile Va ND = Not Detected	pus
	HSA - Huthuv GBO - Geope		* - Water Sample(s) Retioned	for Laboratory Amelysis. Pageof

MUNDELL & ASSOCIATES, INC				
FIELD BORING LOG				Part and an Bittle City of
				Injection NO: SB-5
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Midway Servic DRILLER: Mark Hicks BORING EOCATION: Source Area A (Mich FIELD SCIENTIST: LL/AD/	tments es, Inc.	ı Family La	undry)	DATE BEGAN: 2/5/2009 (3:30 PM) DATE FINISHED: 2/5/2009 (4:25 PM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 32ñ. SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A
	STRATUM DEPTH. JI	BEPTH FT	GALLONS INTECTED PER INTERVAL	COMMENTS
Grand surface is Constete.		ı		
Gramma sum face is Comesten.		2 3 4 5 6 7 8 9 10 11 11 12 11 11 12 13 13 13 14 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 30 31 31 31 31 31 31 31 31 31 31	10 15 15 10	Total 65 Gallons
		46 47 48 49 50		
Water Level Observations:	Sampling Me		Netws	
Nated on Riab	LBS - Large E	lure Sampler	TPV - Total Photosomodele Vi	do raz-
At Completiu a	MBS - Mazu HSA - Hullan	Bure Sampler Stem Auser	ND - Nat Detected * - Water Sample(s) Returned	l for Ishandary Anabasa
	GBO - Goupo		Annua Santifurity i Scooling	Page of

MUNDELL & ASSOCIATES, INC				
FIELD BORING LOG				
				Injection NO: SB-6
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, India PROJECT NAME: Michigan Meadows Apar	18			DATE BEGAN: 2/5/2009 (4:30 PM) DATE FINISHED: 2/5/2009
PROJECT NAME: Michigan Measows Apar PROJECT NO: M01046	inien is			DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe
DRILLING CONTRACTOR: Midway Service	es Inc.			GW Depth (OBSERVED):
DRILLER: Mark Hicks				DEPTH OF BORING: 32n.
BORING LOCATION: Source Area A (Mich	igan Pla <i>zı</i>	Family La		SURFACE ELEVATION: N/A
FIELD SCIENTIST: LL/AD/				TOP OF CASING ELEVATION: NA
GEOLOGIC DESCRIPTION	STRATUM DEPTH, p	DEPTH FT	GALLOAN INJECTED PER INTERVAL	COMMENTS
Grand surface is Conciete.		ı		
		3		
		4		
		5		
		Ť		
		3		
		80		
		11 E		
		IJ		
		ы В		
		36		
		r)		
		68		
		99		
		20	10	
		21		
		22		
		23	15	
		24		
		25		
		26	15	
		27		
		28		
		29	15	
		30		
		31		
		32	10	Total 65 Gallons
		33		
		34		
		35		
		36		
		37		
		38		
		39		
		40		
		41		
		42		
		43		
		44		
		45		
		46		
		47		
		48		
		49		
m' - 1 - 100		50	M. A.	
Water Level Observation: Noted on Reds	Sampling Me LBS - Large i		Notes: TPV - Total Photosomobile Vi	pus.
At Completion		Bure Sumpler	ND - Nat Detected	
	HSA- Hullar		* - Water Sample(s I Retained	
	GBO - Gospo	tic .		Page of

MUNDELL & ASSOCIATES, INC	-			
FIELD BORING LOG				Infration Bidds CD 7
CLIENT: AIMCO PROJECT LOCATION: Indianapolis, Indian PROJECT NAME: Michigan Meadows Apar PROJECT NO: M01046 DRILLING CONTRACTOR: Mithway Servic DRILLER: Mark Hicks	tments es, Inc.			Injection NO: SB-7 DATE BEGAN: 2/5/2009 (10:05 AM) DATE FINISHED: 2/5/2009 (11:00 AM) DRILLING MEATHOD: Direct Push DRILL EQUIP: Geoprobe GW Depth (OBSERVED): DEPTH OF BORING: 32ft.
BORING LOCATION: Source Area A (Insid FIELD SCIENTIST: LL/AD/	e Zacateca	115)		SURFACE ELEVATION: N/A TOP OF CASING ELEVATION: N/A
GEOLOGIC DESCRIPTION	STRATUM DEPTH, JI	DEPTH FT	GALLONS INJECTED PER INTERVAL	COMMENTS
Grounted sear face is Vinty4 Tille, Conterede.		1 2 3 4 4 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Total 65 Gallions 4 drums and 25 gallions (from 5th dnum) used so tar (2/5/2009 12:30Pt√l)
Water Level Observations: Navel on Reals	HSA - Hollow	lure Sumpler Bure Sumpler / Stem Auger	Notes: TPV - Total Photosomodule Vo ND - Not Detected * - Water Sample(s) Returned	· Fur Lub crossey Analyses
	GBO - Gospo	he		Page 1 of

APPENDIX D

AIR MITIGATION SYSTEMS CONCENTRATION DATA AND REMOVAL CONCENTRATION

Michigan Plaza

Indianapolis, Indiana

						Perchloroeti	ylene (PCE)							
Sample Date	B-1	B-2	B-3	B-4	B-1	B- 2	B-3	B-4	B-1	6-2	B-3	B-4		
		(pp	mv)			(ppm)				(µg/m³)				
9/21/2006	0.6300	0.7900	0.6700	0.2800	0.0043	0.0054	0.0046	0.0019	4281.48	5368.84	4553.32	1902.88		
10/6/2006	0.8800	0.6700	0.9700	0.3100	0.0060	0.0046	0.0066	0.0021	5980.48	4553.32	6592.12	2106.76		
10/13/2006	0.6800	0.3600	0.5200	0.2100	0.0046	0.0024	0.0035	0.0014	4621.28	2446.56	3533.92	1427.16		
10/20/2006	0.8700	0.5500	0.8900	0.2200	0.0059	0.0037	0.0060	0.0015	5912.52	3737.80	6048.44	1495.12		
11/17/2006	0.8100	0.4700	0.7800	0.1500	0.0055	0.0032	0.0053	0.0010	5504.76	3194.12	5300.88	1019.40		
12/27/2006	0.7400	0.4700	0.7500	0.1100	0.0050	0.0032	0.0051	0.0007	5029.04	3194.12	5097.00	747.56		
3/30/2007	0.5100	0.1800	0.5700	0.0310	0.0035	0.0012	0.0039	0.0002	3465.96	1223.28	3873.72	210.68		
6/15/2007	<.0100	0.3100	0.2100	0.4600	BDL	0.0021	0.0014	0.0031	BOL	2106.76	1427.16	3126.16		
10/16/2007	0.3900	0.2400	0.2800	0.0670	0.0027	0.0016	0.0019	0.0006	2650.44	1631.04	1902.88	455.33		
12/14/2007	0.5800	0.3400	0.5200	0.1400	0.0039	0.0023	0.0035	0.0010	3941.68	2310.64	3533.92	951,44		
3/27/2008	0.5500	NS	0.5600	0.0740	0.0037	NS	0.0038	0.0005	3737.80	NS	3805.76	502.90		
4/1/2008	NS	0.3600	NS	NS	NS	0.0024	NS	NS	NS	2446.56	NS	NS		
6/2/2008	0.7200	0.56	0.49	0.1	0.0049	0.0038	0.0033	0.0007	4893.12	3805.76	3330.04	679.60		
9/12/2008	0.4800	0.47	0.53	0.13	0.0033	0.0032	0.0036	0.0009	3262.08	3194.12	3601.88	883.48		
11/26/2008	0.4600	NS	0.36	0.11	0.0031	NS	0.0024	0.0007	3126.16	NS	2446.56	747.56		
12/11/2008	0.4600	NS	0.36	0.11	0.0031	NS	0.0024	0.0007	3126.16	NS	2446.56	747.56		
4/1/2009 * Numbers in red in:	0.45	NS	0.55	0.005	0.0031	NS	0.0037	0.00003	3058.20	NS	3737.80	33.98		

Air Mitigation - Historical Air Analytical Results

Michigan Plaza

Indianapolis, Indiana

	Trichloroethylene (TCE)													
Sample Date	B-1	B- 2	B-3	B-4	B-1	8-2	B-3	8-4	B-1	B-2	B-3	B-4		
		(pp	mv)			(pr	m)		(hð _i m ₂)					
9/21/2006	0.0240	0.0120	<0.0100	<0.0100	0.0001	0.0001	BDL	BDL	129.24	64.62	BOL	BOL		
10/6/2006	0.0120	<0.0100	<0.0100	<0.0100	0.0001	BDL	BDL	BOL	64.62	BOL	BDL.	BOL		
10/13/2006	<0.0100	< 0.0100	< 0.0100	<0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BDL.	BOL		
10/20/2006	<0.0100	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BOL	BOL		
11/17/2006	<0.0100	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BOL	BOL		
12/27/2006	< 0.0100	< 0.0100	< 0.0100	< 0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BOL	BOL		
3/30/2007	< 0.0100	< 0.0100	< 0.0100	< 0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BOL	BOL		
6/15/2007	0.4600	<0.0100	<0.0100	<0.0100	0.0025	BDL	BDL	BOL	2,477.10	BOL	BDL.	BOL		
10/16/2007	<0.0100	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BDL.	BOL		
12/14/2007	<0.0100	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BDL.	BOL		
3/27/2008	<0.0100	NS	<0.0100	<0.0100	BDL	NS	BDL	BOL	BDL	BOL.	BDL.	BOL		
4/1/2008	NS	<0.0100	NS	NS	NS	BDL	NS	NS	BOL	BOL	BOL	BOL		
6/2/2008	<0.0100	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BOL	BDL	BOL	BDL	BOL		
9/12/2008	<0.0100	<0.0100	<0.0100	<0.0100	BDL	BDL	BOL	BOL	BDL	BOL	BOL	BOL		
11/26/2008	<0.0100	NS	<0.0100	<0.0100	BDL	NS	BDL	BOL	BDL	NS	80L	BOL		
12/11/2008	<0.0100	NS	<0.0100	<0.0100	BDL	NS	BDL	BOL	BDL	NS	BOL	BOL		
4/1/2009 * Numbers in red ind	<0.0100	NS	<0.0100	<0.0100	BDL	NS	BDL	BOL	BDL	NS	BOL	BOL		

Air Mitigation - Historical Air Analytical Results Michigan Placa

Indianapolis, Indiana

						Vinyi C	hioride					
Sample Date	B-1	8-2	B-3	B-4	6-1	B-2	B-3	B-4	6-1	6 -2	B-3	B-4
	(ppmv)				(P)	om)			t io	/m³)		
9/21/2006	<1.0000	<1.0000	<1.0000	<1.0000	BOL	BDL	BOL	BOL	BOL	BOL	BOL	BOL
10/6/2006	<1.0000	<1.0000	<1.0000	<1.0000	BOL	BDL	BOL	BOL	BOL	BOL	BOL	BOL
10/13/2006	<1.0000	<1.0000	<1.0000	<1.0000	BDL	BOL	BOL	BOL	BOL	BOL	BOL	BOL
10/20/2006	<1.0000	<1.0000	<1.0000	<1.0000	BDL	BDL	BOL	BOL	BOL	BOL	BOL	BOL
11/17/2006	<1.0000	<1.0000	<1.0000	<1.0000	BDL	BOL	BOL	BOL	BOL	BOL	BOL	BOL
12/27/2006	<1.0000	<1.0000	<1.0000	<1.0000	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL
3/30/2007	<1.0000	<1.0000	<1.0000	<1.0000	BDL	BDL	BOL	BOL	BOL	BOL	BOL	BOL
6/15/2007	<1.0000	<1.0000	<1.0000	<1.0000	BOL	BDL	BOL	BOL	BOL	BOL	BOL	BOL
10/16/2007	<1.0000	<1.0000	<1.0000	<1.0000	BOL	BDL	BOL	BOL	BOL	BOL	BOL	BOL
12/14/2007	<1.0000	<1.0000	<1.0000	<1.0000	BDL	BOL	BDL	BOL	BOL	BOL	BOL	BOL
3/27/2008	<1.0000	NS	<1.0000	<1.0000	BOL	NS	BOL	BOL	BOL	NS	BOL	BOL
4/1/2008	NS	<1.0000	NS	NS	NS	BDL	NS	NS	NS	BOL	NS	NS
6/2/2008	<1.0000	<1.0000	<1.0000	<1.0000	BOL	BDL	BOL	BOL	BOL	BOL	BOL	BOL
9/12/2008	<1.0000	<1.0000	<1.0000	<1.0000	BDL	BOL	BOL	BOL	BOL	BOL	BOL	BOL
11/26/2008	<1.0000	NS	<1.0000	<1.0000	BDL	NS	BDL	BDL	BOL	NS	BOL	BOL
12/11/2008	<1.0000	NS	<1.0000	<1.0000	BDL	NS	BDL	BDL	BOL	NS	BOL	BOL
4/1/2009	<1.0000	NS	<1.0000	<1.0000	BDL	NS	BDL	BDL	BDL	NS	BDL	BOL

Air Mitigation - Historical Air Analytical Results

Michigan Plaza

Indianapolis, Indiana

						cis-1,2-Dich	arcethylene					
Sample Date	8-1	B-2	B-3	B-4	B-1	B-2	B-3	8-4	B-1	B-2	B-3	B-4
		{pp	mv)			{pr	m)		(µg/m³)			
9/21/2006	0.1400	<0.0200	<0.0200	<0.0200	0.0006	BOL	BOL	BOL	556.22	BOL	BOL	BOL
10/6/2006	0.0300	<0.0200	<0.0200	<0.0200	0.0001	BOL	BOL	BOL	119.19	BOL	BOL	BOL
10/13/2006	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BOL.	BOL
10/20/2006	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BDL.	BOL
11/17/2006	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL
12/27/2006	0.024	<0.0200	<0.0200	<0.0200	0.0001	BOL	BOL	BOL	95.35	BOL	BOL	BOL
3/30/2007	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL
6/15/2007	0.2100	<0.0200	<0.0200	<0.0200	0.0008	BOL	BOL	BOL	834.33	BOL	BOL	BOL
10/16/2007	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BOL.	BOL
12/14/2007	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BOL.	BOL
3/27/2008	0.034	NS	<0.0200	<0.0200	0.0001	NS	BOL	BOL	135.08	NS	BOL	BOL
4/1/2008	NS	<0.0200	NS	NS	NS	BOL	NS	NS	NS	BOL	NS	NS
6/2/2008	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL
9/12/2008	<0.0200	<0.0200	<0.0200	<0.0200	BOL	BOL	BOL	BOL	BOL	BOL	BOL.	BOL
11/26/2008	<0.0200	NS	<0.0200	<0.0200	BOL	NS	BOL	BOL	BOL	NS	BDL.	BOL
12/11/2008	<0.0200	NS	<0.0200	<0.0200	BOL	NS	BOL	BOL	BOL	NS	BOL.	BOL
4/1/2009 Numbers in red indi	<0.0200	NS	<0.0200	<0.0200	BOL	NS	BOL	BDL.	BOL	NS	BOL	BOL

Table D2 Air Mitigation System - Historical Air Analytical Results Michigan Meadows Apartments Indianapolis, Indiana

				Perch	loroethylene	(PCE)			
Sample Date	B-5	B-6	B-7	B-5	B-6	B-7	B-5	B-6	B-7
		(ppmv)			(ppm)			(µg/m³)	-
3/27/2008	0.1300	1.2000	NS	0.0009	0.0082	NS	883.48	8155.20	NS
3/28/2008	0.0730	0.4900	NS	0.0005	0.0033	NS	496.11	3330.04	NS
4/7/2008	NS	NS	0.0760	NS	NS	0.0005	NS	NS	516.50
4/8/2008	NS	NS	0.0470	NS	NS	0.0003	NS	NS	319.41
4/24/2008	0.0540	0.1100	0.0220	0.0004	0.0007	0.0001	366.98	747.56	149.51
5/1/2008	0.0580		0.0390	0.0004	0.0000	0.0003	394.17	0.00	265.04
6/2/2008	0.0590	0.2200	0.0530	0.0004	0.0015	0.0004	400.96	1495.12	360.19
7/10/2008	0.0650	NS	0.0540	0.0004	NS	0.0004	441.74	NS	366.98
8/20/2008	NS	0.2700	NS	NS	0.0018	NS	NS	1834.92	NS
9/12/2008	0.0690	0.1800	0.0540	0.0005	0.0012	0.0004	468.92	1223.28	366.98
11/26/2008	0.0720	0.1100	0.0560	0.0005	0.0007	0.0004	489.31	747.56	380.58
12/11/2008	0.0720	0.1100	0.0560	0.0005	0.0007	0.0004	489.31	747.56	380.58
4/1/2009	0.21	0.13	0.059	0.0014	0.0009	0.0004	1427.16	883.48	400.96

Table D2

Air Mitigation - Historical Air Analytical Results Michigan Meadows Apartments Indianapolis, Indiana

				Trich	nloroethylene	(TCE)			
Sample Date	B-5	B-6	B-7	B-5	B-6	B-7	B-5	B-6	B-7
		(ppmv)			(ppm)			(µg/m³)	
3/27/2008	< 0.0100	< 0.0100	NS	BDL	BDL	NS	BDL	BDL	NS
3/27/2008	< 0.0100	< 0.0100	NS	BDL	BDL	NS	BDL	BDL	NS
4/7/2008	NS	NS	< 0.0100	NS	NS	BDL	NS	NS	BDL
4/8/2008	NS	NS	< 0.0100	NS	NS	BDL	NS	NS	BDL
4/24/2008	< 0.0100	< 0.0100	< 0.0100	BDL	BDL	BDL	BDL	BDL	BDL
5/1/2008	< 0.0100	< 0.0100	< 0.0100	BDL	BDL	BDL	BDL	BDL	BDL
6/2/2008	< 0.0100	< 0.0100	< 0.0100	BDL	BDL	BDL	BDL	BDL	BDL
7/10/2008	< 0.0100	NS	< 0.0100	BDL	NS	BDL	BDL	NS	BDL
8/20/2008	NS	<0.0100	NS	NS	BDL	NS	NS	BDL	NS
9/12/2008	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BDL	BDL	BDL
11/26/2008	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BDL	BDL	BDL
12/11/2008	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BDL	BDL	BDL
4/1/2009	<0.0100	<0.0100	<0.0100	BDL	BDL	BDL	BDL	BDL	BDL

Air Mitigation - Historical Air Analytical Results Michigan Meadows Apartments Indianapolis, Indiana

				•	Vinyl Chlorld	e			
Sample Date	B-5	B-6	B-7	B-5	B-6	B-7	B-5	B-6	B-7
		(ppmv)			(ppm)			(µg/m³)	
3/27/2008	<1.0000	<1.0000	NS	BDL	BDL	NS	B DL	BDL	NS
3/27/2008	<1.0000	<1.0000	NS	BDL	BDL	NS	B DL	BDL	NS
4/7/2008	NS	NS	<1.0000	NS	NS	BDL	NS	NS	BDL
4/8/2008	NS	NS	<1.0000	NS	NS	BDL	NS	NS	BDL
4/24/2008	<1.0000	<1.0000	<1.0000	BDL	BDL	BDL	B DL	BDL	BDL
5/1/2008	<1.0000	<1.0000	<1.0000	BDL	BDL	BDL	B DL	BDL	BDL
6/2/2008	<1.0000	<1.0000	<1.0000	BDL	BDL	BDL	B DL	BDL	BDL
7/10/2008	<1.0000	NS	<1.0000	BDL	NS	BDL	B DL	NS	BDL
8/20/2008	NS	<1.0000	NS	NS	BDL	NS	NS	BDL	NS
9/12/2008	<1.0000	<1.0000	<1.0000	BDL	BDL	BDL	B DL	BDL	BDL
11/26/2008	<1.0000	<1.0000	<1.0000	BDL	BDL	BDL	B DL	B DL	BDL
12/11/2008	<1.0000	<1.0000	<1.0000	BDL	BDL	BDL	B DL	B DL	BDL
4/1/2009	<1.0000	<1.0000	<1.0000	BDL	BDL	BDL	BDL	BDL	BDL

Table D2

Air Mitigation - Historical Air Analytical Results

Michigan Meadows Apartments

Indianapolis, Indiana

				cls-1,	2-Dichloroett	ylene			
Sample Date	B-5	B-6	B-7	B-5	B-6	B-7	B-5	B-6	B-7
		(ppmv)			(ppm)			(µg/m³)	
3/27/2008	<0.0200	<0.0200	NS	BDL	BDL	NS	BDL	BDL	NS
3/28/2008	<0.0200	<0.0200	NS	8DL	BDL	NS	BDL	BDL	NS
4/7/2008	NS	NS	<0.0200	NS	NS	BDL	NS	NS	BDL
4/8/2008	NS	NS	<0.0200	NS	NS	BDL	NS	NS	BDL
4/24/2008	<0.0200	<0.0200	<0.0200	8DL	BDL	BDL	BDL	BDL	BDL
5/1/2008	<0.0200	<0.0200	<0.0200	8DL	BDL	BDL	BDL	BDL	BDL
6/2/2008	<0.0200	<0.0200	<0.0200	BDL	8DL	BDL	BDL	BDL	BDL
7/10/2008	<0.0200	NS	<0.0200	BDL	NS	BDL	BDL	NS	BDL
8/20/2008	NS	<0.0200	NS	NS	8DL	NS	NS	BDL	NS
9/12/2008	<0.0200	<0.0200	<0.0200	BDL	BDL	BDL	BDL	BDL	BDL
11/26/2008	<0.0200	<0.0200	<0.0200	BDL	BDL	BDL	BDL	BDL	BDL
12/11/2008	<0.0200	<0.0200	<0.0200	BDL	BDL	BDL	BDL	BDL	BDL
4/1/2009	<0.0200	<0.0200	<0.0200	BDL	BDL	BDL	BDL	BDL	BDL

Table D3
Concentration Averages
First Quarter 2809
04/01/09
Michigan Plaza
3801-3823 West Michigan Street
Ludianapolis, Indiana
MUNDELL, Project No. M01046

								, —																							
			PC	E							TO	E							v	С							cis·t,	2-DCE			
Sample Date	B-1	B-2		В	-3	В	-4	В	-1	В	-2	В	-3	В	-4	В	-1	В	-2	В	-3	В	-4	В	-1	В	-2	В	-3	В	-4
Ji i			(pg/	m³)				8			(pg/	m³)				J.		32	(µg/	m³)							(µg	/m³}	,	,	
9/21/2006	4,281.48 4,281.48	5,368,84 5,3	68.84	4,553. 32	4,553.32	1,902.88	1,902.88	129.24	129.24	64.62	64.62	27.00	27.00	27.00	27.00	1,280	1,280	1.280	1,280	1,280	1,280	1,280	1,280	556.22	556.22	40	40	40	40	40	40
10/6/2006	5,980:48 5,130.98	4,553.32 4.9	61.08	6,592.12	5,572.72	2.106.76	2,004.82	64.62	96.93	27.00	45.81	27.00	27.00	27.00	27.00	1,280	1,280	1,280	1,280	1,280	1,280	1,280	1,280	119.19	337.71	40	40	40	403	40	40
10/13/2006	4,621.28 5,300.88	2,446.56 3.4	99.94	3,533.92	5,063.02	1.427.16	1,766.96	27.00	45.81	27.00	27.00	27.00	27.00	27.00	27.00	1.280	1,280	1,280	1,280	1,280	1,280	1.280	1,280	40	79.60	40	40	40	40	40	40
10/20/2006	5,912.52 5,266.90	3.737.80 3,0	92.18	6,048.44	4,791.18	1,495.12	1,461.14	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1,280	1,280	1,280	1,280	1,280	1,280	1,280	40	·40.00	40	40	:40	40-	40	40
11/17/2006	5,504.76 5,708.64	3.194.12 3,4	65 .96	5,300.88	5,674.66	1,019.40	1,257.26	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1,280	1,280	1,280	1,280	1,280	1,280	1,280	40	40.00	40	40	40	40	40	40
12/27/2006	5,029.04 5,266.90	3,194.12 3,1	94.12	5 ,097. 00	5,198.94	747,56	883.48	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1,280	1,280	1,280	1,280	1,280	1,280	1,280	95.35	67 .68	40	g 40	40	40	40	40
3/30/2007	3,465.96 4,247.50	1.223,28 2,2	08.70	3,873.72	4,485.36	210.68	479.12	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1,280	1,280	1,280	1,280	1,280	1,280	1,280	40	67.68	40	.40	140	40	40	40
6/15/2007	34.00 1,749.98	2.106.76 1,6	65.02	1,427.16	2,650.44	3,126.16	1,668.42	2,477.10	1,252.05	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1,280	1.280	1,280	1,280	1,280	1,280	1,280	834. 33	437.17	40	40	40	40	40°	40.
10/16/2007	2,650,44 1,342.22	1,631.04 1,8	68.90	1,902.88	1,665.02	455.33	1,790.75	27.00	1.252.05	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1.280	1.280	1,280	1.280	1,280	1,280	1,280	40	437.17	40	₅ 40	40	40	40	40
12/14/2007	3,941.68 3,296.06	2,310.64 1,9	70.84	3,533.92	2,718.40	951.44	703.39	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1,280	1,280	1,280	1,280	1,280	1,280	1,280	40	40.00	40	40	40"	40	40	40
3/27/2008	3,737.80 3,839.74	NS	NS	3,805.76	3,669.84	502.90	727.17	27.00	27.00	NS	NS	27.00	27.00	27.00	27.00	1,280	1,280	NS	NS	1,280	1,280	1,280	1,280	135.08	87.54	NS	NS	40	40	40	40
4/1/2008	NS NS	2,446.56 2.3	78.60	NS	NS	NS	NS	NS	NS	27.00	27.00	NS	NS	NS	NS	NS	NS	1,280	1,280	NS	NS	NS	NS	NS	NS	40	40	NS	NS	NS	NS
6/2/2008	4,893.12 4,315 .46	3.805.76 3,1	26.1 6	3,330.04	3,567.90	679.60	591.25	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00	1,280	1,280	1,280	1,280	1,280	1,280	1,280	1,280	40	87.54	40	40	'40)	40	(40)	40
9/12/2008	3262.08 4,077.60	3,194.12 3,4	99.94	3.601.88	3,465 .96	883.48	781.54	27.00	27.00	27.00	27.00	27.00	27.00	27.00	27 .00	1,280	1,280	1,280	1,280	1,280	1,280	1.280	1,280	40	40.00	40	40	40	40	40	40.
11/26/2008	3126.16 3,194.12	NS	NS	2,446.56	3,024.22	747.56	815.52	27.00	27.00	NS	NS	27.00	27.00	27.00	27.00	1,280	1.280	NS	NS	1.280	1,280	1,280	1,280	40	40.00	NS	NS	40	40	40	40
4/1/2009	3058.20 3,092.18	NS	NS	3,737.80	3,092.18	373,80	560.68	27.00	27.00	NS	NS	27.00	27.00	27.00	27.00	1,280	1,280	NS	NS	1,280	1,280	1,280	1,280	40	40.00	NS	NS	40	40	40	40

"The detection limit for Viryl Chloride is fairly high compared to the others. Using 1/2 the detections limit as the assumed concentration will significantly raise the "total pollutants removed" calculation—DJP "

			'Р(E -					TC	E		<u>.</u>			v	С					cis-1,	2-DCE		
Sample Date	В	-5	В	-6	В	-7	В	.5	В	-6	В	-7	В	-5	В	-6	В	.7	В	-5	В	-6	В-	.7
			(իმ,	m³)					(µg/r	n³)					(րց	'm³)					(µg.	/m³)		
3/27/2008	883.48	8 83 .48	8155.20	8155.20	NS	NS	27.00	27.00	27.00	27.00	NS	NS	1280.00	1280.00	1280.00	1280.00	NS	NS	40.00	40.0 0	40.00	40.00	NS	NS
3/28/2008	496.11	689.79	3330 .04	5742.62	NS	NS	27.00	27.00	27.00	27.00	NS	NS	1280.00	1280.00	1280.00	1280.00	NS	NS	40.00	40.00	40.00	40.00	NS	NS
4/7/2008	NS	NS	NS.	NS	516.50	5 16.50	NS	NS	NS	NS	27.00	27.00	NS	NS	NS	NS	1280.00	1280.00	NŞ	NS	NS	NS	40.00	40.00
4/8/2008	NS	NS	NS	NS	319.41	4 17.95	NS	NS	NS	NS	27.00	27.00	NS	NS	NS	NS	1280.00	1280.00	NS	NS	NS	NS	40.00	40.00
4/24/2008	366.98	431.55	747.56	2038.80	149.51	234.46	27.00	27.00	27.00	27.00	27.00	27.00	1280.00	1280.00	1280.00	1280.00	1280.00	1280.00	40.00	40.00	40.00	40.00	40.00	40.00
5/1/2008	394.17	380.58	1427.16	1087.36	265.04	207.28	27.00	27.00	27.00	27.00	27.00	27.00	1280.00	1280.00	1280.00	1280.00	1280.00	1280.00	40.00	40.00	40.00	40.00	40.00	40.00
6/2/2008	400.96	397.57	1495.12	1461.14	360.19	312.62	27.00	27.00	27.00	27.00	27.00	27.00	1280.00	1280.00	1280.00	1280.00	1280.00	1280.00	40.00	40.00	40.00	40.00	40.00	40.00
9/12/2008	468.92	434.94	1223.28	1359.20	366.98	363 .59	27.00	27.00	27.00	27.00	27.00	27.00	1280.00	1280.00	1280.00	1280.00	1280.00	1280.00	40.00	40.00	40.00	40.00	40.00	40.00
11/26/2008	489.31	479.12	747.56	985.42	380.58	373.78	27.00	27.00	27.00	27.00	27.00	27.00	1280.00	1280.00	1280.00	1280.00	1280.00	1280.00	40.00	40.00	40.00	40.00	40.00	40.00
W1/2009	1427.16	958.24	883.48	815.52	400.96	390.77	27.00	27.00	27.00	27.00	27.00	27.00	1280.00	1280.00	1280.00	1280.00	1280.00	1280.00	40.00	40.00	40.00	40.00	40.00	40.00

Table D4
Total Pounds Removed
First Quarter 2009
04/01/09
Michigan Plaza
3801-3823 West Michigan Street
Indianapolis, Indiana
MUNDELL Project No. M01046

TOTAL Lbs. REMOVED PID Data Lab Data cis-1,2-DCE PCE PCE TCE TOTALS VC 13.4 20.6 7.7 0.87 31.0 **B-1** 1.8 **B-2** 6.5 6.9 0.08 3.6 0.11 10.7 B-3 Lbs. VOCs Removed 25.2 0.30 40.0 14.0 0.44 Lbs. VOCs Removed 7.7 22.2 **B-4** 0.29 13.7 0.43 B-5 0.0 2.93 0.11 4.98 0.16 8.2 **B-6** 0.4 3.4 0.10 4.92 0.15 8.5 **B-7** 0.0 1.32 0.10 4.56 0.14 6.1 TOTALS: 20.2 68.1 2.7 53.5 2.3 126.7

Lab Data for Air Mitigation System B-1

First Quarter 2009

04/01/09

Michigan Plaza

3801-3823 West Michigan Street

Indianapolis, Indiana

						B-1	(Lab Data)				MUNDELI.	Project No.	M01046										
Sample Date	Hours per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	μg/m3 PCE	Lbs. PCE removed	μg/m3 TCE	Lbs. TCE removed	μg/m3 VC	Lbs. VC removed	μg/m3 cis- 1.2-DCE	Lbs. cis-1.2 DCE removed	Lbs. Total Pollutants Removed (ug/m3)	Cumulative PCE lbs Removed	Cumulative Total Pollutant lbs Removed	Samp	ple Date	Hours Per Cycle	Average Flow Rate (CFM)	B-1 (PID Read Air Vol. Removed per Cycle (CF)	PID Reading (ppm VOCs)	μg/m3 VOCs	Lbs. VOCs Removed	Cum Total lbs Removed (Est from PID)
9/21/2006	0.5	73	2,190	4,281	0.00	129	0.00	1,280	0.00	556	0.00	0.00	0.00	0.00	9/21	1/2006	0.5	73	2,190	4.9	10,439	0.00	0
10/6/2006	360	73	1,576,800	5,131	0.50	97	0.01	1,280	0.13	338	0.03	0.67	0.51	0.67	9/28	8/2006	168	73	735,840	1.9	4,841	0.22	0.2237
10/13/2006	168	73	735,840	5,301	0.24	46	0.00	1,280	0.06	80	0.00	0.31	0.75	0.98200531	10/6	6/2006	192	73	840,960	1.0	3,162	0.17	0.38952311
10/20/2006	168	73	735,840	5,267	0.24	27	0.00	1,280	0.06	40	0.00	0.30	0.990333	1.28558899	10/1	13/2006	168	73	735,840	0.6	2,322	0.11	0.496118669
11/17/2006	672	73	2,943,360	5,709	1.05	27	0.00	1,280	0.24	40	0.01	1.30	2.0384589	2.58102866	10/2	20/2006	168	73	735,840	0.3	1,902	0.09	0.583442753
12/27/2006	960	73	4,204,800	5,267	1.38	27	0.01	1,280	0.34	68	0.02	1.74	3.4199173	4.32305167	11/1	17/2006	672	73	2,943,360	0.1	1,483	0.27	0.855653192
3/30/2007	2,232	73	9,776,160	4,248	2.59	27	0.02	1,280	0.78	68	0.04	3.43	6.0101518	7.75159888	12/2	27/2006	960	73	4,204,800	0.0	1,296	0.34	1.195581819
6/15/2007	1,848	73	8,094,240	1,750	0.88	1,252	0.63	1,280	0.65	437	0.22	2.38	6.8937331	10.1343649	6/15	5/2007	4,080	73	17,870,400	0.1	1,483	1.65	2.848288055
10/16/2007	2,952	73	12,929,760	1,342	1.08	1,252	1.01	1,280	1.03	437	0.35	3.48	7.9762921	13.6117253	10/1	16/2007	2,952	73	12,929,760	0.1	1,483	1.20	4.044069625
12/14/2007	1,416	73	6,202,080	3,296	1.28	27	0.01	1,280	0.50	40	0.02	1.80	9.2514674	15.408026	12/1	14/2007	1,416	73	6,202,080	0.1	1,483	0.57	4.617655906
3/27/2008	2,496	73	10.932.480	3,840	2.62	27	0.02	1,280	0.87	88	0.06	3.57	11.869999	18.9775732	3/27	7/2008	2,496	73	10.932,480	1.7	4,468	3.05	7.664769832
6/2/2008	1,608	73	7.043.040	4,315	1.90	27	0.01	1,280	0.56	88	0.04	2.51	13.76594	21.4861866	6/2	2/2008	1,608	73	7,043,040	2.2	5,401	2.37	10.03771558
9/12/2008	2,448	73	10,722,240	4,078	2.73	27	0.02	1,280	0.86	40	0.03	3.63	16.493206	25.1143817	9/12	2/2008	2,448	73	10,722,240	0.3	1.856	1.24	11.27895081
11/26/2008	1,800	73	7.884.000	3,194	1.57	27	0.01	1,280	0.63	40	0.02	2.23	18.063999	27.3476223	11/2	26/2008	1,800	73	7.884,000	0.1	1,483	0.73	12.00808591
12/11/2008	360	73	1,576,800	3,126	0.31	27	0.00	1,280	0.13	40	0.00	0.44	18.371485	27.7875978	12/1	1/2008	360	73	1,576,800	0.1	1482.6	0.15	12.15391293
4/1/2009	2664	73	11668320	3058.2	2.225931	27	0.019652	1280	0.93166	40	0.0291143	3.206353	20.597415	30.9939509	4/1.	1/2009	2664	73	11668320	0.2	1669.2	1.214938	13.36885089
TOTALS:	14,881		83,782,830		20.60		1.78		7.75		0.87	30.99			TO	TALS:	14,881		97,027,950			13.37	

Lab Data for Air Mitigation System B-2

First Quarter 2009

04/01/09

Michigan Plaza

3801-3823 West Michigan Street

Indianapolis, Indiana

						B	3-2 (Lab	Data)						
Sample Date	Hours per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	μg/m3 PCE	Lbs. PCE removed	μg/m3 TCE	Lbs. TCE removed	μg/m3 VC	Lbs. VC removed	μg/m3 cis-1,2- DCE		Lbs. Total Pollutants Removed	Cumulative PCE lbs Removed	Cumulative Total Pollutan lbs Removed
9/21/2006	0.5	37	1,110	5,369	0.00	65	0.00	1,280	0.00	40	0.00	0.00	0.000371741	0.000467613
10/6/2006	360	37	799,200	4,961	0.25	46	0.00	1,280	0.06	40	0.00	0.32	0.247697359	0.315883203
10/13/2006	168	37	372,960	3,500	0.08	27	0.00	1,280	0.03	40	0.00	0.11	0.329122824	0.428646378
10/20/2006	168	37	372,960	3,092	0.07	27	0.00	1,280	0.03	40	0.00	0.10	0.401061828	0.531923091
11/17/2006	672	37	1,491,840	3,466	0.32	27	0.00	1,280	0.12	40	0.00	0.45	0.723601537	0.979813638
12/27/2006	960	37	2,131,200	3,194	0.42	27	0.00	1,280	0.17	40	0.01	0.60	1.148233647	1.583518373
3/30/2007	2,232	38	5.088,960	2.209	0.70	27	0.01	1,280	0.41	40	0.01	1.13	1.849371097	2.712252211
6/15/2007	1,848	42	4,656,960	1.665	0.48	27	0.01	1,280	0.37	40	0.01	0.87	2.333052465	3.587231464
10/16/2007	2.952	48	8.501,760	1.869	0.99	27	0.01	1,280	0.68	40	0.02	1.71	3.324186298	5.292719875
12/14/2007	1,416	53	4,502,880	1.971	0.55	27	0.01	1,280	0.36	40	0.01	0.93	3.8777647	6.224649694
4/1/2008	2,616	50	7.848.000	2,379	1.16	27	0.01	1.280	0.63	40	0.02	1.82	5.042206548	8.048514384
6/2/2008	1.488	42	3,705,120	3.126	0.72	27	0.01	1,280	0.30	40	0.01	1.03	5.764728217	9.082356231
9/12/2008	2,448	37	5,434,560	3,450	1.17	27	0.01	1,280	0.43	40	0.01	1.63	6.934283834	10.70854704
11/26/2008	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
12/11/2008	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
4/1/2009	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TOTALS:	14,881		44,907,510		6.93		0.08		3.59		0.11	10.71		

		i	3-2 (PID R	eading	s)		
Sample Date	Hours Per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	PID Reading (ppm VOCs)	μg/m3 VOCs	Lbs. VOCs Removed	Cum Total lbs Removed (Est from PID)
9/21/2006	0.5	37	1,110	2.0	5,028	0.00	0.000348141
9/28/2006	168	37	372,960	2.0	5,028	0.12	0.117323644
10/6/2006	192	37	426,240	1.1	3,255	0.09	0.203876742
10/13/2006	168	37	372,960	0.6	2,369	0.06	0.258989932
10/20/2006	168	37	372,960	0.3	1.926	0.04	0.303792736
11/17/2006	672	37	1,491,840	0.1	1.483	0.14	0.441762411
12/27/2006	960	37	2,131,200	0.1	1.483	0.20	0.638861946
6/15/2007	4.080	41	10.036.800	0.1	1.483	0.93	1.567094215
10/16/2007	2,952	48	8,501,760	0.1	1.483	0.79	2.353361548
12/14/2007	1,416	53	4,502,880	0.1	1.483	0.42	2.769800904
6/2/2008	4,104	46.5	11,450,160	1.5	4.095	2.92	5.694645915
9/12/2008	2.448	37	5.434.560	0.5	2.229	0.76	6.450280544
11/26/2008	NS	NS	NS	NS	NS	NS	NS
12/11/2008	NS	NS	NS	NS	NS	NS	NS
4/1/2009	NS	NS	NS	NS	NS	NS	NS
TOTALS:	14,881		45,095,430			6.45	

Lab Data for Air Mitigation System B-3

First Quarter 2009

04/01/09

Michigan Plaza

3801-3823 West Michigan Street

Indianapolis, Indiana

						B-3	3 (Lab Da	ata)	=	N.	IUNDELL P	roject No. M	01046	7	- 0				3-3 (PID R	eadings	6)		
Sample Date	Hours per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	µg/m3 PCE	Lbs. PCE removed	μg/m3 TCE	Lbs. TCE removed	µg/m3 VC	Lbs. VC removed	μg/m3 cis-1,2- DCE	Lbs. cis- 1,2-DCE removed	Lbs. Total Pollutants Removed	Cumulative PCE lbs Removed	Cumulative Total Pollutant Ibs Removed		Sample Date	Hours Per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	PID Reading (ppm VOCs)	µg/m3 VOCs	Lbs. VOCs Removed	Cum Total lbs Removed (Est from PID)
9/21/2006	0.5	132	3,960	4,553	0.00	27	0.00	1,280	0.00	40	0.00	0.00	0.0011248	0.0014575		9/21/2006	0.5	132	3,960	1.8	4,655	0.00	0.0011498
10/6/2006	360	132	2,851,200	5,573	0.99	27	0.00	1,280	0.23	40	0.01	1.23	0.9922586	1.2321615		9/28/2006	168	132	1,330,560	2.2	5,401	0.45	0.449443
10/13/2006	168	132	1,330,560	5,063	0.42	27	0.00	1,280	0.11	40	0.00	0.53	1.4124832	1.7641855	3	10/6/2006	192	132	1,520,640	2.1	5,215	0.49	0.944078
10/20/2006	168	132	1,330,560	4,791	0.40	27	0.00	1,280	0.11	40	0.00	0.51	1.8101455	2.2736471		10/13/2006	168	132	1,330,560	2.1	5,121	0.43	1.3691398
11/17/2006	672	132	5,322,240	5,675	1.88	27	0.01	1,280	0.42	40	0.01	2.33	3.6941055	4.6048048	3	10/20/2006	168	132	1,330,560	2.0	5,075	0.42	1.7903297
12/27/2006	960	132	7.603.200	5.199	2.47	27	0.01	1.280	0.61	40	0.02	3.10	6.1598531	7.7094061		11/17/2006	672	132	5,322,240	2.0	5.028	1.67	3.4596017
3/30/2007	2,232	132	17,677,440	4,485	4.95	27	0.03	1.280	1.41	40	0.04	6.43	11.105853	14.14074		12/27/2006	960	132	7,603,200	0.1	1,483	0.70	4.1627676
6/15/2007	1,848	132	14,636,160	2.650	2.42	27	0.02	1.280	1.17	40	0.04	3.65	13.52567	17.790351		6/15/2007	4.080	132	32,313,600	0.1	1,483	2.99	7.1512227
10/16/2007	2,952	132	23,379,840	1.665	2.43	27	0.04	1.280	1.87	40	0.06	4.39	15.953948	22.183104		10/16/2007	2,952	132	23,379,840	0.1	1,483	2.16	9.3134579
12/14/2007	1,416	132	11,214,720	2.718	1.90	27	0.02	1.280	0.90	40	0.03	2.84	17.855635	25.027101		12/14/2007	1,416	132	11.214.720	0.1	1,483	1.04	10.350628
3/27/2008	2,496	132	19.768.320	3,670	4.53	27	0.03	1,280	1.58	40	0.05	6.19	22.381007	31.213492		3/27/2008	2,496	132	19,768,320	1.3	3.722	4.59	14.940073
6/2/2008	1,608	132	12,735,360	3.568	2.83	27	0.02	1.280	1.02	40	0.03	3.90	25.215408	35.117973		6/2/2008	1,608	132	12,735,360	1.2	3.535	2.81	17.748496
9/12/2008	2,448	132	19,388,160	3,466	4.19	27	0.03	1.280	1.55	40	0.05	5.82	29.407228	40.938869		9/12/2008	2,448	132	19.388.160	0.5	2.229	2.70	20.444274
11/26/2008	1,800	132	14.256.000	3.024	2.69	27	0.02	1.280	1.14	40	0.04	3.89	32.096389	44.825881		11/26/2008	1,800	132	14.256.000	0.4	2.042	1.82	22.260525
12/11/2008	360	132	2.851,200	2446.6	0.44	27	0.00	1280	0.23	40	0.01	0.67	32.531521	45.500584		12/11/2008	360	132	2,851,200	0.8	2788.8	0.50	22.756526
4/1/2009	2664	132	21098880	3737.8	4.9194082	27	0.03553535	1280	1.68463868	40	0.052644959	6.692227154	37,45092907	52.19281067		4/1/2009	2664	132	21098880	0.6	2415.6	3.17922906	25,93575501
TOTALS:	14,881		117,853,560		25.22		0.30		14.01		0.44	35.12				TOTALS:	14,881		151,497,720			22.78	

Lab Data for Air Mitigation System B-4

First Quarter 2009

04/01/09

Michigan Plaza

3801-3823 West Michigan Street

Indianapolis, Indiana-

							-			M	UNDELL I	roject No. !	M01046		-			-51-000-				
					,	B-4	(Lab Da	ita)	,								В	4 (PID Re	adings	5)		
Sample Date	Hours per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	μg/m3 PCE	Lbs. PCE removed	µg/m3 TCE	Lbs. TCE removed	µg/m3 VC	Lbs. VC removed	µg/m3 dis-1,2- DCE	Lbs. as- 1,2-DCE removed	Pollutants		Cumulative Total Pollutant Ibs Removed	Sample Date	Hours Per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	PID Reading (ppm VOCs)	μg/m3 VOCs	Lbs. VOCs Removed	Cum Total lbs Removed (Est from PID)
9/21/2006	0.5	132	3,960	1,903	0.00	27	0.00	1.280	0.00	40	0.00	0.00	0.00047	0.0008028	9/21/2006	0.5	132	3,960	0.2	1.669	0.00	0.000412
10/6/2006	360	132	2.851.200	2,005	0.36	27	0.00	1,280	0.23	40	0.01	0.60	0.3570365	0.5969394	9/28/2006	168	132	1,330,560	0.4	2,042	0.17	0.169929
10/13/2006	168	132	1,330,560	1,767	0.15	27	0.00	1,280	0.11	40	0.00	0.26	0.5036921	0.8553943	10/6/2006	192	132	1,520,640	0.3	1,763	0.17	0.337112
10/20/2006	168	132	1,330,560	1,461	0.12	27	0.00	1,280	0.11	40	0.00	0.23	0.6249649	1.0884666	10/13/2006	168	132	1,330,560	0.2	1.623	0.13	0.471782
11/17/2006	672	132	5,322,240	1,257	0.42	27	0.01	1,280	0.42	40	0.01	0.86	1.0423693	1.9530685	10/20/2006	168	132	1.330.560	0.1	1.553	0.13	0.600644
12/27/2006	960	132	7,603,200	883	0.42	27	0.01	1,280	0.61	40	0.02	1.06	1.4613852	3.0109381	11/17/2006	672	132	5,322,240	0.1	1,483	0.49	1.09286
3/30/2007	2,232	130	17.342,640	479	0.52	27	0.03	1,280	1.38	40	0.04	1.98	1.9797018	4.9864582	12/27/2006	960	132	7.603.200	0.1	1,483	0.70	1.796026
6/15/2007	1,848	125	13.887.720	1.668	1.45	27	0.02	1,280	1.11	40	0.03	2.61	3.4250524	7.598715	6/15/2007	4.080	127.75	31,273,200	0.1	1,483	2.89	4.688262
10/16/2007	2.952	128	22.627.080	1.791	2.53	27	0.04	1.280	1.81	40	0.06	4.43	5.9526032	12.027491	10/16/2007	2.952	128	22.671.360	0.1	1,483	2.10	6.784975
12/14/2007	1,416	132	11,214,720	703	0.49	27	0.02	1,280	0.90	40	0.03	1.43	6.4446649	13.461862	12/14/2007	1,416	132	11,214,720	0.1	1,483	1.04	7.822145
3/27/2008	2,496	128	19.094,400	727	0.87	27	0.03	1,280	1.52	40	0.05	2.47	7.3107899	15.932381	3/29/2008	2,544	128	19.537.920	1.8	4.655	5.67	13.4952
6/2/2008	1.608	119	11.481.120	591	0.42	27	0.02	1,280	0.92	40	0.03	1.39	7.7342322	17.320516	6/2/2008	1,560	119	11,138,400	0.3	1,856	1.29	14.78461
9/12/2008	2,448	132	19,388,160	782	0.95	27	0.03	1,280	1.55	40	0.05	2.57	8.6799918	19.895353	9/12/2008	2,448	132	19,388,160	0.4	2.042	2.47	17.25471
11/26/2008	1,800	132	14,256,000	816	0.73	27	0.02	1,280	1.14	40	0.04	1.92	9.4056385	21.81885	11/26/2008	1,800	132	14,256,000	0.1	1,483	1.32	18.57314
12/11/2008	360	132	2,851,200	747.56	0.13	27	0.00	1280	0.23	40	0.01	0.37	9.538595496	22.19137713	12/11/2008	360	132	2,851,200	0.1	1482.6	0.26	18.83683
4/1/2009	2664	132	21098880	373.8	0.49197	27	0.03554	1280	1.684639	40	0.052645	2.264786	10.030563	24.456163	4/1/2009	2664	132	21098880	0.25	1762.5	2.319668	21.1565
TOTALS:	14,881		114,089,400		7.73		0.29		13.71		0.43	24.46			TOTALS:	14,881		171,871,560			21.16	

Lab Data for Air Mitigation System B-5

First Quarter 2009

04/01/09

Michigan Plaza

3801-3823 West Michigan Street

Indianapolis, Indiana

			i		á "	B-5 (Lab Dat	ta)	ü	ă.	a	er Gr		
Sample Date	Hours per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	µg/m3 PCE	Lbs. PCE removed	μg/m3 TCE	Lbs. TCE removed	µg/m3 VC	Lbs. VC removed	µg/m3 cis-1.2- DCE	1.2-DCE	Lbs. Total Pollutants Removed	Cumulative PCE lbs Removed	Cumulative Total Pollutant lbs Removed
3/27/2008	0.5	130	3.900	883	0.00	27	0.00	1,280	0.00	40	0.00	0.00	0.0002149	0.00054263
3/28/2008	24	127	182.880	690	0.01	27	0.00	1.280	0.01	40	0.00	0.02	0.008084	0.02377806
4/24/2008	648	120	4,665,600	432	0.13	27	0.01	1,280	0.37	40	0.01	0.52	0.1336789	0.54139681
5/1/2008	168	115	1, 159,200	381	0.03	27	0.00	1,280	0.09	40	0.00	0.12	0.1611982	0.66631708
6/2/2008	768	114	5.253.120	398	0.13	27	0.01	1,280	0.42	40	0.01	0.57	0.291474	1.23798276
7/10/2008	912	115	6,292,800	442	0.17	27	0.01	1,280	0.50	40	0.02	0.70	0.4648736	1.94013057
9/12/2008	1.536	114	10,506,240	435	0.29	27	0.02	1,280	0.84	40	0.03	1.17	0.7499584	3.10799495
11/26/2008	1,800	113	12,204,000	479	0.36	27	0.02	1,280	0.97	40	0.03	1.39	1.1146074	4.49807679
12/11/2008	360	122	2,635.200	489.312	0.08	27	0.00	1280	0.21	40	0.01	0.30	1.1950409	4.79993115
4/1/2009	2664	122	19500480	1427.16	1.73602	27	0.03284	1280	1.55701	40	0.048657	3.374537	2.9310635	8.17446822
TOTALS:	2,521		40,267,740		2.93		0.11		4.98		0.16	8.17		

B-5 (PID Readings)							
Sample Date	Hours Per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cyde (CF)	PID Reading (ppm VOCs)	µg/m3 VOCs	Lbs. VOCs Removed	Cum Total lbs Removed (Est from PID)
3/29/2008	50	119	357.000	0.1	1.483	0.03	0.033016
3/31/2008	48	118	339.840	0.2	1.669	0.04	0.068401
5/1/2008	744	116	5.178.240	0.1	1,483	0.48	0.5473
6/2/2008	768	114	5.253.120	0.2	1.669	0.55	1.09427
9/12/2008	2.448	114	16,744,320	0.1	1,483	1.55	2.642833
11/26/2008	1,800	113	12,204,000	0.1	1,483	1.13	3.771494
12/11/2008	360	122	2.635.200	0.1	1482.6	0.24	4.015205
4/1/2009	2664	122	19500480	0.1	1482.6	1.80346	5.818666
TOTALS:	32,235		305,156,400			5.82	

Table D10

Lab Data for Air Mitigation System B-6

First Quarter 2009

04/01/09

Michigan Plaza

3801-3823 West Michigan Street

Indianapolis, Indiana

MUNDELL Project No. M01046

						D-0	(Lab Da	lfa)						
Sample Date	Hours per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	µg/m3 PCE	Lbs. PCE removed	µg/m3 TCE	Lbs. TCE removed	µg/m3 VC	Lbs. VC removed	μg/m3 dis- 1,2-DCE	Lbs. cis- 1,2-DCE removed	Lbs. Total Pollutants Removed	Cumulative PCE lbs Removed	Cumulative Total Pollutant lb Removed
3/27/2008	0.5	130	3,900	8,155	0.00	27	0.00	1,280	0.00	40	0.00	0.00	0.001983977	0.002311672
3/28/2008	24	119	171,1 4 4	5,743	0.06	27	0.00	1,280	0.01	40	0.00	0.08	0.063290848	0.077998801
4/24/2008	648	114	4,426,488	2,039	0.56	27	0.01	1,280	0.35	40	0.01	0.93	0.626242778	1.012883362
5/1/2008	168	123	1,234,800	1,087	0.08	27	0.00	1,280	0.10	40	0.00	0.19	0.709997128	1.200390939
6/2/2008	768	120	.5,506,560	1,461	0.50	27	0.01	1.280	0.44	40	0.01	0.96	1.211888352	2.16496710
9/12/2008	2,448	114	16,744,320	1.359	1.42	27	0.03	1,280	1.34	40	0.04	2.83	2.631352305	4.991361114
11/26/2008	1,800	112	12,096.000	985	0.74	27	0.02	1,280	0.97	40	0.03	1.76	3.374568911	6.75093586
12/11/2008	360	118	2,548,800	747.56	0.12	27	0.00	1280	0.20	40	0.01	0.33	3.493424391	7.08395252
4/1/2009	2664	118	18861 120	883.48	1.03945	27	0.03177	1280	1.50596	40	0.047061	2.624238	4.532869588	9.708190447
TOTALS:	1,609		4 0 ;4839212		3.37		0.10		4.92		0.15	9.71		

		E	3-6 (PID Readings)			
Sample Date	Hours Per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	PID Reading (ppm VOCs)	μg/m3 VOCs	Lbs. VOCs Removed	Cum Total lbs Removed (Est from PID)
3/29/2008	50	110	330,000	1.7	4.468	0.09	0.091978
3/31/2008	48	111	319,680	0.1	1,483	0.03	0.121543
5/1/2008	744	118	.5,267,520	0.3	1.856	0.61	0.731325
6/2/2008	768	120	-5,529,600	1.1	3,349	1.16	1.886358
9/12/2008	2.448	114	16,744,320	0.1	1,483	1.55	3.434921
11/26/2008	1,800	114	12,312,000	0.2	1.669	1.28	4.716881
12/11/2008	360	118	.2,548,800	0.4	2042.4	0.32	5.041605
4/1/2009	2664	118	18861120	0.3	1855.8	2.183414	7.225018
TOTALS:	42,727		378,815,400°			7.23	

Table D11

Lab Data for Air Mitigation System B-7

First Quarter 2009

04/01/09

Michigan Plaza

3801-3823 West Michigan Street

.Indianapolis, Indiana-

MUNDELL Project No. M01046

Sample Date	Hours per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	µg/m3 PCE	Lbs. PCE removed	μg/m3 TCE	Lbs. TCE removed	μ g/m3 VC	Lbs. VC removed	µg/m3 cis-1,2- DCE	Lbs. cis- 1,2-DCE re-moved	Lbs. Total Pollutants Removed	Cumulative PCE lbs Removed	Cumulative Total Pollutant Ibs Removed
4/7/2008	0.5		0	516	0.00	27	0.00	1,280	0.00	40	0.00	0.00	0	0
4/8/2008	24	A-1 13	0	418	0.00	27	0.00	1,280	0.00	40	0.00	0.00	0	0
4/24/2008	384	0	0	234	0.00	27	0.00	1,280	0.00	40	0.00	0.00	0	0
5/1/2008	168	120	1.209.600	207	0.02	27	0.00	1,280	0.10	40	0.00	0.12	0.015639843	0.1172757
6/2/2008	768	117	5,391,360	313	0.11	27	0.01	1.280	0.43	40	0.01	0.56	0.120774749	0.6754159
7/10/2008	912	118	6,456,960	367	0.15	27	0.01	1,280	0.52	40	0.02	0.69	0.268586134	1.3657689
9/12/2008	1.536	114	10.506.240	364	0.24	27	0.02	1.280	0.84	40	0.03	1.12	0.507139802	2.4871023
1/26/2008	1.800	112	12,096,000	374	0.28	27	0.02	1,280	0.97	40	0.03	1.30	0.789335752	3.7856563
12/11/2008	360	118	2,548,800	380.576	0.06	27	0.00	1280	0.20	40	0.01	0.27	0.849843996	4.0603258
4/1/2009	2664	118	18861120	400.96	0.47174	27	0.031766	1280	1.505965	40	0.047061	2.056536	1.321587495	6.116862
TOTALS:	2,257		35,660,160		1.32		0.10		4.56		0.14	6.12		

			B-7 (PID Re	eadings)			_
Sample Date	Hours Per Cycle	Average Flow Rate (CFM)	Air Vol. Removed per Cycle (CF)	PID Reading (ppm VOCs)	μg/m3 VOCs	Lbs. VOCs Removed	Cum Total lbs Removed (Est from PID)
5/1/2008	576	120	4,147,200	0.1	1.483	0.38	0.383545041
6/2/2008	768	117	5.391,360	0.3	1,856	0.62	1.007663315
9/12/2008	2,448	114	16,744.320	0.1	1.483	1.55	2.556226417
11/26/2008	1,800	112	12,096,000	0.2	1,669	1.26	3.815695614
12/11/2008	360	118	2,548,800	0.4	2042.4	0.32	4.140419291
4/1/2009	2664	118	18861120	0.3	1855,8	2,1834138	6.323833061
TOTALS:	52,953		450,26 7 ,000			6.32	

APPENDIX E PHOTOGRAPHIC DOCUMENTATION

1) CAP-18ME Drums Delivery to the Site

2) Putting the Product Drums in the 3817 (then Vacant) Space

3) Product Drum Staging Area (3817 Space)

4) Mexican Store Back Door - Door & Trim taken off to enable Rig Entry

5) Boring/CAP-18 Injection Location - Passageway Southside(Inside) the Mexican Store

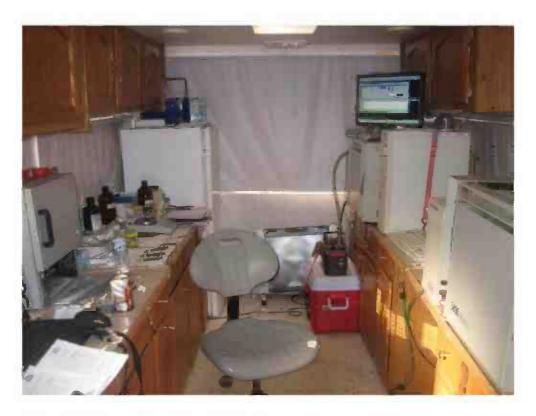
6) Drilling & Injection - Mexican St (Upgradient of possible Drycleaning Equipment Location)

7) Drilling & Injection - Mexican Store (Dining Area)

8) Exhaust from the Drill Rig Operations - Mexican Store

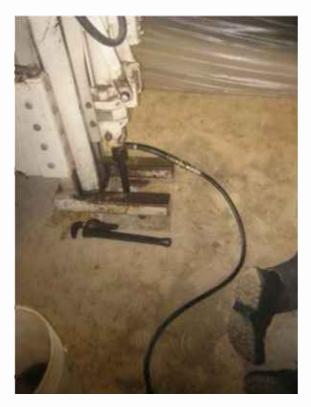
9) Injection - Mexican St (Downgradient of possible Drycleaning Equipment Location)

10) Directing Exhaust from the Drill Rig Operations - Mexican Store


11) Shelving Covered with Plastic by GenNx

12) Drilling/Injection Location as you enter the Mexican Store

13) Sierra Mobile Lab - Trailer Interior


14) Sierra Mobile Lab - Trailer Interior

15) Sierra Mobile Lab - Trailer

16) Hand Pump on the CAP-18 drum to pump product in the 5 gal-bucket

17) Hose introducing product into the geoprobe tooling

18) Measured Quantities of Product being poured into the Hopper

19) Directing Exhaust Outside the Laundromat

20) Drilling/Injection Location in Laundromat (3823)

Reference 26 Page 590

21)

23) Drilling/Injection Location in the Laundromat

24) Injection in Source Area B

25) Injection Set up

26) Hopper with Product

27) Hand Pumping product

28) Getting Ready to Inject in source Area B

29) Clearing Utilities

30) Injection West of Building 1

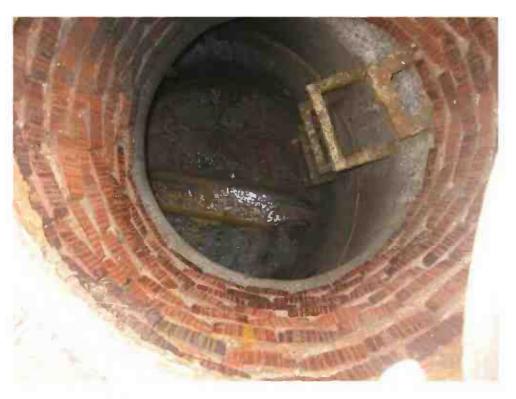
31) Injection in Source Area C (west of building 1)

32) Injection in Source Area C (west of building 1)

Reference 26 Page 596

33) Pump Set up for Injection

34) Drilling South of the Plaza for further characterization


35) Sewer sampling location SS-P-01

36) Sewer sampling location SS-P-01

37) Sewer sampling location SS-P-01

38) Sewer sampling location SS-A-03

39) Sewer sampling location SS-A-03

40) Sewer sampling location SS-A-01 and SS-A-02